Appendix 14.3

Marine Outfall Site Investigation

Arklow Sewerage Scheme - Marine Outfall Site Investigation

Client: Irish Water

Client's Representative: Byrne Looby ARUP J.V

Report No.: 17-0167

Date: December 2017

Status: Draft for Review

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTI	HORITY	4
2	SCOF	PE	4
3	DESC	CRIPTION OF SITE	4
4	SITE 4.1 4.2	OPERATIONS Summary of site works Boreholes	5 5
	4.3	4.2.1 Light cable percussion boreholes	6
5	LAB0 5.1 5.2 5.3	ORATORY WORKGeotechnical laboratory testing of soilsGeotechnical laboratory testing of rockEnvironmental laboratory testing of soils	7 7
6	GROV 6.1 6.2 6.3	UND CONDITIONSGeneral geology of the areaGround types encountered during investigation of the siteGroundwater	8 8
7	REFI	ERENCES	9

APPENDICES

Appendix A	Site and exploratory hole location plans
Appendix B	Borehole logs
Appendix C	Core photographs
Appendix D	Geotechnical laboratory test results
Appendix E	Environmental laboratory test results
Appendix F	SPT hammer energy measurement report

Document Control Sheet

Report No.:		17-0167									
Project Title:		Arklow Sewerag	Arklow Sewerage Scheme Marine Outfall – Ground Investigation								
Client:		Irish Water									
Client's Repres	entative:	Byrne Looby AF	Byrne Looby ARUP J.V.								
Revision:	A00	Status:	Draft for review	Issue Date:	15 December 2017						
Prepared by:		Reviewed by:		Approved by:							
Lucy Newland BSc (Hons)	Arshud.	Neil Haggan BSc(Hons) MSc	FGS	Darren O'Mahor BSc MSc MIEI	7.						

The works were conducted in accordance with:

UK Specification for Ground Investigation 2nd Edition, published by ICE Publishing (2012)

British Standards Institute (2015) BS 5930:2015, Code of practice for site investigations.

IS EN 1997-2:2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377-2:1990, BS EN ISO 17892-1:2014, and BS EN ISO 17892-2:2014

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015, The Code of Practice for Site Investigation.

Abbreviations used	on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler)
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler)
P	Nominal 100mm diameter undisturbed piston sample
В	Bulk disturbed sample
LB	Large bulk disturbed sample
D	Small disturbed sample
С	Core sub-sample (displayed in the Field Records column on the logs)
L	Liner sample from dynamic sampled borehole
W	Water sample
ES / EW	Soil sample for environmental testing / Water sample for environmental testing
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained)
SPT (c)	Standard penetration test using 60 degree solid cone
x,x/x,x,x,x	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mm
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)
N=X/Z	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)
V VR	Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strength
dd/mm/yy: 1.0 dd/mm/yy: dry	Date & water level at the borehole depth at the end of shift and the start of the following shift
Abbreviations relating	g to rock core – reference Clause 44.4.4 of BS 5930: 2015
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.

Arklow Sewerage Scheme Marine Outfall

1 AUTHORITY

On the instructions of Byrne Looby and ARUP Consulting Engineers, ("the Client's Representative"), acting on the behalf of Irish Water ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information for input to the design and construction of a proposed waste water treatment works.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes by light cable percussion and rotary boring, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted in two areas, the first, starting just after the Arklow bridge on the Avoca River in the town of Arklow and the second starts north of the river mouth moving east into the Irish Sea.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between 29th August and 7th November 2017, comprised:

- nine light cable percussion boreholes
- nine light cable percussion boreholes with rotary follow-on

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

A total of eighteen boreholes were put down in a minimum diameter of 200mm through soils and rock strata to their completion depths by a combination of methods, including light cable percussion boring by Dando 3000 rigs, and rotary drilling (by a Comacchio 405 Mobile tracked rotary drilling rig).

The borehole logs state the methodology and plant used for each location, as well as the appropriate depth ranges.

A summary of the boreholes, subdivided by category in accordance with the methods employed for their completion, is presented in the following sub-sections.

Appendix B presents the borehole logs.

4.2.1 Light cable percussion boreholes

Nine boreholes (BH11-BH19) were put down to completion in minimum 200mm diameter using Dando 3000 light cable percussion boring rigs. All boreholes were terminated either at their scheduled completion depths, or else on encountering virtual refusal on obstructions, including large boulders and weathered bedrock.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Undisturbed (U100/UT100) samples were taken where appropriate and as directed within cohesive soils. Environmental samples were taken at standard intervals, as directed by the Client's Representative.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals using the split spoon sampler ($SPT_{(s)}$) or solid cone attachment ($SPT_{(c)}$). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix F.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

4.2.2 Boreholes by combined percussion boring and rotary follow-on drilling

Nine boreholes (BH01, BH02 & BH04-BH10) were put down by a combination of light cable percussion boring and rotary follow-on drilling techniques with core recovery in bedrock. Where the cable percussion borehole had not been advanced onto bedrock, rotary percussive methods were employed to advance the borehole to completion/bedrock. Symmetrix cased full-hole drilling was used.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals throughout the overburden using the split spoon sampler ($SPT_{(s)}$) or solid cone attachment ($SPT_{(c)}$). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix F.

Where coring was carried out within bedrock strata, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using a SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930: 2015: Code of practice for ground investigations*.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.3 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Leica GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish National Grid) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these asbuilt positions.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- compressibility: one dimensional consolidation (oedometer)
- **shear strength** (total stress): unconsolidated undrained triaxial tests
- **direct shear:** shear box tests
- soil chemistry: pH, water soluble sulphate content, organic matter content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute (1990) *BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.*

The test results are presented in Appendix D.

5.2 Geotechnical laboratory testing of rock

Laboratory testing of rock sub-samples comprised:

point load index

Test	Test carried out in accordance with
Point load index	ISRM Suggested Methods (1985) Suggested method for determining point-load strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp. 53–60

The test results are presented in Appendix D.

5.3 Environmental laboratory testing of soils

Environmental testing, was conducted on selected environmental soil samples by ESG/Socotec UK laboratories in Wales.

Testing was carried out for a range of determinants, including:

- specified disposal at sea suite
- specified waste acceptance criteria (WAC) testing.

Results of environmental laboratory testing are presented in Appendix E.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise Alluvium deposits. These deposits are underlain by dark grey slate and minor pale sandstone of the Kilmacrea Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Fluvioglacial deposits:** typically medium dense to dense sands and gravels with localised pockets of soft to firm sandy gravelly silts and clays interspersed throughout.
- **Glacial Till:** slightly sandy slightly gravelly silty clay, frequently with low or medium cobble content, typically stiff in upper horizons, becoming very stiff with increasing depth.
- **Bedrock (Amphibolite, Breccia, and Slate):** Rockhead was encountered at depths ranging from 5.3m in BH19 to about 23.5m in boreholes BH02 and BH08, showing a trend of dipping east.

6.3 Groundwater

Groundwater was encountered during percussion boring through soil as a water strike at 4.10m in borehole BH17 coincident with a layer medium to coarse gravel.

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

It should be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

7 REFERENCES

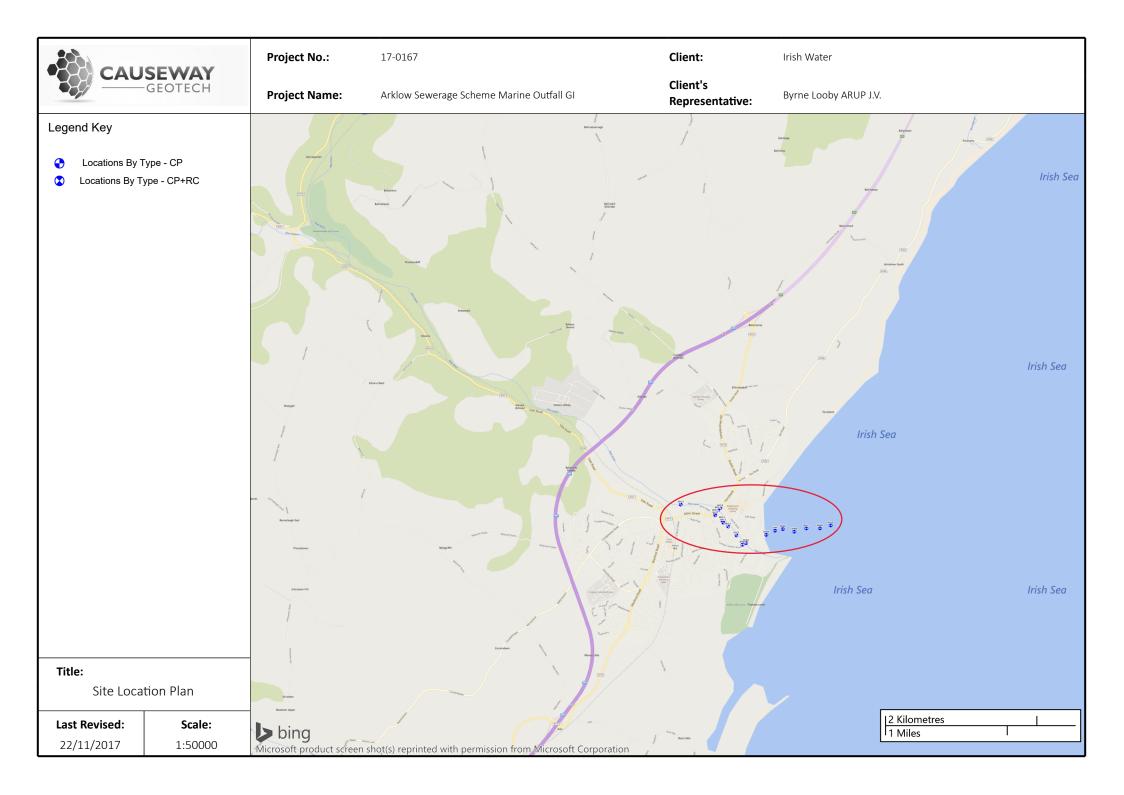
Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS 5930: 2015: Code of practice for ground investigations. British Standards Institution.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.


Construction Industry Research and Information Association (CIRIA). 1993. Research Project 369. The Standard Penetration Test (SPT): Methods and Use. CIRIA. London.

BS EN ISO 14688-1: 2002: Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description. British Standards Institution.

APPENDIX A Site and exploratory hole location plans

Project No.: 17-0167

Client:

Client's

Irish Water

Byrne Looby ARUP J.V.

Project Name:

Arklow Sewerage Scheme Marine Outfall GI

Representative:

Legend Key

Locations By Type - CP

Locations By Type - CP+RC

Title:

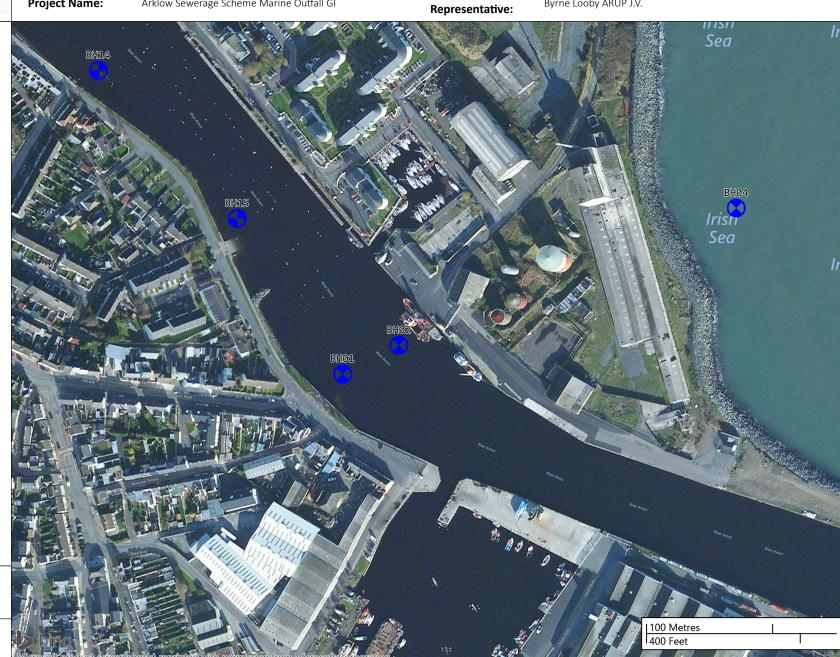
Exploratory Hole Location Plan

Last Revised: Scale: 22/11/2017 1:3000

Project No.: 17-0167 Client: Irish Water

Client's

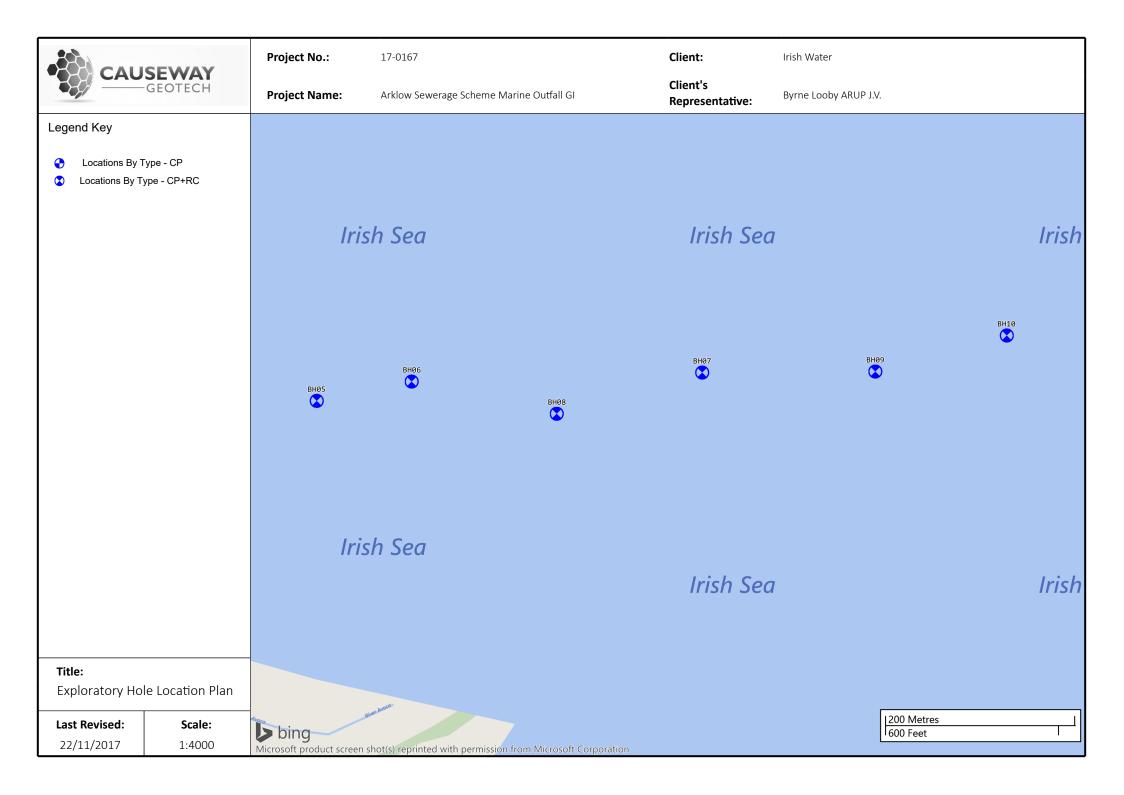
Project Name:


Arklow Sewerage Scheme Marine Outfall GI

Byrne Looby ARUP J.V.

Legend Key

Locations By Type - CP


Locations By Type - CP+RC

Title:

Exploratory Hole Location Plan

Last Revised: Scale: 22/11/2017 1:3000

APPENDIX B
Borehole logs

20					Projec		-	: Name:	Borehole No.:
	CAL	JS	E	VAY	17-016			Sewerage Scheme Marine Outfall GI	BH01
		— C	ĒΟ	TECH	Coordi		Client: Irish W		Sheet 1 of 3
Method	Pla	nt U	sed	Top Bas	32510			s Representative:	Scale: 1:50
Cable Percussion	Dan	ido 3	000	0.00 20.5	17307	0.75 N		Looby ARUP J.V.	Driller: CC+TA
Rotary Drilling	Coma	acchi	o 405	20.50 25.0	Groun	d Level:	Dates:		
Depth 5	Sample /	Casing	Water		-3.8 Level	6 mOD Depth (m)		2017 - 05/09/2017 I	Logger: SG
(m)	Tests	Depth (m)	Depth (m)	Field Records	(mOD)			Description	Backfill
0.00 - 1.00	B1						*** ****	Black very gravelly silty fine to coarse SAND. Gravel is subrounded fine to medium.	
0.50	ES28					(1.00)	×, × , ×, ×		0.5
						[× × ×		
	D2 B3				-4.86	1.00	^ × × × ×	Loose to medium dense black sandy slightly silty subrounded fine to	1.0 —
1.00 - 1.45	SPT (S) N=9	1.00	Dry	N=9 (1,2/2,2,2,3)		[× × ×	coarse GRAVEL. Sand is fine to coarse.	
	ES29					Ē	×. ×. ×		1.5 —
2.00	D4					(1.80)	×·×·×		-
2.00 - 2.45	SPT (S)	2.00	Dry	N=12 (2,2/3,3,3,3)		E	× × ×		2.0
	N=12 ES30					<u> </u>	× × ×		2.5
	B5				-6.66	2.80	×		
	D6				-0.00	2.80		Medium dense greyish brown very gravelly slightly silty fine to coarse SAND. Gravel is subrounded fine.	3.0
	SPT (S) N=14	3.00	Dry	N=14 (2,3/4,4,3,3)					-
3.50	ES31								3.5
3.50 - 4.50	B7					(1.70)			-
	D8	4.00	D	N 40 /2 2/4 4 5 5\		-			4.0
	SPT (S) N=18	4.00	Dry	N=18 (3,3/4,4,5,5)		[-
	ES32 B9				-8.36	4.50 (0.30)	× × × >	Firm brown slightly sandy slightly gravelly SILT. Sand is fine to coarse.	4.5
4.80 - 5.50	B10				-8.66	4.80	×××	Gravel is subrounded fine. Medium dense brown very sandy slightly silty subrounded fine to medium	-
	SPT (S) N=12	5.00	Dry	N=12 (1,2/2,3,3,4)		-	×	GRAVEL. Sand is fine to coarse. Locally thin bands of brown silt.	5.0
						(1.10)	^`		
	ES33					Ē	×××		5.5 —
	B11 UT34	6.00	Dry	Ublow=37 100%	-9.76	5.90	××.×	Very stiff greyish brown slightly sandy slightly gravelly SILT. Sand is fine to	- - 6.0
0.00 - 0.43	0134	0.00	Ыу	Oblow-37 100%		E	× × × × × × × × × × × × × × × × × × ×	coarse. Gravel is subrounded fine to medium.	-
6.50	D12					Ē	^ ^ ^ ^ × × × >		6.5
						(1.70)	` × × × × × × >		
	D13					<u> </u>	× × × × × × >		7.0 —
	SPT (S) N=8	7.00	Dry	N=8 (1,2/2,2,2,2)		Ē	× × × × ×		
	B14				-11.46	7.60	$\times \times $		7.5
7.00 3.00	214				-11.40	7.00	× × × > × × ×	Firm brownish grey slightly sandy slightly gravelly SILT. Sand is fine to coarse. Gravel is subrounded fine.	
8.00 - 8.45	UT35	8.00	Dry	Ublow=59 100%		[(1 10)	$\times \times $		8.0 —
						(1.10)	× × × > (× × ×) × × × >		
	D15				13.50	0.70	^ ^ ^ / ` × × × >		8.5 —
	B16				-12.56	8.70	×××	Medium dense brownish grey very silty fine to coarse SAND.	
	D17 SPT (S)	9.00	Dry	N=12 (1,1/2,3,3,4)		-	× × × × ×		9.0 —
	N=12					(1.40)	× × ×		
						-	× × × ×		9.5 —
10.00 - 10.35	UT36	10.0	Dry	Ublow=61 80%		-	××××		10.0 —
	B18	0	_ · y	25.001 00/0	-13.96	10.10 (0.40)	$\times \times \times$	Soft grey slightly sandy SILT. Sand is fine to coarse.	
						·	× .× .× .×		
Remarks Deck to Bed = 6.2	20m							Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To (m) Time (hh:mm)
								SK6L 13.60	14.00 01:00
								Flush Type Water Added Casing Details From (m) To (m) To (m) Dolam (mm)	
Terminated at sch	odulod	den+	h					tod tod to tod to tod to tod to tod tod	

20						Project		_		Borehole No.:
1	CAL	JS	E	VAY TECH		17-016		Arklow Client:	Sewerage Scheme Marine Outfall GI	BH01
		— C	EC	TECH		325103		Irish W	ater	Sheet 2 of 3
Method	Pla	nt U	sed	Тор Ва	se					Scale: 1:50
Cable Percussion Rotary Drilling		ndo 3	000	0.00 20.	JU	173070	D.75 N	Byrne	ooby ARUP J.V.	Driller: CC+TA
Kotary Drilling	Com	acciii	0 403	20.30 23.	00	Ground		Dates:		Logger: SG
Depth	Sample /	/ Casing	Water	5.110 1		-3.86	Depth (m)			
(m) 10.50	Tests D19	Depth (m)	Water Depth (m)	Field Records	·	(mOD) -14.36	(Thickness)	Legend ×××>	Description Soft grey slightly sandy SILT. Sand is fine to coarse.	Backfill
10.50 - 12.00	B20					14.50	10.50	×××	Medium dense grey very silty fine to coarse SAND with thin bands of greyish brown silt.	10.5 —
11.00 - 11.45	SPT (S)	11.0	Dry	N=13 (1,2/3,3,3,4	,			x	greyish brown she.	-110
11.00 - 11.43	N=13	0	Diy	N-13 (1,2/3,3,3,-	,			× × ·		
							(0.00)	× × × × ×		11.5
							(2.20)	× × × ×		=
12.00 - 12.45	SPT (S)	12.0	Dry	N=12 (2,3/3,3,3,3)		<u>:</u>	× × × ×		12.0
	N=12	U						× × ×		
12.70 - 13.50	B21					-16.56	12.70	× × × × ×		12.5
13.00 - 13.45	SPT (S)	100	ווייייייייייייייייייייייייייייייייייייי	N=21 (1,2/4,5,5,7	,	10.30	_ 12.70	`	Medium dense to dense greyish brown very sandy silty subrounded fine to coarse GRAVEL with low cobble content. Sand is fine to coarse.	
13.00 - 13.43	N=21	0	y Joiny	114-21 (1,2/4,3,3,7	'			× × ×		-
								× × ×		13.5
								×·×·×		
14.00	D22						_	× × ×		14.0
14.00 - 15.00 14.00 - 14.45	B23 SPT (S)		Dry	N=28 (3,4/6,6,7,9)			`		-
	N=28	0						××××		14.5 —
							(4.30)	×. × ×		-
15.00 15.00 - 16.00	D24 B25							×·×·×		15.0
15.00 - 15.45	SPT (S) N=31	15.0 0	Dry	N=31 (6,7/9,7,7,8	3)			× × × × × × × × × × × × × × × × × × ×		15.5
								× × × ×		=
16.00 - 17.00	B26						_	*		16.0
16.00 - 16.45	SPT (S) N=31	16.0	Dry	N=31 (4,6/7,8,8,8	5)			× × ×		-
								×·×·×		16.5 —
	(-)							×		
17.00 - 17.45	SPT (S) N=26	17.0	Dry	N=26 (2,4/5,5,7,9)	-20.86	17.00		Medium dense to dense brownish grey very sandy very silty subrounded fine to medium GRAVEL. Sand is fine to coarse.	17.0 —
17.30 - 18.00	B37								The to mediam gravest same is the to course.	17.5
18.00	D38						- -			18.0
18.00 - 19.00 18.00 - 18.45	B39 SPT (S)		Dry	N=18 (2,3/4,4,5,5	5)					
	N=18	0								18.5
							(3.50)			
19.00 19.00 - 20.00	D40 B41									19.0
19.00 - 19.45	SPT (S) N=32	19.0 0	Dry	N=32 (3,4/7,8,9,8	3)					19.5
20.00	D42									20.0
20.00 - 20.45	SPT (S) N=29	20.0 0	Dry	N=29 (2,3/5,7,8,9)		-			
20.20 - 20.50	B27					-24.36	20.50	×××	Very dense greyish brown gravelly slightly silty fine to coarse SAND. Gravel	20.5
	TCR SCR	RQD	FI					V. A 1.V	Water College	Ilina Ditti
Remarks Deck to Bed = 6.2	20m								Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To (m) Time (hh:mm) 14.00 01:00
									SK6L 13.60	1
									Flush Type	
Terminated at sc	heduled	dept	:h						15.00 250	

0.0				- 170			Projec	t No.:	Projec	ct Name:							Bore	hole No.:
252		N.I.	ıc		A/AV		17-016	57	Arklow	w Sewerag	e Scheme	Marine	Outfall G	I				BH01
$-\Box$		10	73		WAY TECH		Coordi	nates:	Client	:							Sh	eet 3 of 3
			G	LC	ЛЕСП		32510	3.16 E	Irish W	Vater							311	eet 3 01 3
Method		Plan			Тор	Base	1		Client'	's Represe	entative:						Scale	: 1:50
Cable Percussion		Dano			0.00	20.50	17307	0.75 N	Byrne	Looby AR	UP J.V.						Deille	er: CC+TA
Rotary Drilling	C	oma	cchic	405	20.50	25.00	Groun	d Level:	Dates:	:							Dilli	er: CC+IA
							-3.8			/2017 - 05	5/09/2017						Logg	er: SG
Depth (m)	TCR	SCR	RQD	FI	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	Legend	1			Description	1			Water	ackfill
(111)							(IIIOD)	(Tilless)	×××	is subrour	nded fine to r	medium.					>	
21.00 - 21.45					N=50 (6,6/7,13,1-	4,16)												21.0
23.00 - 23.40					N=50 (6,7/5 250mm)	50 for		(4.50)										23.0 ————————————————————————————————————
25.00 - 25.34					50 (6,9/50 1	for	-28.86	25.00	××××									25.0
23.00 - 23.34					185mm)	Ю	-28.80	25.00				End of B	orehole at	25.00m				25.0
																		25.5 — —
								F										26.0 —
								Ē										
								-										26.5
																		27.0 -
								F										27.0 —
																		27.5 —
								Ē										-
																		28.0 —
																		28.5 —
								-										29.0 —
								[
								<u> </u>										29.5 —
								Ė										
								-										30.0
								[
								E										30.5
								<u> </u>										
								-										31.0 -
	TCR	SCR	RQD	FI									141	Cau!les -		OL:	-: "!!!	Datail:
Remarks Deck to Bed = 6.2	20m										Core Barrel	Struck at (m)		Strikes Time (min)	Rose to (m)	From (m)	To (m)	Time (hh:mm)
											SK6L					13.60	14.00	01:00
											Flush Type		Added		g Details]		
] '	ype	From (m)	To (m)	To (m) 24.80	Diam (mm) 200	-		
Terminated at schedu	uled d	epth																

						Project		-	t Name:				Borehol	
KXX (CAL	JS	E	VAY		17-016 Coordi		Arklow Client:	Sewerage Scheme	iviarine Outfall G	II .		ВН	U2
		— C	EO	TECH		32514		Irish W					Sheet	1 of 3
Method	Pla	nt U	sed	Тор	Base			Client'	s Representative:				Scale:	1:50
Cable Percussion	n Dan	ndo 3	000	0.00	18.00	17309	4.73 N	Byrne	Looby ARUP J.V.				Driller:	CCTSS
Rotary Drilling	Coma	acchi	o 405	18.00	25.00	Ground	l Level:	Dates:						
							3 mOD		2017 - 31/08/2017				Logger:	SG
(m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	Legend		Description			Nackt	fill
0.00 - 1.00	B1							× × ×	Black very sandy slightl GRAVEL. Sand is fine to		o rounded fine	to coarse		
0.50	ES28						(1.00)	××××						0.5 -
								× × ×						
1.00	D14					-2.28	1.00	× 2/1/2 × 2	C-ft black diababases	.ll	itale a manufacture	C	_	1.0 —
1.00 - 2.00 1.00 - 1.45	B2 SPT (S)	1.00		N=8 (1,2/2,	2 2 2)			× 9/0 × >	Soft black slightly grave to coarse. Gravel is sub					
	N=8	1.00		14-0 (1,2/2,	۷,۷,۷			\times \times \times \times \times \times						1.5 -
1.50	ES29						(1.30)	× 4/6× ×						
2.00	D15							×*/(** >						2.0 —
2.00 - 2.45	SPT (S) N=5	2.00		N=5 (1,1/1,	1,1,2)	-3.58	2.30	× 2/0 × 3	Loose black very sandy	aliabely siles 1	adad to '	d fina t		
2.30 - 3.00 2.50	B3 ES30							× × × ×	GRAVEL. Sand is fine to	- , ,	nueu to rounde	eu iiiie to coarse		2.5 -
3 -								× × ×						
3.00 3.00 - 4.00	D16 B4						_	×. ×. ×						3.0 —
	SPT (S)	3.00		N=8 (1,2/1,2	2,2,3)			× × ×						
3.50	N=8 ES31						(2.60)	×· × ×						3.5 -
								× × ×						
1.00 1.00 - 4.45	D17 SPT (S)	4.00		N=10 (1,1/2	2,2,3,3)			××××						4.0 —
	N=10							×						
4.50	ES32							× × ×						4.5 -
4.90 - 6.00	B5					-6.18	4.90	î::'×	Firm brown CLAY.				_	5.0 —
5.00 - 5.45	UT24			Ublow=76 1	100%									3.0
5.50	ES33						(1.10)							5.5 -
									_					
6.00	D18					-7.28	6.00		Medium dense brown	very candy cilty cuba	ungular to subre	ounded fine to	_	6.0 —
6.00 - 6.40 6.00 - 6.45	B6 SPT (S)	6.00		N=15 (1,2/3	3.3.4.5)		(0.60)		medium GRAVEL. Sand		ingular to subit	Junaca IIIIc to		
6.40 - 7.00	N=15 B7			- () / -	,-, ,-,	-7.88	6.60							6.5 -
3.40 - 7.00	67						(0.30)		Firm to stiff brown CLA	Υ.				
7.00 - 7.45	UT25			Ublow=65 1	100%	-8.18	6.90		Firm brownish grey slig	htly sandy CLAY. San	d is fine to med	dium.		7.0 —
7.00 - 8.00	B8													
7.50	D19													7.5 -
							(2.10)							
8.00 - 8.45	SPT (S) N=7	8.00		N=7 (2,1/2,	1,2,2)		(2.10)		-					8.0 —
								HI						
														8.5 -
9.00 - 10.00	В9					-10.28	9.00							۵0.
9.00 - 10.00	UT26			Ublow=30 0)%	10.20	3.00	^x	Grey silty fine SAND.					3.0 T
							(0.80)	××× ×××						9.5 -
						-11.08	9.80	××××						
10.00 - 11.00	B10					11.00	- 7.00		Firm brownish grey slig	htly sandy CLAY. San	d is fine to med	dium.		10.0 —
10.00 - 10.45	SPT (S) N=8	10.0 0		N=8 (1,2/2,	2,2,2)									
Domes -les										Mata	Strikes	Ch:	selling Deta	aile
Remarks Deck to bed = 5.3	30m								Core Barrel	Struck at (m) Casing to (m)		se to (m) From (m) 11.00		Time (hh:mm 01:00
									Flush Type	Water Added From (m) To (m)	Casing Det	tails		
erminated at sc	hadulad	dent	h							2.50 15.00				

200					\	Project			t Name:		0 10 11 0					ole No.
C C C C C C C C C C C C C C C C C C C	CAL	JS	E	YAY		17-016 Coordi		Client:	Sewerage Scheme	iviarine	Outrail G	·I			-	3H02
		—G	EΟ	TECH		32514		Irish W							Shee	et 2 of 3
Method	Pla	nt U	sed	Тор	Base	1		Client'	s Representative:						Scale:	1:50
Cable Percussion Rotary Drilling	n Dar Coma	ndo 3		0.00 18.00	18.00 25.00	17309	4.73 N	Byrne	Looby ARUP J.V.						Drille	r: CC+S:
Notary Drilling	Come	accini	0 403	18.00	25.00		d Level:	Dates:							-	
Depth	Sample /	/ Casing	Water			-1.28 Level	B mOD Depth (m)		⁽ 2017 - 31/08/2017						Logge	
(m) 10.50	Tests D20	Depth (m)	Water Depth (m)	Field Re	ecords	(mOD)	(Thickness)	Legend	Firm brownish grey slig		Description		medium		Mater Ba	ckfill
10.50 - 10.95	UT27			Ublow=59 1	L00%		-		- Time Stownish grey sing	sirely suriu	y CEATH. Suit	u 15 11110 to	, mealain.			10.5
11.00	D21						(1.70)									11.0 -
11.00	SPT (S)	11.0		N=15 (2,2/3	3,3,3,6)				_							
11.50 - 12.50	N=15 B11	0				-12.78	11.50				-11.			16	_	11.5
								4 9	Medium dense brown coarse GRAVEL with lo	w cobble	and boulde	r content.	Sand is fin			
12.00 - 12.45	SPT (S)	12.0		N=23 (3,4/6	5,5,6,6)		-		coarse. Cobbles and bo	oulders are	e subround	led to rour	nded.			12.0 -
	N=23	0						a , a ,								
							(2.25)	a ' c '								12.5
							[a								
13.00 - 14.00 13.00 - 13.45	B12 SPT (S)	13.0		N=24 (2,4/5	5,6,6,7)		<u>-</u>	a 'a '								13.0 -
	N=24	0														13.5
						-15.02	13.75	9 9								13.5
14.00	D22						-55	000	Dense brown sandy su medium cobble and bo	oulder con	tent. Sand					14.0 -
14.00 - 15.00 14.00 - 14.45	B13 SPT (S)	14.0		N=39 (4,6/7	7 9 10 13)			000	boulders are subangul	ar to subr	ounded.					
	N=39	0		(,,,,	,-,,,		<u> </u>	000								14.5
								000								
15.00 15.00 - 16.00	D23 B35							0.0								15.0 -
15.00 - 15.45	SPT (S) N=34	15.0 0		N=34 (6,9/7	7,8,8,11)		(3.15)									
	N=34	0														15.5
16.00	D34							000								16.0 -
16.00 - 16.45	SPT (S) N=34			N=34 (4,6/7	7,9,8,10)			000								
	11-34							0 0								16.5
16.90 - 17.50 17.00	B37 D36					-18.18	16.90	× × × × × ×	Dense grey sandy silty Sand is fine to coarse.	subangula	ar to subro	unded fine	to coarse	GRAVEL.		17.0 -
17.00 - 17.45	SPT (S) N=32	17.0 0		N=32 (4,6/7	7,7,8,10)		(4.40)	× × ×	Suria is time to course.							
							(1.10)	× × ×								17.5
10.00 40.05	CDT (C)	10.5		F0 /25 5 -	Fm /F 2		40.00	^								
18:88 - 18:85	SPT (C)	18.0 0		50 (25 for 2 for 25 mm) for 25 mm)	355 SHIM/30	-19.27	18.00 (0.40)	0,0,	Amphibolite BOULDER							18.0 -
	40			,		-19.68	18.40		Grey sandy silty suban	gular to sı	ubrounded	fine to coa	arse GRAVI	L with low		18.5
							<u> </u>	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	cobble content. Sand is subrounded predomin				bangular t	0		
19.00 - 19.45				N=35 (5,6/8	3,8,9,10)			, o		•						19.0 -
19.00																
							-	0 0								19.5
					_			9 9								
20.00 - 20.45				N=38 (5,7/9	9,8,10,11)											20.0 -
								a . ° å . j								20.5
	TCR SCR	POD	FI				-									20.5
Remarks	ICK SCR	י רעט	ri .			<u> </u>	<u> </u>		Core Barrel			Strikes	L		elling D	
eck to bed = 5.	30m								20.0 20.101	Struck at (m)	Casing to (m)	Time (min)	Rose to (m)	From (m) 11.00	To (m) 12.80	01:00
										Water	r Added	Casing	g Details	-		
									Flush Type	From (m)	To (m)	To (m) 16.50	Diam (mm) 250			
erminated at sc	heduled	dept	h									18.00	200			

							Project	: No.:	Project	t Name:	Boreh	ole No.:
RX.		ΛI	IC		M/AV		17-016	7	Arklow	Sewerage Scheme Marine Outfall GI	В	3H02
+0		70	_ C	FC	TECH		Coordi				She	et 3 of 3
					712011		32514	7.00 L				
Method					Тор	Base	17300	1 72 NI			Scale:	1:50
									-	·	Drille	r: CC+SS
					20.00	25.00						
Donth									29/08/			r: 3G
(m)	TCR	SCR	RQD	FI	Field Re	cords	(mOD)	(Thickness)		-		ckfill
									6 0		'	
21.00 - 21.45						10,12)				subrounded predominantly of amphibolite.		21.0
												21.5 —
									9 9 0			
22.00 - 22.45	0					11.11)		(5.10)				22.0 —
					(, , , , , ,	, ,		-				
								-				22.5 —
	Market Percentage Percent											
23.00 - 23.45												
						-,,		E	9 9 9			
23.50							-24.78	23.50				23.5 —
								Ę				
	80						<u> </u>				24.0 —	
	80							(1.50)				
												24.5 —
25.00 - 25.26 25.00				1		0 for	-26.28	25.00		End of Borehole at 25.00m		25.0 —
25.00					110,							
												25.5 —
]
								-				26.0 —
												26.5 —
								_				27.0 —
								-				27.5 —
								-				28.0 —
								Ē				
								-				28.5 —
								-				
								-				29.0 —
								Ē				
								<u> </u>				29.5
								_				30.0 —
								Ė				
								Ė				30.5
	TCP	SCR	BOD	FI				-				31.0
Remarks	. 511	JUN		ı <u>.</u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>			
Deck to bed = 5.3	30m									Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)		
										Was said at 5 t 5 t 7		
Terminated at schedu	uled o	depth										

202)	Project		_	Name:			Boreho	
CHO H	CAL	JS	E\	VAY		17-016			Sewerage Scheme	Marine Outfall GI		ВН	104
		-G	EO	TECH		Coordi 32541		Client: Irish W				Sheet	1 of 3
Method	Pla	nt U	sed	Тор	Base	1		Client'	s Representative:			Scale:	1:50
Cable Percussion Rotary Drilling		ido 3	000	0.00	21.50 25.00	17321	D.90 N	Byrne	_ooby ARUP J.V.			Driller:	CC/AH+S
Rotary Drilling	Coma	accnio	3 405	21.50	25.00	Ground		Dates:					-
Depth	Sample /	Casing	Water			-2.21	1 mOD Depth (m)		2017 - 09/09/2017 I			Logger:	
(m)	Tests	Depth (m)	Water Depth (m)	Field Re	ecords	(mOD)	(Thickness)			Description	U. C	Na Hack	fill –
0.00 - 1.40	B13								Medium dense yellowis shell fragments. Gravel				
).50	ES27												0.5
							(1.40)						
00	D14												1.0 -
00 - 1.45	SPT (S) N=21	1.00		N=21 (3,4/5	5,5,5,6)								
40 - 2.50 50	B15 ES28					-3.61	1.40	×××	Medium dense yellowis				1.5
.50	LJ20							***** *****	SAND with occasional s medium.	nen nagments. Gravel	is subrounded fine t	LU S	
2.00	D16							^x					2.0 -
.00 - 2.45	SPT (S) N=15	2.00		N=15 (2,2/3	5,4,4,4)			× × × × ×					
.50	ES29						-	* * * * * * *					2.5
							(2.80)	$\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}$					
.00 .00 - 4.00	D18 B17							*.*.×.*					3.0 -
	SPT (S)	3.00		N=12 (1,2/2	2,3,3,4)			× × ×					
.50	N=12 ES30							× × ×					3.5
								× × ×					
.00 .00 - 4.45	D19 SPT (S)	4.00		N=17 (2,3/3	3,4,5,5)	6.44	430	× × × × ×					4.0 -
	N=17			(-10)	=1	-6.41	4.20	××××	Medium dense brownis			coarse	
.20 - 5.00 .50	B20 ES31							× × × × × × × × × × × × × × × × × × ×	With shell flagfille	Graver is subaligui	a. mic to mediuill.		4.5
								× × × ×					
5.00 5.00 - 5.45	D21 SPT (S)	5.00		N=23 (1,4/5	5,5,6,7)		(1.60)	$\stackrel{}{\times} \stackrel{\times}{\times} \stackrel{\times}{\times}$					5.0 —
. 50	N=23							$\times \times \times \times$					
5.50	ES32						-	$\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}$					5.5
5.80 - 6.10 5.00	B22 D23					-8.01	5.80 (0.30)		Firm brownish grey slig		elly CLAY. Sand is fin	ne to	6.0 -
	SPT (S)	6.00		N=27 (3,4/6	5,6,7,8)	-8.31	6.10	×. ^ ×	coarse. Gravel is subant Medium dense brownis	sh grey very sandy sligh	tly silty subangular	fine to	3.0 -
5.10 - 7.00	N=27 B24							× × ×	coarse GRAVEL. Sand is	fine to coarse.			6.5
								× × ×					
.00 - 8.00	B25							×·×·×					7.0 –
2.00 - 7.45	SPT (S)	7.00		N=23 (2,3/5	5,6,6,6)		(2.40)	× × ×					
	N=23						(2.40)	× ^ × ·×					7.5
								×					
3.00 - 8.45	SPT (S)	8.00		N=27 (4,6/7	7,8,7,5)			× × ×					8.0 –
	N=27			,				× × ×					
						-10.71	8.50	×××	Firm brownish grey slig	htly sandy gravally SUT	Sand is fine to coa	rse	8.5
							(0.50)	$\times \times $	Gravel is subangular fin		. Janu is iiile to coal	130.	
.00 - 9.50	B26					-11.21	9.00	××××	Medium dense brownis	sh grev gravelly slightly	silty fine to coarse	SAND.	9.0 -
.00 - 9.45	SPT (S) N=15	9.00		N=15 (2,3/3	3,4,4,4)			*.^×.*	Gravel is subangular fin		,		
								× × ×					9.5
							(2.00)	× × ×					
0.00 - 10.45	SPT (S)	10.0		N=19 (3,3/4	1,4,5,6)		-	× × ×					10.0 —
	N=19	0						× × ×					
emarks										Water St	rikes	Chiselling Deta	ails
emarкs eck to Bed = 8.7	70m								Core Barrel		Time (min) Rose to (m)		Time (hh:mr 01:00
									Flush Type	Water Added From (m) To (m)	Casing Details To (m) Diam (mm)		
	heduled												

Method Cable Percussion Rotary Drilling Depth (m) 11.00 - 12.00 B 11.00 - 11.45 SI N 12.00 D 12.00 - 12.45 SI N B 12.50 - 13.50 B 13.50	Pla ı Dan	nt Use do 300 cchio 4	d 00 0 105 Nation (m) N	0.00	Base 21.50 25.00 ords	17-016 Coordii 325414 173210 Ground -2.21 Level (mOD) -13.21	nates: 4.08 E 0.90 N	Client: Irish W Client's Byrne I Dates:	Sewerage Scheme Marine Outfarter Representative: ooby ARUP J.V. 2017 - 09/09/2017 Descrip Medium dense brownish grey gravelly Gravel is subangular fine. Medium dense to dense grey very grav SAND. Gravel is subangular to subroun	otion Slightly silty fine to coarse SA	10.
Method Cable Percussion Rotary Drilling Depth (m) 11.00 - 12.00 B 11.00 - 11.45 SI N 12.00 D 12.00 - 12.45 SI N B 12.50 - 13.50 B 13.50	Plai Dan Coma ample / Tests	do 300 cchio 4	d 00 0 105 Nation (m) N	Top 0.00 21.50 Field Reco	Base 21.50 25.00 ords	325414 173210 Grounc -2.21 Level (mOD)	4.08 E D.90 N Level: L mOD Depth (m) (Thickness)	Client's Byrne I Dates: 07/09/ Legend	Representative: ooby ARUP J.V. 2017 - 09/09/2017 Descrip Medium dense brownish grey gravelly Gravel is subangular fine. Medium dense to dense grey very grav	slightly silty fine to coarse SA	Scale: 1:50 Driller: CC/AH Logger: SG No. 10.15
Depth (m) Sa	Dan Coma ample / Tests 31 SPT (S) N=24 D8 SPT (S) N=42 32 JT35	Casing v (m) 0	N	0.00 21.50 Field Reco	21.50 25.00 ords	Ground -2.21 Level (mOD)	D.90 N J Level: 1 mOD Depth (m) (Thickness)	Client's Byrne I Dates: 07/09/ Legend	Representative: ooby ARUP J.V. 2017 - 09/09/2017 Descrip Medium dense brownish grey gravelly Gravel is subangular fine. Medium dense to dense grey very grav	slightly silty fine to coarse SA	Driller: CC/AH Logger: SG Part Backfill AND. 10.1
Depth (m) Sa	Dan Coma ample / Tests 31 SPT (S) N=24 D8 SPT (S) N=42 32 JT35	Casing v (m) 0	N	0.00 21.50 Field Reco	21.50 25.00 ords	Ground -2.21 Level (mOD)	D.90 N J Level: L mOD Depth (m) (Thickness)	Byrne I Dates: 07/09/ Legend	Ooby ARUP J.V. 2017 - 09/09/2017 Descrip Medium dense brownish grey gravelly Gravel is subangular fine. Medium dense to dense grey very grav	slightly silty fine to coarse SA	Driller: CC/AH Logger: SG Part Backfill AND. 10.1
Depth (m) 11.00 - 12.00 B 11.00 - 11.45 SI N 12.00 D 12.00 SI N 12.50 - 13.50 B	B1 BPT (S) N=24 D8 BPT (S) N=42 D7 BPT (S) N=42 D7 BPT (S) D7 BPT (S) D8 BPT (S) D9	Casing Depth (m)	N	Field Reco	ords 5,6,7)	-2.21 Level (mOD)	Depth (m) (Thickness)	07/09/ Legend	Descrip Medium dense brownish grey gravelly Gravel is subangular fine. Medium dense to dense grey very grav	slightly silty fine to coarse SA	Logger: SG Park Backfill AND. 10.1
(m) 11.00 - 12.00 B 11.00 - 11.45 SI N 12.00 D 12.00 - 12.45 SI N 12.50 - 13.50 B	Tests 31 SPT (S) N=24 88 SPT (S) N=42 32 JT35	11.0 0	N	N=24 (3,4/5,6	5,6,7)	Level (mOD)	Depth (m) (Thickness)	Legend	Descrip Medium dense brownish grey gravelly Gravel is subangular fine. Medium dense to dense grey very grav	slightly silty fine to coarse SA	AND. Backfill 10.1
(m) 11.00 - 12.00 B 11.00 - 11.45 SI N 12.00 D 12.00 - 12.45 SI N 12.50 - 13.50 B	Tests 31 SPT (S) N=24 88 SPT (S) N=42 32 JT35	11.0 0	N	N=24 (3,4/5,6	5,6,7)	(mOD)	(Thickness)		Medium dense brownish grey gravelly Gravel is subangular fine. Medium dense to dense grey very grav	slightly silty fine to coarse SA	AND. 10.1
11.00 - 12.00 B 11.00 - 11.45 SI N 12.00 D 12.00 - 12.45 SI N 12.50 - 13.50 B	SPT (S) N=24 D8 SPT (S) N=42 B2 JT35	12.0	N			-13.21	- 11.00		Gravel is subangular fine. Medium dense to dense grey very grav	elly slightly silty fine to coars	10.
11.00 - 11.45 SI N 12.00 D 12.00 - 12.45 SI N 12.50 - 13.50 B	SPT (S) N=24 D8 SPT (S) N=42 B2 JT35	12.0	N			-13.21		× × × × × × × × × × × × × × × × × × ×	Medium dense to dense grey very grav		se 11.0
11.00 - 11.45 SI N 12.00 D 12.00 - 12.45 SI N 12.50 - 13.50 B:	SPT (S) N=24 D8 SPT (S) N=42 B2 JT35	12.0	N			-13.21		* * * * * * * * * * * *			se 11.0
N 12.00 D 12.00 - 12.45 SI N 12.50 - 13.50 B:	N=24 D8 SPT (S) N=42 32 JT35	12.0	N				(1.50)				
12.00 - 12.45 SI N 12.50 - 13.50 B:	SPT (S) N=42 32 JT35	l I		N=42 (4,5/7,9	9,11,15)		(1.50)	.^× .		ueu IIIIe.	
12.00 - 12.45 SI N 12.50 - 13.50 B:	SPT (S) N=42 32 JT35	l I		N=42 (4,5/7,9	9,11,15)		(1.50)	^. ×^			11.9
12.00 - 12.45 SI N 12.50 - 13.50 B:	SPT (S) N=42 32 JT35	l I		N=42 (4,5/7,9	9,11,15)		-	x,			
N B.	N=42 32 JT35	l I		N=42 (4,5/7,5	9,11,15)			× × ×			12.0
	JT35 09							x,			
.3.00 - 13.45 U	09					-14.71	12.50	×. ×. ×. ×	Very stiff brownish grey slightly sandy s	slightly gravelly silty CLAY. Sa	nd is
.3.00 - 13.45 U	09		1						fine to coarse. Gravel is subangular to		
			٦٠	Jblow=125 0	1%		_	X———			13.0
								×			
		13.5	N	N=50 (5,6/50	for			×			13.9
3.30 13.32	,, , (3)	0		165mm)	101			X			
	010 33							X			14.0
	SPT (S)	14.0		N=50 (7,8/50	for			×			
		0	28	!80mm)				X—;—			14.5
							(4.50)	×			
	011 SPT (S)	15.0	50	60 (6,10/50 fc	or			×			15.0
		0		200mm)				× ×			
15.50 - 16.50 B	34							××			.15.8
	(0)			. =0 /= = /=0	,			<u> </u>			
16.00 - 16.44 SI	SPT (S)	16.0 0		N=50 (5,7/50 !90mm)	tor			×			16.0
								<u> </u>			
								<u>××-</u>			16.3
17.00 - 18.00 B	35					-19.21	17.00	X			17.0
.7.00 - 17.45 SI	PT (S)	17.0	N	N=34 (3,4/6,8	3,9,11)	15.21	17.00	×_^	Very stiff brownish grey slightly sandy s	silty CLAY. Sand is fine to coa	rse.
N	N=34	0						X			17.1
								×			
.8.00 - 18.45 SI	SPT (S)	18.0	N	N=42 (5,8/9,9	9,11,13)			×			18.0
	N=42	0		(=,0,0,0	, -,01		(2.60)	×— —			
							(2.00)				18.5
	012							<u> </u>			19.0
	SPT (S) N=29	19.0 0	N	N=29 (3,4/6,7	7,8,8)			×_×			
						21.04	10.60	××			19.5
.9.60 B	36					-21.81	19.60	X-:	Very stiff brown slightly gravelly sandy Gravel is subrounded fine to coarse.	silty CLAY. Sand is fine to coa	arse.
.00 - 20.45 SPT (S)		20.0	N	N=32 (4,6/7,8	3,8,9)			× ×	to the same and to tourse.		20.0
N	N=32	0					(1.40)	X			
								X—			20.9
							• 	× · · ·			
emarks eck to Bed = 8.70)m								Core Barrel Struck at (m) Casing	to (m) Time (min) Rose to (m)	Chiselling Details From (m) To (m) Time (hh:
eck to bea = 8.70	וווע										21.45 21.50 01:00
									Flush Type Water Adde		
erminated at sche									From (m) To	(m) To (m) Diam (mm) 16.50 250	

202					\	Project		-	t Name:						Bor	ehole	No.:
HOH	CAI	JS	F١	Λ ΔΥ		17-016			Sewerage Scheme	Marine	Outfall G	1				ВН0	4
	-, 19	-G	ΕO	VAY TECH		Coordi		Client: Irish W							Sł	neet 3	of 3
Method	Dia	nt Us	ed.	Тор	Base	32541	4.08 E		s Representative:						Sca	le:	1:50
Cable Percussion	Dan	ido 30	000	0.00	21.50	173210	0.90 N										
Rotary Drilling	Coma	acchic	405	21.50	25.00	Ground	l Level:	Dates:								ler: (
		.0							2017 - 09/09/2017						+	ger: S	SG
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Re	ecords			Legena							Water	Backfi	II
24 00 24 50	D.7					22.24	24.00					CLAY. Sand	d is fine to	coarse.			
21.00 - 21.45	SPT (S)			N=49		-23.21	21.00										21.0 -
		0		(6,9/11,11,	13,14)			1.0 V 2 9 9 X 9									21.5
.1.50 - 23.50	B33							* * * * * * * * * * * * * * * * * * *									
II				N=44 (5,7/7	7,9,13,15)			** * * * * * * * * * * * * * * * * * *									22.0 —
	N=44	0						• X: • • X 9									
								a X , a X 8									22.5
								a × a × .									
Rotary Drilling Comacchio 405 21.50 25.00 Ground Level: Dates: -2.21 mOD 07/09/2017 - 09/09/2017 Depth (m) Tests (m) Field Records Level (mOD) (Thickness) Legend Description 21.00 - 21.50 B7 Dri Ground Level: Dates: -2.21 mOD 07/09/2017 - 09/09/2017 Legend Description Description Gravel is subrounded fine to coarse. -23.21 21.00 Description Gravel is subrounded fine to coarse. -23.21 - 21.00 Description Gravel is subrounded fine to coarse. -23.21 - 21.00 Description Gravel is subrounded fine to coarse. -23.21 - 21.00 Description Gravel is subrounded fine to coarse.			23.0 -														
		23.5															
		23.3 ·															
4.00 - 24.44	SPT (C)	24.0		N=50 (7,6/5	50 for			a X a X . 0									24.0 -
	•							a×, a×,									
								a × a × a									24.5
								a X a X 0									
5.00 - 25.44	SPT (C)				0 for	-27.21	25.00			End of E	Borehole at	25.00m					25.0 -
				·······/													
																	25.5
																	26.0
																	26.5
																	27.0 -
																	27.5
																	28.0 -
																	28.5
							<u> </u>										29.0 -
																	29.5
																	30.0 -
																	50.0 -
																	30.5
																	31.0
emarks									Cour Dame 1		Water	Strikes		Chi	iselling	Detai	ls
eck to Bed = 8.7	70m								Core Barrel	Struck at (m)	Casing to (m)		Rose to (m)	From (m) 21.45	To (r	n) Tir	me (hh:mr 01:00
										147 -		0-:	Det-"				
									Flush Type	Wate From (m)	r Added To (m)	To (m)	Diam (mm)				
erminated at sch	neduled	deptl	h									21.50	200				

200				N N N		ct No.:	-	t Name:	Вс		le No.:
	CAL	JS	E\	VAY TECH	17-01	inates:	Client	Sewerage Scheme Marine Outfall GI		ВН	05
		−G	EO	TECH			Irish W			Sheet	1 of 3
Method	Dla	nt Us	has	Top Base	_	33.31 E		s Representative:	sc	ale:	1:50
Cable Percussio		ndo 3		0.00 19.30		59.59 N		Looby ARUP J.V.			
Rotary Percussio					Grour	nd Level:	Dates:		Dr	iller:	CC/SJ+SS, DR+SJ/CC
Rotary Coring	Coma	accini	405	22.50 24.00		35 mOD	19/09,	2017 - 21/09/2017	Lo	gger:	SG
Depth	Sample / Tests	Depth	Water Depth (m)	Field Records	Level (mOD)		Legend	Description	Water	Back	fill
(m) 0.00 - 1.00	B7	(m)	(,		(mob)	(Thickness)	×××	Medium dense brownish grey very gravelly slightly silty fine to coarse	>		-
							××××	SAND. Gravel is subrounded fine to coarse.			
0.50	ES1					E	××××				0.5 -
							××××				
1.00	D13					E	×··×				1.0 —
1.00 - 2.00 1.00 - 1.45	B8 SPT (S)	1.00		N=14 (2,3/3,3,4,4)		(2.70)	×··×				
	N=14			()-/-/-/ /		(2.70)	××××				1.5 -
1.50	ES2						××××				
2.00	D14					E	××××				2.0 —
2.00 - 2.45	SPT (S)	2.00		N=19 (2,3/4,4,5,6)			×··×				
2.20 - 3.50	N=19 B9					Ē	× × ×				2.5 -
2.50	ES3				-7.55	2.70	×. ×.				
							× × ×	Medium dense brownish grey slightly silty slightly gravelly fine to coars SAND. Gravel is subrounded fine to coarse.	·e		
3.00 3.00 - 3.45	D15 SPT (S)	3.00		N=16 (1,2/3,4,4,5)			×, ×, ×				3.0 —
	N=16						$\overset{\times}{\times}\overset{\times}{\times}\overset{\times}{\times}$				
3.50	ES4					Ē	×·×·×				3.5 -
						-	×.×.×				
4.00	D16					(2.50)	x. × ×				4.0 —
4.00 - 4.45	SPT (S) N=24	4.00		N=24 (3,4/5,6,6,7)			$\times^{\times} \times$				
4.50	ES5					-	× × ×				4.5 -
						Ē	$\overset{\times}{\times}\overset{\times}{\times}\overset{\wedge}{\cdot}\overset{\times}{\times}$				
5.00	D17						$_{\times}^{\times}$ $_{\times}^{\times}$				5.0 —
5.00 - 5.45	SPT (S)	5.00		N=28 (2,3/6,6,7,9)	-10.05	5.20	. × × ×				
5.20 - 6.00	N=28 B10					E	×××	Dense grey very sandy slightly silty subrounded fine to coarse GRAVEL. Sand is fine to coarse.			
5.50	ES6					Ē	× × ×				5.5 -
							. × ×				
6.00 - 6.45	SPT (S) N=36	6.00		N=36 (4,6/7,9,9,11)		F	. × ×				6.0 —
	11-30					(2.20)	×××				
						Ē	î ×				6.5 -
						Ē	^ ×				
7.00 - 7.45	SPT (S)	7.00		N=43		-	×				7.0 —
	N=43			(6,9/9,10,11,13)		E	×				
7.40 - 7.90	B11				-12.25	7.40	× × ×	Firm greyish brown slightly sandy slightly gravelly SILT. Sand is fine to	=		7.5 -
						(0.50)	× × × × ×	coarse. Gravel is subangular to subrounded fine to medium.			
7.90 - 9.00	B12				-12.75	7.90	×××	Medium dense brownish grey very sandy subrounded fine to coarse	\dashv		8.0 —
8.00 8.00 - 8.45	D18 SPT (S)	8.00		N=12 (2,2/3,3,3,3)		Ė		GRAVEL. Sand is fine to coarse.			3.0 -
	N=12			. , , -,-,-,-,		(1.10)					
						[(1.10)					8.5 -
						-					
9.00 9.00 - 10.00	D19 B20				-13.85	9.00	a Pa	Medium dense brownish grey sandy subrounded fine to coarse GRAVE			9.0 —
9.00 - 10.00	SPT (S)	9.00		N=15 (1,2/3,3,4,5)		Ė	9 9	with low cobble and boulder content. Sand is fine to coarse. Cobbles at boulders are subrounded to rounded.	nd		
	N=15					<u> </u>	9 9				9.5 -
						(2.40)	, o				
10.00 - 11.00	B21					<u> </u>	, o				10.0 —
10.00 - 10.38	SPT (C)	10.0 0		N=50 (5,6/50 for 230mm)		E	å .				
		J		EJVIIIII)							
Remarks	C0r-							Struck at (m) Casing to (m) Time (min) Rose to (m) From	Chisellir	o (m)	ails Time (hh:mm
Deck to Bed = 9.	ьum							SK6L SK6L	10 19	9.30	01:00
								Mator Added Coster Details			
								Flush Type Water Added Casing Details From (m) To (m) To (m) Diam (mm)			
Terminated on ir	nstructio	n of F	ngine	eer				7.50 250			

20					\	Project		-	t Name:		0 16 11 0					ole No.:
C C C C C C C C C C C C C C C C C C C	CAL	JS	E	VAY		17-016			Sewerage Scheme	Marine	Оиттан G	1			E	3H05
		-G	EO	TECH		Coordi : 325533		Client: Irish W							Shee	et 2 of 3
Method	Pla	nt U	sed	Тор	Base	1		Client'	s Representative:						Scale:	1:50
Cable Percussion Rotary Percussion		ido 3		0.00 19.30	19.30 22.50	173269		Byrne	Looby ARUP J.V.						Drille	r: CC/SJ+SS DR+SJ/CC
Rotary Coring	Coma				24.00	Ground		Dates:							Logge	
Depth	Sample /	Casing Depth	Water Depth (m)	Field Re	sords	Level	Depth (m)	Logond	2017 - 21/09/2017		Description				<u> </u>	ckfill
(m)	Tests	(m)	(m)	rieia Ke	ecorus	(mOD)	(Thickness)	Legend	Medium dense brown		•		to coarse (GRAVEL	S Da	Na Na
11.00 - 12.00 11.00 - 11.45	B22 SPT (C) N=18	11.0 0		N=18 (2,3/4	1,4,5,5)	-16.25	11.40		with low cobble and b boulders are subround	oulder cor led to rou	ntent. Sand nded.	is fine to o	coarse. Cob	bles and		10.5 - 11.0 -
12.00 - 13.00 12.00 - 12.29	B23 SPT (C)	12.0 0		50 (25 for 140mm/50 150mm)	for				is subrounded fine to d	coarse.						12.0 12.5 -
13.00 - 14.00 13.00 - 13.32	B24 SPT (C)	13.0 0		50 (8,12/50 175mm)) for		(4.00)									13.0
14.00 - 15.00 14.00 - 14.31	B25 SPT (C)	14.0 0		50 (9,13/50 160mm)) for											14.0 —
15.00 - 15.32	SPT (C)	15.0 0		50 (7,11/50 170mm)) for											15.0 —
						-20.25	15.40		Very stiff brown sandy subangular to subroun			s fine to co	oarse. Grave	el is		15.5
16.00 - 17.00 16.00 - 16.32	B26 SPT (C)	16.0 0		50 (7,10/50 175mm)) for	-20.85	(0.60) - 16.00		Dense brown very san- cobble and boulder co are subrounded to rou	dy subrou ntent. San	nded fine to					16.0 — 16.5 —
17.00 17.00 - 18.00 17.00 - 17.32	D28 B27 SPT (C)	17.0 0		50 (5,8/50 f 165mm)	for		(3.10)									17.0
18.00 18.00 - 18.45	D29 SPT (C) N=47	18.0 0		N=47 (4,9/9,11,1	2,15)											18.0 —
19.00 19.00 - 19.30	D30 D31					-23.95	19.10 (0.20)		BOTTI DEBC							19.0 —
19.00 - 19.16	SPT (C)	19.0 0		50 (25 for 135mm/50 25mm)	for	-24.15	(0.20)	a × a×	BOULDERS Very dense brown sand with low cobble and boulders are subround	oulder cor	ntent. Sand					19.5 -
							(1.50)	4 X 0								20.0 —
Remarks		1				I	<u> </u>	<u> </u>	Core Barrel			Strikes			selling D	
Deck to Bed = 9.6	60m								SK6L	Struck at (m)	Casing to (m)	Time (min)	Rose to (m)	From (m) 19.10	To (m) 19.30	Time (hh:mm 01:00
Ferminated on in	octructic.	of F	ngino	oor					Flush Type	Wate From (m)	To (m)	To (m) 19.30	Diam (mm)	-		

3201					A/A>5		Project		Projec Arklow	Name: Sewerage Scheme Marine Outfall GI	В		le No.: 105
		AL	12	E	WAY		Coordi	nates:	Client:			-1 ·	
			−G	EO	TECH		325533		Irish W	ter		sneet	3 of 3
Method		Plar			-	Base	1		Client'	Representative:	S	cale:	1:50
Cable Percussior Rotary Percussion		Dan		000 o 405		.9.30 .2.50	173269			poby ARUP J.V.	D	riller:	CC/SJ+SS/ DR+SJ/CC
Rotary Coring				405		4.00	Ground	l Level: 5 mOD	Dates:	017 - 21/09/2017		ogger	
Depth	Sam	ple /	Casing Depth	Water Depth (m)	Field Recor		Level	Depth (m)		Description	Water		
(m) 20.80 - 20.92	Te SPT	sts	(m) 20.8	(m)	50 (50 for	us	(mOD) -25.65	(Thickness) 20.80	regenu	Very dense brown sandy slightly silty subrounded fine to coarse GRAVEL	×	Dati	
			0		100mm/50 for 20mm)			20.00	× 6. 0.0 0.0 0.0	with low cobble and boulder content. Sand is fine to coarse. Cobbles and boulders are subrounded to rounded. Very dense brown gravelly silty fine to coarse SAND with low cobble and	_		21.0 —
								(1.70)		boulder content. Gravel is subrounded fine to coarse. Cobbles and boulders are subrounded to rounded.			21.5 —
							-27.35	22.50	X 0. X	Medium strong dark bluish grey AMPHOLITE. Partially weathered with heavy orangish brown staining on surfaces. Discontinuities: 1. 0 to 20 joints, closely spaced 20/60/160, undulating rough closed with			22.5 —
	100	51	0	16				(1.50)		heavy orangish brown staining. 2. 70 to 90 degree joints, undulating, rough, closed with heavy orangish brown staining.			23.5
24.00							-28.85	24.00		End of Borehole at 24.00m	\dashv	\$ 0 ° \$ 0	24.0
													24.5 -
													25.0 —
													25.5 —
													-
													26.0 —
													26.5
								<u>:</u> :					27.0 —
													27.5 -
								_					28.0 —
													-
													28.5 -
													29.0 —
													-
													29.5 —
								-					30.0 —
													30.5
	TCD	ec.	DO.	E)							+		31.0 -
Remarks	ICR	SCR	KŲD	H								ng Det	
Deck to Bed = 9.6	50m									Struck at (m) Casing to (m) Time (min) Rose to (m) From (m 19.10		To (m) 19.30	Time (hh:mm) 01:00
										Wester Added Coning Details			
										Flush Type Water Added Casing Details From (m) To (m) To (m) Diam (mm) Diam (mm)			
erminated on in	stru	ction	of E	ngine	eer								

202						Project		_	t Name:							ole No.:
KXX	CAL	JS	E	VAY		17-016			Sewerage Scheme	Marine	Outtall G	ıl			B	H06
		—G	ĒΟ	TECH		Coordi 32563		Client: Irish W							Shee	t 1 of 3
Method	Pla	nt U	sed	Тор	Base	1		Client'	s Representative:						Scale:	1:50
Cable Percussion Rotary Drilling		ndo 2	000 o 405	0.00 17.00	17.00 25.20	17329	2.69 N	Byrne	_ooby ARUP J.V.						Driller	: CC+SS
Notally Dillillig	Come	accin	0 403	17.00	25.20		d Level:	Dates:							Logge	
Depth	Sample /	/ Casing Depth	Water Depth (m)	Field D		-5.62	2 mOD Depth (m)		2017 - 29/09/2017		Docarintia	_				
(m) 0.00 - 1.00	Tests B1	(m)	(m)	Field Re	ecoras	(mOD)	(Thickness)	Legend	Black very gravelly sligh		Description		ith shell fr	agments.	Mate Bac	kfill –
							(0.50)	×, × ,×, ×	Gravel is subrounded fi					-8		
0.50	ES29					-6.12	0.50	× × ×	Medium dense dark gr						-	0.5 -
								^x * x * x	with occasional shell fr	agments.	. Gravel is s	ubrounded	d fine to m	edium.		
1.00 1.00 - 1.45	D2 SPT (S)	1.00		N=16 (2,3/3	3,4,4,5)											1.0
1.30 - 2.00	N=16 B3							$\overset{\circ}{_{\times}}\overset{\times}{_{\times}}\overset{\times}{_{\times}}$								1.5 -
1.50	ES30							×, × ,×, ×								
2.00	D4							×,								2.0 —
2.00 - 3.00 2.00 - 2.45	B5 SPT (S)	2.00		N=17 (1,2/3	3,3,5,6)											
2.50	N=17 ES31						(3.90)	* * * * * * *								2.5
2.00	200						-	$\overset{\cdot}{\times}\overset{\cdot}{\times}\overset{\cdot}{\times}$								
3.00 3.00 - 4.00	D6 B7							$\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}$								3.0 —
3.00 - 3.45	SPT (S) N=26	3.00		N=26 (4,5/5	5,6,7,8)			×. × × ×								3.5 -
3.50	ES32							`x * x * x								
4.00	D8							$\times \times \times \times$								4.0 —
4.00 - 4.45	SPT (S) N=19	4.00		N=19 (1,2/3	3,5,5,6)	40.02	4.40	*. * × × *								
4.40 - 5.00 4.50	B9 ES33					-10.02	4.40	××××	Medium dense dark gr with shell fragments. G					e SAND		4.5 -
							(0.60)	×,								
5.00 5.00 - 6.00	D10 B11					-10.62	5.00	. × . ×	Medium dense browni coarse GRAVEL with oc							5.0 —
5.00 - 5.45	SPT (S) N=16	5.00		N=16 (2,3/3	3,4,4,5)	-11.12	(0.50) 5.50	× × ×								5.5 -
5.50	ES34						Ė	a . o	Medium dense browni with low cobble conter							
6.00	D12						(0.70)	a	rounded.							6.0 —
6.00 - 6.45	SPT (S) N=27	6.00		N=27 (4,5/6	5,6,7,8)	-11.82	6.20		Stiff to very stiff brown							
6.20 - 7.00	B13								cobble and boulder col fine to coarse. Cobbles							6.5 -
7.00 7.45		7.00		475	1000/											
7.00 - 7.45	U27	7.00		Ublow=175	100%											7.0 —
7.50	D14						-									7.5
7.50 - 8.00	B35						-									
8.00 - 9.00	B36	6 :					_									8.0 —
8.00 - 8.45	SPT (S) N=43	8.00		N=43 (5,7/9,11,1	1,12)		(6.40)									
							<u> </u>									8.5 -
0.00 40.00	D20															
9.00 - 10.00 9.00 - 9.45	B20 SPT (S)	9.00		N=46												9.0 —
	N=46			(4,6/8,11,1	3,14)		<u> </u>									9.5 –
							-									
10.00	D19			,			-									10.0 —
10.00 - 10.35	SPT (S)	10.0 0		50 (8,10/50 200mm)) for											
Remarks									Core Parrel		Wate	r Strikes		Chis	selling De	tails
Deck to bed = 12	2.00m								Core Barrel	Struck at (m) Casing to (m)		Rose to (m)	From (m) 6.60	To (m) 7.00	Time (hh:mm)
										147-4	س ۸ ما ما د عا	0	n Deta''	16.80	17.00	01:30
									Flush Type	From (m)	To (m)	To (m)	Diam (mm) 250	1		
erminated at sc	heduled	dept	h									7.00	230			

202					\ \	Project		_	Name:		- 611 -					ole No.:
CHOCK!	CAL	JS	E١	VAY		17-016			Sewerage Scheme	Marine	Outfall G	l			В	H06
		-G	EO	TECH		Coordii		Client: Irish W	ater						Shee	t 2 of 3
Method	Pla	nt Us	ed	Тор	Base	1			Representative:						Scale:	1:50
Cable Percussion Rotary Drilling	Dan Coma	do 20		0.00 17.00	17.00 25.20	173292	2.69 N	Byrne l	ooby ARUP J.V.						Driller	: CC+SS
Notary Drilling	Come	iccinc	7403	17.00	25.20	Ground		Dates:	2017 20/00/2017						Logge	
Depth	Sample /	Casing	Water	F: 110		-5.62	2 mOD Depth (m)		2017 - 29/09/2017							
(m) 10.50 - 11.50	Tests B18	Depth (m)	Water Depth (m)	Field Re	ecoras	(mOD)	(Thickness)	Legend	Stiff to very stiff brown		Description		silty CLAY	with low	N Bac	kfill
	D17 SPT (S)	11.0 0		50 (7,11/50 150mm)) for				cobble and boulder co fine to coarse. Cobbles	ntent. San	d is fine to	coarse. G	ravel is sub	rounded		10.5 11.0 –
12.00 - 12.10	U28	12.0 0		Ublow=50 (0%											12.0 -
2.50 - 12.72	D16 SPT (S) B15	12.0 0		50 (25 for 125mm/50 100mm)	for	-18.22	12.60	× × × × × × × × × × × × × × × × × × ×	Very dense brown very medium GRAVEL. Sand			lar to subr	ounded fir	ne to		12.5
.3.50 - 13.95	SPT (S) N=45	13.5 0		N=45 (6,8/10,10,2	11,14)	-19.12	13.50	× × × × × × × × × × × × × × × × × × ×	Dense brown sandy slig GRAVEL with low cobb	le and bou	ılder conte	nt. Sand is			_	13.5
14.50	B26						(1.50)		Cobbles and boulders a	are subrou	inded to ro	ounded.				14.0 -
	SPT (C) N=49 B24	14.5 0		N=49 (8,10/11,11	.,13,14)	-20.62	15.00	a X a X	Dense greyish brown s with low cobble and bo boulders are subround	oulder con	itent. Sand					15.0
.5.50 - 15.95	D23 SPT (C) N=36 B22	15.5 0		N=36 (4,6/7	7,9,9,11)		(2.00)		bounders are subround	eu to rour	ided.					15.5
.6.50 - 16.95	D21 SPT (C) N=47 SPT (S)	16.5 0 17.0 0		N=47 (5,8/10,11,2 50 (25 for 2 50 (25 for 2 for 30mm) for 30mm)		-22.62	- 17.00		Brown and dark grey vocarse GRAVEL of mixe						_	16.5 17.0 -
	33			ioi sommi			(1.50)		Coalse GNAVEL OF THIRE	u iitiiologi	ies preuon	illiantiy ai	inpriorite. 3	and is fine.		17.5 18.0 –
18.50 - 18.82 18.50				50 (8,12/50 170mm)) for	-24.12	18.50	0.0	NO RECOVERY							18.5
			FI													19.0
temarks	TCR SCR	יימט	п						Core Barrel			Strikes			selling De	
eck to bed = 12.	.00m								Core barrer	Struck at (m)	Casing to (m)	Time (min)	Rose to (m)	From (m) 6.60 16.80	To (m) 7.00 17.00	7 Time (hh:mr 02:00 01:30
erminated at sch									Flush Type	Water From (m)	To (m)	To (m) 17.00	Diam (mm)			

26.5 26.5 27.0 27.0 27.0 27.0 28.0 28.0 28.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29	0.0							Project	: No.:	Project	t Name:			В	orehole	No.:
Method Plant Used Top Blaze Case Percental Power Case Pe	A A		N I	IC	E	MAY		17-016	7	Arklow	Sewerage Scheme	Marine Outfall G	I		вно	6
Method Plant Used Top Base Top Sac Top			-10	JS –G	EO	TECH		Coordi							Sheet 3	of 3
Cache Previous Cache Cac								32563	T.10 L							
Postary Ording Constaction 400 27.00 25.00 2								17329	2 CO N					S	cale:	1:50
S SZ MODE SZ SZ SZ SZ SZ SZ SZ S								Ground						D	riller: (CC+SS
Mode Control Section Section														L	ogger: S	SG
24.50 24.50 25.5 24.50 25.5 24.50 25.5 24.50 25.5 24.50 25.5 24.50 25.5 24.50 25.5 24.50 25.5 24.50 25.5 24.50 25.5 24.50 25.5 24.50 25.5 25.5 24.50 25.5	Depth (m)	TCR	SCR	RQD	FI	Field Reco	ords		Depth (m)	Legend		Description	1	Nater	Backfi	II
	24.50 - 24.80 24.50	100		RQD	FI		or	-30.12	(6.00)		Orangish brown and grounded fine to coarse ampholite. Sand is fine	e GRAVEL of mixed little to coarse. End of Borehole at	Strikes Time (min) Rose to (m) Fr	Chisell rom (m)	ing Detail To (m)	22.5 — 22.5 — 23.5 — 24.5 — 25.5 — 25.5 — 27
Flush Type Water Added Casing Details From (m) To (m) To (m) Diam (mm)		.00n	n								Core barrer	Struck at (m) Casing to (m)		6.60	7.00	02:00
Terminates at somewhat deput	Terminated at schedo	uled o	lepth								Flush Type		Casing Details			

20					Projec		-	t Name:	Borehole No.:
	CAL	JS	E	WAY	17-016			Sewerage Scheme Marine Outfall GI	BH07
5-5-		—G	EO	VAY TECH	Coordi		Client:		Sheet 1 of 2
A de a le ce d	- Bl-			T D	32594	2.85 E	Irish W		Scalor 1.FO
Method Cable Percussio	_	nt U		7op Base 0.00 12.50	17331	0.24 N		s Representative: Looby ARUP J.V.	Scale: 1:50
Rotary Coring				12 50 18 50	Groun	d Level:	Dates:	LOODY AROF 3.v.	Driller: CC+SJ
						7 mOD		2017 - 10/10/2017	Logger: SG
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend		a Backfill
0.00 - 1.00	B1	(,			()			Loose dark grey very sandy slightly clayey subrounded fine to coarse	
0.50	ES21					(1.00)		GRAVEL with shell fragments. Sand is fine to coarse.	0.5
1.00	D11				-10.27	1.00		Loose grey very sandy slightly clayey subrounded fine to coarse GRAVEL	- 1.0 -
1.00 - 2.00 1.00 - 1.45	B2 SPT (S)	1.00		N=6 (2,2/2,1,1,2)		Ė		with shell fragments. Sand is fine to coarse.	
1.50	N=6 ES22					Ė			1.5
1.50	LJZZ					(1.50)			
2.00	D12					-			2.0 -
2.00 - 2.45	SPT (S) N=9	2.00		N=9 (1,1/2,2,2,3)		Ē			
2.50	ES23				-11.77	2.50		Soft to firm grey slightly sandy slightly gravelly silty CLAY. Sand is fine to	2.5
2.50 - 3.00	B3					E	<u> </u>	coarse. Gravel is subrounded fine to coarse.	
3.00	D13					(1.00)	×		3.0 -
3.00 - 3.50 3.00 - 3.45	B4 SPT (S)	3.00		N=13 (2,2/3,3,3,4)		Ė	X		
3.50	N=13 ES24				-12.77	3.50	X—.	Medium dense grey slightly silty sandy subrounded fine to coarse GRAVEL	3.5
3.50 - 4.00	B5					Ē	a X	with medium cobble content. Sand is fine to coarse. Cobbles are	
4.00	D14					<u> </u>	a X	subrounded to rounded.	4.0 —
4.00 - 5.00 4.00 - 4.45	B6 SPT (S)	4.00		N=17 (2,3/4,4,4,5)			a X		
	N=17 ES25					(1.80)	a X , a X ,		4.5
4.50	E325						• × • • • × •		
5.00	D15					-	a X: , a X }		5.0 -
5.00 - 5.45	SPT (S) N=27	5.00		N=27 (3,4/5,7,7,8)	-14.57	5.30	a × , a× ;		
5.30 - 6.00 5.50	B7 ES26					ŧ	×. × × ×	Medium dense brownish grey very gravelly silty fine to coarse SAND. Gravel is subrounded fine to coarse.	5.5
3.30	E320					(0.90)	××××		
6.00	D16					-	××××		6.0 —
6.00 - 6.45	SPT (S) N=33	6.00		N=33 (4,5/6,7,9,11)	-15.47	6.20	×××	Dense greyish brown very silty slightly gravelly fine to coarse SAND. Gravel	
6.20 - 6.60 6.60 - 8.00	B8 B9				-15.87	(0.40) 6.60	×××	is subrounded fine.	6.5
0.00 - 8.00	69				-13.67	6.60	×	Very stiff brown slightly sandy silty CLAY. Sand is fine to coarse.	
7.00	D17			_		E	×		7.0 —
7.00 - 7.45	SPT (S) N=33	7.00		N=33 (3,6/6,8,9,10)		(1.40)	×		
						<u>, </u>	×		7.5
						E	X		
8.00	D18				-17.27	8.00	<u>×_×</u> _	Very stiff brown slightly sandy slightly gravelly silty CLAY. Sand is fine to	- 8.0
8.00 - 8.45	SPT (S) N=37	8.00		N=37 (4,5/7,9,10,11)		Ė.	X-:	coarse. Gravel is subrounded fine to coarse.	
						(1.00)	X		8.5
						E	X— <u>.</u>		
9.00	D19				-18.27	9.00	X—, —	Very stiff brown slightly sandy slightly gravelly silty CLAY with low cobble	9.0 —
9.00 - 10.00 9.00 - 9.45	B10 SPT (S)	9.00		N=47		E		content. Sand is fine to coarse. Gravel is subrounded fine to coarse.	
	N=47			(6,7/9,11,13,14)		<u>E</u>		Cobbles are subrounded to rounded.	9.5
						(2.60)			
10.00	D20					E			10.0 —
10.00 - 11.00 10.00 - 10.38	B27 SPT (S)	10.0		50 (6,10/50 for					
	. (5)	0		225mm)				Wakes Carller	olling Data"
Remarks Deck to Bed = 14	4.20m							Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To (m) Time (hh:mm 12.50 02:00
								SK6L 11.60	12.30 02:00
								Flush Type Water Added Casing Details	
				red on instruction of	Enginee	r due to pro	olonged		
of inclement we	auner app	hroac	ning						

							Project			Name:	Bor	ehole	
KK (C	AL	JS	E١	VAY		17-016 Coordi		Arklow Client:	Sewerage Scheme Marine Outfall GI		вно	1/
			-G	EO	TECH		325942		Irish W	ater	Sh	neet 2	of 2
Method		Plar	nt Us	ed	Тор	Base	1			Representative:	Sca	le:	1:50
Cable Percussion	n	Dan	do 30	000	0.00	12.50	173310	0.24 N		ooby ARUP J.V.		ler: (
Rotary Coring		oma	cchic	405	12.50	18.50	Ground	l Level:	Dates:				
Double	C	-1- /	Carlan	1				7 mOD	09/09/	2017 - 10/10/2017	+	ger: S	SG
Depth (m)	Sam Te:		Casing Depth (m)	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)		Description	Water	Backfi	II
11.00 - 11.35 11.00 - 11.60 11.40 11.60 - 12.50	U32 B28 D30 B29		11.0 0		Ublow=89 7	70%	-20.87	11.60		Very stiff brown slightly sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is subrounded fine to coarse. Cobbles are subrounded to rounded. Weathered AMPHIBOLITE bedrock. Recovered as grey slightly sandy angular fine to coarse gravel. Sand is fine to coarse.			10.5 / / 11.0 / / / / / / / / / / / / / / / / / / /
12.00 12.00 - 12.14	D31 SPT	(S)	12.0 0		50 (25 for 7 for 70mm)	5mm/50		(0.90)					12.0
	87	15	0	NI 20	,		-21.77	12.50		Very weak orangish brown BRECCIA. Partially with orange staining on fracture surfaces. Discontinuities: 1. 0 to 30 degree joints very closely spaced 5/10/70 planar rough closed with orange staining 2. Subvertical joints, planar rough, with orange staining on surfaces.			12.5 13.0
14.00				NI									14.0 -
15.50	100	37	27	20				(4.10)					15.0
	97	13	0	NI									16.0 -
17.00				20			-25.87	16.60		Very weak to weak highly fractured orangish brown and dark brown occasionally bluish grey SLATE. Partially weathered with heavy dark brown and orange staining on fracture surfaces. Discontinuities:	_		16.5
	100	18	0	20				(1.90)		 0 to 30 joints very closely to closely spaced 5/10/50, planar, rough closed with heavy dark brown staining. 50 to 80 joints very closely to closely spaced, 5/60/100, planar, rough with heavy orangish brown staining. Subvertical joint, planar rough, closed with heavy orangish brown staining. 			17.5 18.0
18.50							-27.77	18.50		End of Borehole at 18.50m			18.5 19.0
Remarks Deck to Bed = 14			RQD	FI						Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	selling		20.0 20.5 ils me (hh:r 02:00
Terminated after					ed on instr	uction of	Enginee	due to pro	olonged	Flush Type Water Added Casing Details			

20					\	Project		-	t Name:							ole No.
KX	CAI	JS	E\	VAY		17-016			Sewerage Scheme	Marine	Outfall 0	il			E	8H08
		-G	EO	TECH		Coordi		Client: Irish W							Shee	et 1 of 3
Method	Pla	nt U	sed	Тор	Base	32578			s Representative:						Scale:	1:50
Cable Percussion	n Dan	ido 3	000	0.00	14.50	17326	2.57 N		_ooby ARUP J.V.							r: CC+S
Kotary Coring	Coma	acchio	J 405	14.50	26.50	Ground		Dates:								
Donth	Sample /	Casing	Water			-7.07	7 mOD Depth (m)		2017 - 09/10/2017						Logge	
(m)	Tests	Depth (m)	Depth (m)	Field Re	ecords	(mOD)	(Thickness)	Legend			Descriptio				Mater Ba	ckfill
J.00 - 1.00	В1							× × ×	Medium dense dark gr GRAVEL with shell frag				ded fine to	coarse		
0.50	ES25						Ē	× × ×								0.5
							(1.50)	× × ×								
	D16	1 00		N=14 (2 2/2	2 2 4 4)		<u> </u>	× ×								1.0
	N=14	1.00		· v - 14 (2,3/3	,,J, T , T)			×××								
	ES26 B2					-8.57	1.50	× × ×	Medium dense dark gr					e SAND		1.5
							(0.80)	* * * * ×	with shell fragments. G	aravel is s	uprounded	nne to coa	arse			
	SPT (S)	2.00		N=17 (1,3/3	3,4,5,5)			$\overset{\star}{\times}\overset{\times}{\times}\overset{\times}{\times}$							1.5	2.0
	N=17 B3					-9.37	2.30	×. * . * . * . * . * . * . * . * . * . *	Medium dense dark gr					ND with		2.5
2.50	ES27						<u> </u>	× · · · × × · × • · ×	occasional Shell Tragme	.iics. GFaV	ici is sudfo	anueu nne				
Method			× × × × ×								3.0					
3.00 - 3.45	Dando 3000 Comacchio 405 A	N=21 (2,4/4	1,5,6,6)		(1.70)	× × × × ×										
	B4							$\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}}}}}$								3.5
	2320							$\overset{\times}{\underset{\times}{\times}}\overset{\times}{\underset{\times}{\times}}\overset{\times}{\underset{\times}{\times}}$								
		4 00		N=28 (2 2 /4	57781	-11.07	4.00	× .:	Medium dense browni		ery sandy s	ubrounded	d fine to co	arse		4.0
T.UU = 4.43	N=28	4.00		14-20 (3,3/5	,,,,,0)		(0.50)		GRAVEL. Sand is fine to	coarse.						
						-11.57	4.50	0 25 o	Very stiff brown slightly							4.5
				uld ar	20/			0 × 0	cobble content. Sand is medium. Cobbles are s				unaed fine	e to		
) 08=woldo	J%			× 200								5.0
5.50	D20							× 0 × 0								5.5
	ES30	5 50		N=45			(2.50)	, , , , , , , , , , , , , , , , , , ,								
	N=45	3.30			2,14)		-	0 <u>></u>								6.0
0.00 - 7.00	10															
		6 50		N=/12				0 × 0								6.5
	N=43	0.30			1,13)			× × ×								
7.00 - 8.00	B8					-14.07	7.00	**************************************	Very stiff brown slightly							7.0
								\$ 50 g	and boulder content. S medium. Cobbles and					:u пne to		
							Ē	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$								7.5
8.00	D22							\$0.00 \$0.00								8.0
3.00 - 9.00	В9	8 00		N=40 (7 7 /	2 0 11 121			\$\frac{1}{2}\times \frac{1}{2}\times \frac{1}{2}								
5.00 - 6.43		0.00		.4-40 (/,//δ	,,,,11,14)			-00. -00. -00.								8.5
								0.00 800 800 800 800 800 800 800 800 800								
9.00 - 10.00	B10							\$ 200 \$ 000 \$ 000								9.0
							Ē	\$\document{0}{0}\document{0}{0}{0}\document{0}{0}{0}								
								\$ 0 × 8								9.5
							-	\$0.50 \$0.50								10.0
	SPT (C)			N=34 (4,5/7	7,7,9,11)		=	<u>~,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
		1~				I	I	ı	Core Barrel	Struck of for	Wate Casing to (m)	Time (min)	Rose to (m)	Ch From (m)	iselling D	etails Time (hh:m
Deck to Bed = 11	20m								SK6L	Scruck at (m	casing to (m	rime (min)	nose to (m)	14.40	14.50	01:00
									Eluah Tur-	Wate	r Added	Casina	g Details	+		
									Flush Type	From (m)		To (m) 10.00	Diam (mm) 250	7		
erminated after	3.0m co	re re	cover	red												

202					\	Project		-	Name:	Borehole No.:
CHOCK!	CAL	JS	E\	VAY		17-016			Sewerage Scheme Marine Outfall GI	BH08
		-G	EO	TECH		Coordi 32578		Client: Irish W	ater	Sheet 2 of 3
Method		nt U		Тор	Base	1			Representative:	Scale: 1:50
Cable Percussion Rotary Coring	n Dan Coma	ido 3		0.00 14.50	14.50 26.50	17326			ooby ARUP J.V.	Driller: CC+SS
	251116		. 100	11.50	_5.50	Ground	d Level: 7 mOD	Dates:	2017 - 09/10/2017	Logger: SG
Depth	Sample /	Casing Depth	Water Depth (m)	Field Re	cords	Level	Depth (m)	Lagand	Description	Backfill
(m)	Tests	(m)	(m)	rieiu ne	corus	(mOD)	(Thickness)	\$ 00 g	Very stiff brown slightly sandy slightly gravelly silty CLAY with low cobble	
11.00 - 12.00	B12								and boulder content. Sand is fine to coarse. Gravel is subrounded fine to medium. Cobbles and boulders are subrounded to rounded.	11.5
12.00 12.00 - 13.00 12.00 - 12.45	D24 B13 SPT (C) N=47	12.0 0		N=47 (8,9/11,12,	11,13)		(7.50)	\$\frac{1}{2}\cdot \frac{1}{2}\cdot \frac		12.0 —
13.00 - 13.60 13.00 - 14.00	U32 B14			Ublow=90 (0%					13.0 —
14.00 - 14.50	B15					-21.57	14.50		Very stiff brown slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subrounded of mixed lithologies predominantly slate. Cobbles are subrounded to angular of slate.	14.0 —
16.00	100						(3.00)			15.0 — 15.5 —
	53									16.5 - 17.0 -
17.50	67					-24.57	17.50		Orangish brown and grey slightly sandy subangular fine to coarse GRAVEL of mixed lithologies predominantly quartz and phyllite. Sand is fine to coarse. (Low Recovery)	17.5 - 18.0 -
19.00							(4.90)			19.0 —
20.50	33									20.0 —
	TCR SCR	RQD	FI							
Remarks Deck to Bed = 11	L.20m								Core Barrel Water Strikes Ch	To (m) Time (hh:mm 14.50 01:00
									Flush Type Water Added Casing Details From (m) To (m) To (m) Diam (mm) 15 00 200	
erminated after	⁻ 3.0m co	re re	cover	red					15.00 200	

							Project	: No.:	Project	t Name:	Boreho	ole No.:
A A		N I	IC		WAY		17-016	7	Arklow	Sewerage Scheme Marine Outfall GI	ВІ	H08
		-10	_G	E	TECH		Coordi	nates:	Client:		Shee	t 3 of 3
			0	LC	/ I L C I I		32578	9.41 E	Irish W	ater	Silice	
Method		Plai	nt U	sed	Тор	Base	1		Client's	s Representative:	Scale:	1:50
Cable Percussion			do 3		0.00	14.50	17326	2.57 N	Byrne L	Looby ARUP J.V.	Duillan	
Rotary Coring	C	oma	cchi	405	14.50	26.50	Ground	d Level:	Dates:		Driller	: CC+SS
							-7.0	7 mOD	08/10/	2017 - 09/10/2017	Logger	: SG
Depth	TCR	SCR	RQD	FI	Field Re	ecords	Level	Depth (m)	Legend	Description	Mate Bac	kfill
(m)							(mOD)	(Thickness)		Orangish brown and grey slightly sandy subangular fine to coarse GRAVEL	3	
										of mixed lithologies predominantly quartz and phyllite. Sand is fine to		21.0 —
										coarse. (Low Recovery)		
	20											21.5
												11.5
22.00				-								22.0 —
							20.47	33.40				
							-29.47	22.40		Dark yellowish brown slightly clayey firm to coarse SAND.		22.5
	73							(0.70)				
												23.0 —
							-30.17	23.10		Dark yellowish brown and dark bluish grey subangular fine to coarse		=
23.50 - 23.66					50 (25 for		-30.57	(0.40)		GRAVEL with low cobble content.		23.5
23.50 - 23.66					110mm/50	for	30.37	23.30	$\langle \hat{\chi} \hat{\chi} \hat{\chi} \hat{\chi} \hat{\chi} \hat{\chi} \hat{\chi} \hat{\chi}$	Weak highly fractured dark orangish brown SLATE. Partially weathered with weathering penetrating in from fracture surfaces.		
					55mm)			(0.90)	$\langle \hat{\chi} \hat{\chi} \hat{\chi} \hat{\chi} \hat{\chi} \hat{\chi} \hat{\chi} \hat{\chi}$	Discontinuities:		
								(5.55)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1. 0 to 40 degree joints very closely spaced, 2/10/20, planar, smooth, closed wit heavy orangish brown staining.		24.0 —
	100	0	0				-31.47	24.40		2. 50 to 80 degree joints, very closely spaced 2/10/20, planar, smooth,		
				NI			31.47	24.40		closed with heavy orangish brown staining 3. Subvertical joint planar, smooth, closed with heavy orangish brown		24.5 —
										staining.		
25.00				-				-		Weak highly fractured dark bluish grey SLATE. Largely unweathered. Discontinuities:		25.0 —
								(2.50)		1. 0 to 20 joints very closely spaced 5/30/50, planar, smooth closed.		
										2. Subvertical joints, planar occasionally undulating smooth closed.		25.5 —
	100	0	0					Ē				
	100	0										
				20								26.0 —
									////// //////			
26.50							-33.57	26.50	$\Delta\Delta\Delta\Delta\Delta$	End of Borehole at 26.50m	100	26.5 —
								-				27.0 —
]
								Ē				27.5 —
												38.0
												28.0 —
								-				
												28.5 —
]
								-				29.0
								-				29.5 —
]
							Ì					30.0 —
								<u> </u>				
												30.5
								Ė				
	TCR	SCR	RQD	FI				-			$\vdash\vdash$	31.0
Remarks	. 510	JUN			I		<u> </u>		<u> </u>		elling De	
Deck to Bed = 11	.20n	n								Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To (m) 14.50	Time (hh:mm) 01:00
										Flush Type Water Added Casing Details From (m) To (m) To (m) Diam (mm)		
Terminated after 3.0	m a-	0 ***	01/07-	4						roon (m) to (m) to (m) to sain (min)		
rerminated after 3.0	ıtı cor	e reco	overe	ı								

202	7				\	Project			t Name:										Bore).:
CHOCK!	CAL	JS	E	WAY		17-016			Sewerage Scher	ne Ma	irine (Outfall	l GI						<u> </u>	ВНС)9	
		— C	EC	TECH		Coordi		Client: Irish W											Sh	eet 1	l of 2	2
Method	Pla	nt U	sed	Тор	Base	32612	7.26 E		s Representative	::									Scal	e:	1:50)
Cable Percussion	n Dar	ndo 3	000	0.00	8.90	17331	6.13 N		ooby ARUP J.V.										Drill		٨١١٠	
Rotary Coring	Coma	acchi	o 405	8.90	14.30		d Level:	Dates:														
Depth	Sample /	/ Casing				-10.80	Depth (m)		2017 - 28/10/20 I	17									Logg	ger:	SG+l	LN
(m)	Tests	Depth (m)	Water Depth (m)	Field Re	ecords	(mOD)	(Thickness)					Descript							Water	Backfi	ill	_
0.00 - 1.00	B1								Medium dense gre occasional layers o													-
0.50	ES18								GRAVEL. Gravel is s	ubangu	lar to s	subroun	nded f	ine to i	medi	um.					0.5	5 -
1.00	D11																				1.0	
1.00 - 2.00	B2	4.00		N 40 /2 5 //	4 - ·																	
1.00 - 1.45	SPT (S) N=19	1.00	'	N=19 (3,5/5	5,5,4,5)		(2.80)														1.5	5 -
1.50	ES19						<u> </u>															
2.00	D12																				2.0	D —
2.00 - 3.00 2.00 - 2.45	B3 SPT (S)	2.00		N=18 (2,3/4	4,4,5,5)																	
2.50	N=18 ES20																				2.5	5 -
-						-13.60	2.80	000	Medium dense gre	v sandv	slightl	v siltv si	ubang	ular to) SUh	rounde	ed fine	e to	-			
3.00 3.00 - 4.00	D13 B4						-		coarse GRAVEL wit	n low co	obble a	ind boul	lder c	ontent	. San	d is fin					3.0) —
3.00 - 3.45	SPT (S) N=20	3.00)	N=20 (4,3/4	4,4,6,6)			000	Sourse. Copples dil	. Dould	cis ale	. sabiUU	ucu	.o rou		•			:			
3.50	ES21						Ē	000													3.5	; -
1.00	D14						(2.40)	000													4.0	٥
1.00 1.00 - 5.00	D14 B5						(2.40)	000													4.0	,
1.00 - 4.45	SPT (S) N=24	4.00		N=24 (3,5/5	5,6,7,6)			000													4,5	5 -
4.50	ES22						<u> </u>	0,0														
5.00	D15						_	0.0													5.0	o —
5.00 - 6.00 5.00 - 5.45	B6 SPT (S)	5.00		N=26 (5,5/5	5.6.7.8)	-16.00	5.20		Stiff to very stiff bro	own slig	htly sa	ndy slig	ghtly g	ravelly	silty	CLAY v	with lo		- 1			
5.50	N=26 ES23			0 (0,0,1	-,-,-,-,		Ē		cobble content. Sai fine to coarse. Cob						ngula	ır to su	ibrour	nded			5.5	5 -
5.50	E323						(1.20)			J. C. J. C.	545.5		.0.00									
5.00 - 7.00 5.00 - 6.45	B7 SPT (S)	6.00		N=24 /E E/	7 7 0 12\		<u> </u>														6.0	د
).00 - 6.45	N=34	6.00	<u>'</u>	N=34 (5,5/	7,7,8,12)	-17.20	6.40	<u> </u>														
5.50	D16					17.20	5.40		Very stiff light brow cobble content. Sa	_	•										6.5	5 -
									fine to coarse. Cob													-
7.00 - 8.00 7.00 - 7.32	B8 SPT (C)	7.00)	50 (16,22/5	50 for																7.0) —
7.50	D17			170mm)			(1.90)														, ,	5 -
	51,						-															
8.00	U24			Ublow=75 (0%		_														8.0	o
8.00 - 8.80	В9					-19.10	8.30															
8.50 - 8.75	SPT (C)	8.50		50 (22,25/5	50 for		(0.60)	0,00	Limestone BOULDE	к.											8.5	5 -
3.80 - 8.90	B10			100mm)			Ē	0,00														
						-19.70	8.90		Dark brown and bla coarse. (Possibly hi						RAVE	L. San	d is fir	ne to			9.0) —
	100						(1.00)			,				,								-
							[9.5	s -
9.90						-20.70	9.90		Weak to medium s	trong h:	ghly fr	acturod	l bluis	h grov	ΔΙΛΙ	HIBO	ITF		_			
			20						Partially weathered												10.0	, — -
	TCR SCR	RQD	FI				-													::3 S)		
Remarks	1 00~								Core Bar	rel	uck at (m)	Wat Casing to	ter St	rikes Time (min)	Ro	se to (m)	Fror	m (m)	selling To (m) Ti	me (hh:r	
Deck to Bed = 14	+.ŏUM																8.	.75	8.90		01:00	
									Flush Ty			Added		Casin								
									Tradit Ty	Fr	rom (m)	To (m))	To (m) 8.90	Di	am (mm) 200	1					
rminated 6.0m	n into be	drock	<																			_

							Project 17-016			Name: Sewerage Scheme Marine Outfall GI	Во	rehol	e No.:
	C	Δl	JS	E	VAY		Coordi		Client:				
			— C	SEO	TECH		32612		Irish W	ater	-	Sheet 2	2 of 2
Method Cable Percussion	n		nt U			ase	173316			Representative: ooby ARUP J.V.	\vdash	ale:	
Rotary Coring	(Coma	acchi	o 405	8.90 14	.30	Ground	l Level:	Dates:	,	Dr	ller:	AH+SS
							-10.80) mOD	27/10/	2017 - 28/10/2017	Lo	gger:	SG+LN
Depth (m)	TCR	SCR	RQE	FI	Field Record	ls	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backf	ill
11.20	100 58	49	0	14 20 5				(2.50)		surfaces. Discontinuities: 1. 0 to 20 degree joints, closely spaced (30/100/260) planar, smooth, closed with heavy black staining and patchy orange staining. 2. 50 to 70 degree joints closely to medium spaced (100/160/270) planar, rough, closed with heavy black staining and patchy orange staining. 3. Sub vertical joints, planar, smooth, closed with heavy black staining and patchy orange staining.			11.0
12.40	100	81	43	_			-23.20	12.40		Medium strong to strong highly fractured bluish grey AMPHIBOLITE. Partially weathered with dark orange and black staining on fracture surfaces. Discontinuities:			12.5 — — — — —
13.20				10				(1.90)		 0 to 20 degree joints, closely spaced (30/100/260) planar, smooth, closed with heavy black staining and patchy orange staining. 50 to 70 degree joints closely to medium spaced (100/160/270) planar, 			13.0 — — — — — — —
	91	77	23	15						rough, closed with heavy black staining and patchy orange staining. 3. Sub vertical joints, planar, smooth, closed with heavy black staining and patchy orange staining. 12.70m: 20 degree joint open approximately 20mm with black sand and			13.5 —
14.30				13			-25.10	14.30		End of Borehole at 14.30m			14.5
								: : : - :					15.0
													15.5
													16.0 —
													16.5
													17.0 — —
													17.5 —
													18.0 —
													18.5 — — — —
								<u>-</u> - - - - -					19.0 — — — —
													19.5 — ———————————————————————————————————
								<u>-</u>					20.0 —
													20.5
Remarks	TCR	SCR	RQE) FI							isellin	g Deta	ils
Deck to Bed = 14	1.80r	m								Core Barrel	To		ime (hh:mm) 01:00
										Flush Type			
Terminated 6.0m into	o bec	lrock								14.50 150		\perp	

202					\	Project		_	: Name:						Boreh	ole N	10::
KQK)	CAI	JS	E)	VAY		17-016			Sewerage Scheme	Marine	Outfall G	il			В	H10	
		—C	EO	TECH		Coordi		Client: Irish W	ater						Shee	t 1 o	of 2
Method	Pla	nt U	sed	Тор	Base	32626	5./4 E		Representative:						Scale:	1:5	50
Cable percussion	n Dar	ndo 3	000	0.00	10.00	17335	7.99 N		Looby ARUP J.V.						Driller		1766
Rotary Coring	Coma	acchi	o 405	10.00	16.00		d Level:	Dates:									
Domth	Sample /	Casing					7 mOD Depth (m)	26/10/	2017 - 27/10/2017 I						Logge	r: SG	i+LN
Depth (m)	Tests	Depth (m)	Water Depth (m)	Field Re	ecords	Level (mOD)	(Thickness)	Legend			Description				Ba Ba	ckfill	_
0.00 - 1.00	B1							× × ×	Grey sandy slightly silt with low cobble conte								-
0.50	ES17						(1.10)	×××	subrounded.								0.5 —
							[(=,	× × ×									-
1.00	D12	4.00		N 7 /2 2 /2	4 2 2\	-12.47	1.10	× ^.×									1.0
1.00 - 1.45	SPT (S) N=7	1.00		N=7 (2,2/2,	1,2,2)			× × 0	Soft grey slightly sand Sand is fine to coarse.								-
1.30 - 1.80 1.50	B2 ES18						(0.80)	0 25 o	Cobbles are subangula	ır to subro	ounded.						1.5 -
						-13.27	1.90	<u> </u>	NA - di da		ul:!			- d 6 + -	-		-
2.00 2.00 - 3.00	D13 B3							× × ×	Medium dense grey sa coarse GRAVEL with lo	w cobble							2.0 -
2.00 - 2.45	SPT (S) N=11	2.00		N=11 (2,3/3	3,2,3,3)			× × ×	subangular to subrour	ided.							2.5
2.50	ES19							× ^×									-
3.00	D14						(2.10)										3.0 —
3.00 - 4.00 3.00 - 3.45	B4 SPT (S)	3.00		N=14 (2,2/3	3,3,4,4)			× ××									-
3.50	N=14 ES20							× × ×									3.5
								× × ×									
4.00 4.00 - 5.00	D15 B5					-15.37	4.00	a X: 0 aX 0	Medium dense grey ve								4.0 —
1.00 - 4.45	SPT (S) N=20	4.00		N=20 (3,3/5	5,4,5,6)			a X , a X 8	to coarse GRAVEL with coarse. Cobbles and be					fine to			
4.50	ES21						(1.40)	a X a X .									4.5
5.00	D16							a X									5.0
5.00 - 5.40 5.00 - 5.45	B6 SPT (S)	5.00		N=20 (3,5/5	5.4.6.5)			a×. , a× 8									-
5.50	N=20 ES22			. (-,-,-	, , -, -,	-16.77	5.40		Stiff grey slightly sand Gravel is subangular to				nd is fine to	coarse.			5.5
5.50 - 6.00	B7								Graver is subangular to	Subiouii	ded fille to	coarse.					-
6.00 - 6.45	SPT (S) N=27	6.00		N=27 (3,4/4	1,6,7,10)		(1.10)										6.0 -
																	-
5.50 - 7.20	B8					-17.87	6.50	ρ <u>.</u> 	Very stiff light brown s cobble content. Sand i								6.5
7.00 - 7.31	SPT (C)	7.00		50 (22,21/5	0 for			\$ <u>0 × 0</u>	fine to coarse. Cobbles				anded to i	ounaca			7.0 -
-	\-,			160mm)				0 × 0									-
7.50 - 7.95	U23			Ublow=89 (0%		-	× × 0									7.5
7.50 - 8.00	В9						Ē	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									-
8.00 - 8.31	SPT (C)	8.00		50 (21,21/5 160mm)	0 for		(3.00)	× × 0									8.0 -
								× × 0									-
8.50 - 9.20	B10							* <u>×</u> •									8.5 —
9.00 - 9.32	SPT (C)	9.00		50 (21,20/5	0 for			0 × 0									9.0 —
3.55	(0)	3.00		165mm)	- · - ·			~ × 0 × 0 •									-
9.50 - 10.00	B11					-20.87	9.50		Grey BEDROCK (Slate -	drillers d	escription\						9.5
							(0.50)		City DEDITOCK (State -	armers u	cocription)						-
			All			-21.37	10.00		Weak to medium stroi							1	10.0 —
	TCR SCR	POD	NI FI				-		occasional white mine	ral veins.	Partially we	eathered v	vith slightly	reduced			
Remarks	ICK SCR	ואעט	FI			<u> </u>			Core Barrel			Strikes			elling De		
Deck to Bed = 15	5.20m									Struck at (m) Casing to (m)	Time (min)	Rose to (m)	9.85	To (m) 10.00		(hh:mm) 1:00
									F1 .1. =	Wate	r Added	Casin	g Details	-			
									Flush Type	From (m)	To (m)	To (m) 10.00	Diam (mm) 200	1			
erminated after	6.0m cc	re re	cove	red on instr	uction of	Enginee	r										

							Project	: No.:	Project	: Name:	Borehole	No.:
(ACK)		N I	IC	E \	VAY		17-016	7	Arklow	Sewerage Scheme Marine Outfall GI	ВН1	.0
		-10	-G	FO	TECH		Coordi		Client:		Sheet 2	of 2
			Ŭ		12011		32626	J.77 L	Irish W			
Method		Plar			Тор	Base	17335	7 00 N		s Representative:	Scale:	1:50
Cable percussion Rotary Coring		Dan		000 o 405	0.00 10.00	10.00 16.00			-	Looby ARUP J.V.	Driller:	AH+SS
l notary coming		0			20.00	20.00			Dates:			
Domath	Ш						_	7 mOD Depth (m)	26/10/	2017 - 27/10/2017 I	Logger: S	SG+LIN
Depth (m)	TCR	SCR	RQD	FI	Field Re	cords	Level (mOD)	(Thickness)	Legend	Description	Backfi	"
										strength in parts. Discontinuities:		10.5
				16						1. 10 to 20 degree joints closely spaced, (10,60,100) planar, smooth,		
	100	33	0							closed. 2. 70 to 80 degree joints typically medium spaced (50/500/+1000) planar,		11.0 -
										smooth, closed.		
11.50				NI								11.5 —
								_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			12.0 —
	100	71	0						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
												12.5
								<u> </u>	<u> </u>			
13.00									<u> </u>			13.0
								(6.00)				
												13.5
	100	100	0					Ē				
	100	100	U	10								=
												14.0
14.50								Ē				14.5 —
								-				15.0 —
	93	60	0									3
												15.5 —
16.00							-27.37	16.00	<u> </u>	End of Borehole at 16.00m		16.0 —
												1 =
												16.5 —
												17.0 -
												=
												17.5
								-				18.0 —
]
								-				18.5 —
												=
												19.0 —
												=
												19.5
								Ė				‡
												20.0 —
								Ę				‡
												20.5
Remarks	TCR	SCR	RQD	FI						Core Borrel Water Strikes Chis	elling Detai	ils
Deck to Bed = 15	.20n	n								Core Barrel Struck at (m) Casing to (m) Time (min) Rose to (m) From (m) 9.85		me (hh:mm) 01:00
												- 1
										Flush Type Water Added Casing Details From (m) To (m) To (m) Diam (mm)		- 1
Terminated after 6.0	m cor	e reco)Vere/	l on in	struction of E	ngineer				16.00 150		- 1
.c. mateu altei 0.0		- 1000	, v C I C (. on III	on action Of El	PILICEI						

20					\	Project			t Name:	Во	reho		o.:
	CAL	JS	E\	VAY		17-016			v Sewerage Scheme Marine Outfall GI		ВН	111	
		— C	EO	TECH		Coordi		Client: Irish W		S	Sheet	1 of	2
Method	Pla	nt U	sed	Тор	Base	32473	0.75 E		's Representative:	Sc	ale:	1:50	 ე
Cable Percussio		ndo 3		0.00	10.70	17345	2.99 N		Looby ARUP J.V.	Dr	iller:	ΔΗ	
							d Level:	Dates:					
Depth	Sample /	Casing Depth	Water			-0.3.	3 mOD Depth (m)	02/11/		┿	gger:	<u>' </u>	
(m)	Tests	Depth (m)	Depth (m)	Field Re	ecords	(mOD)	(Thickness)	Legend	Description Medium dense grey very sandy slightly silty subangular to subrounded fine	Water	Back	.till	
							-	× × ×	to coarse GRAVEL. Sand is fine to coarse.				-
0.50	D1							×××				0.9	.5 -
0.80 - 1.20	ES11 B19						-	×·^·×	▼	_			
1.00 - 1.45	SPT (S)			N=14 (3,3/3	3,4,3,4)		-	×				1.0	.0 —
	N=14						-	×					
1.50	D2							× ×				1.	.5 -
1.80 - 2.20	ES12 B20						-	×					
2.00 - 2.45	SPT (C)			N=19 (3,4/5	5,5,4,5)		(4.00)	× ×				2.0	.0 —
	N=19						-	(× ×)					
2.50	D3						<u> </u>	(2.!	.5 -
2.80 - 3.20	ES13 B21						-	. × ×					
3.00 - 3.45	SPT (C)			N=20 (4,5/5	5,5,4,6)		-	×××				3.0	.0 —
	N=20							×××					
3.50	D4						-	× × ×				3.5	.5 –
3.80 - 4.20	ES14 B22							× × ×					
4.00 - 4.45	SPT (C)			N=30 (5,6/7	7,8,7,8)	-4.33	4.00	××	Medium dense grey sandy subangular to subrounded fine to coarse			4.0	.0 —
	N=30							å .	GRAVEL with low cobble content. Sand is medium to coarse. Cobbles are				-
4.50	D5						-	9 9	subangular to subrounded of mixed lithologies.			4.	.5 –
4.80 - 5.20	ES15 B23						(1.40)	9 9					-
5.00 - 5.45	SPT (C)			N=23 (4,6/6	5,5,6,6)		-	, o .				5.0	.0 —
	N=23							å å	: 0 3				-
5.50	D6					-5.73	- 5.40 -		Stiff grey slightly sandy slightly gravelly CLAY . Sand is fine to coarse. Gravel	1		5.	.5 —
5.80 - 6.20	ES16 B24								is subangular to subrounded fine.				-
6.00 - 6.50	U17			Ublow=40 9	98%		(1.10)					6.0	.0 —
													-
6.50	D7					-6.83	- - 6.50	-	Stiff grey slightly sandy slightly silty CLAY . Sand is fine to coarse.	-		6.	.5 —
6.80 - 7.20	B25							<u> </u>	Jun grey anguly annuy anguly anty CLAT . adult is title to codise.				-
7.00 - 7.45	SPT (S)			N=27 (5,6/6	5,7,6,8)		-	<u>×</u> _×	:] 			7.0	.0 —
	N=27						-	<u>×</u> _×	: 1				-
7.50	D8						-	<u>×</u>				7.!	.5 –
7.80 - 8.20	B26						_	<u>×</u>					
8.00 - 8.50	U18			Ublow=38 9	97%		(3.10)	×				8.0	.0 —
							(3.10)	×					
8.50	D9						-	××				8.	.5 –
8.80 - 9.20	B27						-	×^-					-
9.00 - 9.45	SPT (S)			N=27 (5,7/6	5,6,7,8)		-	×_^_	4			9.0	.0 —
	N=27							X	4 4 4 1				-
9.50	D10					0.55		×				9.9	.5 —
9.80 - 10.20	B28					-9.93	9.60	å , °	Dense grey sandy slightly silty subangular to subrounded fine to coarse GRAVEL with low cobble and boulder content. Sand is fine to coarse.	Ť			-
20.20		-					-		S	\vdash			_
Remarks	1	1				I	I	I			ng Det	ails	
Drilled from floa	ating platf	orm							Struck at (m) Casing to (m) Time (min) Rose to (m) From (m) 9.60 9.60 20 0.80 0.80 10.50	0	.90 0.70	00:30 01:00	30
									Water Added Casing Details			-	
									From (m) To (m) To (m) Diam (mm)				
Terminated at re	efusal on	large	boul	der									

						Projec	t No.:	Projec	t Name:						Во	reho	le No.:
	CAL	IS	E	WAY		17-016		Arklow	Sewerage Scheme	Marine (Outfall G	I				ВН	111
		−G	EO	TECH		Coordi	nates:	Client:				<u></u>			S	heet	2 of 2
200						32473	0.75 E	Irish W									
Method Cable Percussio		nt Us do 30		Top 0.00	Base 10.70	17345	2.99 N		s Representative: Looby ARUP J.V.								1:50
						Ground	d Level:	Dates:							Dri	ller:	АН
							3 mOD	02/11/							Lo	gger:	LN
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	Legend		D	escription	ı			Water	Back	fill
10.00 - 10.45	SPT (S)	(,	()	N=49	42.45\	(IIIOD)	-		Cobbles and boulders a	are subrou	nded to ro	unded of n	nixed lithol	ogies.	Ĺ		<u> </u>
	N=49			(8,9/10,12,	12,15)		(1.10)	9	,								
						-11.03	- - 10.70	9 9	9								10.5 —
						11.03	- 10.70			End of Bo	rehole at	10.70m					
							-										11.0 —
							-										11.5
																	11.5 —
							Ŀ										12.0
							-										-
							<u> </u>										12.5
							-										-
							-										13.0
							-										
																	13.5 —
							-										
							-										14.0 —
							-										14.5 —
							-										
							Ė										15.0 —
							-										_
							-										15.5
							-										
							-										16.0
							-										-
							-										16.5
							-										17.0
							-										
							Ė										17.5 —
							-										
							-										18.0 —
							-										
							-										18.5 —
							-										-
							-										19.0 —
							<u> </u>										19.5
							_										12.5
							-										
Remarks											Water	Strikes		Chis	ellin	g Deta	ails
Drilled from floa	iting platfo	orm								Struck at (m)	Casing to (m)		Rose to (m)	From (m) 0.80	To 0.	(m) 90	Time (hh:mm) 00:30
														10.50	10	.70	01:00
										Water From (m)	Added To (m)	To (m)	Details Diam (mm)				
Terminated at re	efusal on I	arge	boul	der								10.70	200				

202					\	Project			t Name:	Во		e No.:
KQK1	CAL	JS	E	VΔY		17-016			sewerage Scheme Marine Outfall GI		BH:	12
		<u> </u>	GEO	VAY TECH		Coordi	nates:	Client:		S	heet	1 of 2
						32482	1.38 E	Irish W		-		1.50
Method Cable Percussion			sed 3000	Top 0.00	Base 10.50	173389	9.74 N		s Representative: Looby ARUP J.V.		ale:	
Cable Ferensia.			,,,,,	0.00	20.50	Ground	d Level:	Dates:		Dri	iller:	CC
							B mOD	24/08/		Log	gger:	SG
Depth	Sample /	Depti	g Water Depth	Field Re	ecords	Level	Depth (m)	Logond		Water	Backf	fill
(m) 0.00 - 1.00	Tests B1	(m)	(m)			(mOD)	(Thickness)		Medium dense brown very sandy slightly silty subangular to subrounded	>		N.
									fine to medium GRAVEL. Sand is fine to coarse.			
0.50	ES21						(1.30)					0.5 -
							(1.30)					
1.00 1.00 - 1.45	D10 SPT (S)	1.00		N-15 /2 2/3	2 1 1 1)		-					1.0 —
	N=15	1.00		N=15 (2,3/3	5,4,4,4)	-2.18	1.30		Medium dense brown sandy slightly silty subangular to subrounded fine to	-		
1.30 - 2.00 1.50	B2 ES22						-		medium GRAVEL. Sand is fine to coarse.			1.5 -
							(1.00)					
2.00	D11	2.00										2.0 —
2.00 - 2.45	SPT (S) N=11	2.00		N=11 (1,1/2	۷,3,3,3)	-3.18	- - 2.30		Firm to stiff grey slightly sandy CLAY. Sand is fine to coarse.			
2.30 - 3.00 2.50	B3 ES23						- -		The control of the state of the control of the cont			2.5 -
							-					
3.00 - 3.45	UT18			Ublow=89	100%		-					3.0 —
3.00 - 4.00	B4						<u>-</u> -					
3.50	D12											3.5 -
	ES24						_					
4.00	D13						-					4.0 —
4.00 - 5.00 4.00 - 4.45	B5 SPT (S)	4.00		N=37 (5,6/7	7,8,9,13)		- - -					
4.50	N=37 ES25			. , ,			- -					4.5 -
4.50	E323						- - -					
5.00 - 5.45	UT19			Ublow=83	100%		-					5.0 —
5.50	D14						(6.10)					5.5 -
5.50 - 6.50	ES26 B6						- -					
3.30 0.30							-					6.0 —
							-					
6.50	D15						-					6.5
6.50 - 6.95	SPT (S) N=32	6.50		N=32 (5,4/6	5,8,8,10)		<u> </u>					
7.00 - 8.00	N=32 B7						_					7.0 —
							<u>-</u>					
							-					7.5 -
							_					
8.00 - 8.45	UT20			Ublow=61	100%		-					8.0 —
							 -					
8.40 - 9.50	B8					-9.28	8.40	. ·×	Brown sandy silty subangular to subrounded fine GRAVEL. Sand is fine to			8.5 -
8.50	D16						-	× × × ×	coarse.			
							(1.10)	× × ×				9.0 —
							-	×××				
9.50	D17					-10.38	- - - 9.50	×××				9.5 -
9.50 - 10.50	В9					10.30	(1.00)		Firm brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium.			
9.50 - 9.95	SPT (S) N=11	9.50)	N=11 (2,2/2	2,3,3,3)		- (1.00)					
Domonica									Water Strikes Chis	ellin	g Deta	ils
Remarks Deck to Bed = 2.0	60m								Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)			Time (hh:mm
									Water Added Casing Details From (m) To (m) To (m) Diam (mm)			
Terminated at sc	:heduled	dent	th						1.50 9.50			
		ωcρ									ightharpoonup	

Concinents							Projec	t No.:	Projec	Name:						Во	reho	le No.:
Table Tabl	ROR	CAL	IS	E	WAY						Marine (Outfall G					ВН	112
Method Plant Used Top Base 248231.8 Client's Representative: Springer Loby ARUP JV. Springer Loby ARUP			−G	EC	TECH											S	heet	2 of 2
Companies Disease Section Disease Di			A				32482	1.38 E										1.50
Company Comp							17338	9.74 N										
Company Comp							Groun	d Level:								Dri	ller:	CC
Tendence Peter P																Log	gger:	SG
11.38 10.50	Depth (m)		Casing Depth (m)	Water Depth (m)	Field Re	cords		Depth (m)	Legend		D	escription				Water	Back	fill
Lind of boversion at 15-50m							(-		Firm brown slightly san	idy slightly	gravelly Cl	AY. Sand is	fine to co	arse.			
Lind of boversion at 15-50m							44.20	10.50		Graver is subangular to	Subiounia	d fille to f	neurum.					_
Note							-11.38	- 10.50			End of Bo	rehole at	10.50m					10.5
Note								-										11.0
120 120								-										-
120 120																		11.5
120 - 120								-										-
								[12.0
								-										
								-										12.5
								-										
Mater Strikes Chise Ing Details Street Strikes Chise Ing Details Street Strikes Strike								-										13.0
Mater Strikes Chise Ing Details Street Strikes Chise Ing Details Street Strikes Strike								-										
National Content of Transport Transpor								-										13.5
National Content of Transport Transpor								-										
Nemarks Water Strikes Chise ling Details Section Total								_										14.0
Nemarks Water Strikes Chise ling Details Section Total								-										-
18.0								-										14.5 —
18.0								-										
16.0 - 1								-										15.0 —
16.0 - 1																		
15.5 - 1								-										15.5 —
15.5 - 1								-										-
Remarks Peck to Bed = 2.60m To -																		16.0
Remarks Peck to Bed = 2.60m To -								-										-
12.5								-										10.5
12.5								-										17.0
18.0								Ė										-
18.0								-										17.5
Water Strikes Chiselling Details								-										
Water Strikes Chiselling Details Struck at (m) To (m) Time (min) Rose to (m) From (m) To (m) Time (min) Time (m								-										18.0 —
Water Strikes Chiselling Details Struck at (m) To (m) Time (min) Rose to (m) From (m) To (m) Time (min) Time (m								-										
Water Strikes Chiselling Details								-										18.5 —
Water Strikes Chiselling Details								-										
Water Strikes Chiselling Details								-										19.0
Water Strikes Chiselling Details								-										-
Struck at (m) Casing to (m) Time (min) Rose to (m) From (m) To (m) Time (hhzmm)								-										19.5
Struck at (m) Casing to (m) Time (min) Rose to (m) From (m) To (m) Time (hhzmm)								<u> </u>										
Struck at (m) Casing to (m) Time (min) Rose to (m) From (m) To (m) Time (hhzmm)																		
Water Added Casing Details	Remarks Deck to Bed = 2.6	60m									Struck at (m)			Rose to (m)				
From (m) To (m) To (m) Diam (mm) 10.50 200	Sou 2.0	***																
10.50 200																		
	Terminated at sch	neduled	dept	h							(11)	- 11		200				

2021						Project		-	t Name:	Во		e No.:
**	CAL	JSE	ΞV	VAY TECH		17-016			/ Sewerage Scheme Marine Outfall GI		BH1	13
		-GE	0	TECH		Coordi		Client: Irish W		S	heet í	1 of 2
Method	Dla	nt Use	,d	Тор	Base	32483	7.57 E		s Representative:	Sca	ale:	1.50
Cable Percussion		ido 300		0.00	10.50	17335	7.32 N		Looby ARUP J.V.	-		
						Ground	d Level:	Dates:		Dri	iller:	CC
							5 mOD	23/08/		Log	gger:	SG
Depth (m)	Sample / Tests	Depth D	Vater epth (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfi	fill
0.00 - 1.00	B1	()	()			(02)	-		Medium dense brown sandy slightly silty subangular to subrounded fine			
							[GRAVEL. Sand is fine to coarse.			
0.50	ES20						-					0.5 -
							(1.60)					
1.00 1.00 - 1.45	D9 SPT (S)	1.00		N=17 (2,3/4	4,4,4,5)		-					1.0 —
	N=17											
1.50 1.60 - 2.00	ES21 B2					-2.55	1.60	2 29	Medium dense brown very sandy slightly silty subangular to subrounded			1.5 -
									fine to medium GRAVEL with low cobble content. Sand is fine to coarse.			
2.00 2.00 - 2.45	D10 SPT (S)	2.00		N=23 (3,4/5	5,6,6,6)		-	9 9	Cobbles are subrounded.			2.0 —
	N=23			. , , -			(1.30)	9 9				
2.50	ES22						<u> </u>	9 9				2.5 -
2.90 - 4.00	B3					-3.85	2.90		Chiff group clightly conduct AV Cond in Son to account	\perp		
3.00 - 3.45	UT17			Ublow=86 1	100%		<u> </u>		Stiff grey slightly sandy CLAY. Sand is fine to coarse.			3.0 —
							-					
3.50	D11 ES23						Ė					3.5 -
							-					
4.00 4.00 - 5.00	D12 B4						_					4.0 —
4.00 - 4.45	SPT (S) N=43	4.00		N=43 (5,5/8	8,8,12,15)		-					
4.50	ES24											4.5 -
							(4.10)					
5.00 - 5.45	UT18			Ublow=83 1	100%		(4.10)					5.0 —
	D4.2						-					
5.50	D13 ES25											5.5 -
5.50 - 6.50	B5						-					
							-					6.0 —
c 50							-					
6.50 6.50 - 6.95	D14 SPT (S)	6.50		N=37 (4,6/6	5,8,10,13)		[-					6.5
7.00 - 9.00	N=37 B6					7.05	7.00					7.0 —
7.00 - 8.00	100					-7.95	- 7.00 -	===	Stiff grey CLAY.			7.0
							_		-			7.5 -
							-	<u> </u>				,.s -
8.00 - 8.45	UT19			Ublow=31 1	100%		(1.90)	<u> </u>				8.0 —
0.00 - 0.43	0113			⊃ы∪W-31 I	100/0		<u>,</u>	<u> </u>				3.5 <u> </u>
8.50	D15							<u> </u>				8.5 -
0.30	213						-	<u> </u>				0.5
8.90 - 9.40	В7					-9.85	8.90	\$. * . *	Brown sandy silty subangular to subrounded fine to coarse GRAVEL. Sand	\dashv		9.0 —
							(0.50)	× × ×	is fine to coarse.			3.0
9.40 - 10.50	B8					-10.35	9.40	· · · · · · · ·	Firm slightly sandy CLAY. Sand is fine to coarse.	\dashv		9.5 –
9.50 9.50 - 9.95	D16 SPT (S)	9.50		N=10 (1,2/2	2,2,3,3)		(1.10)					
	N=10						·					
Remarks									Water Strikes Ch	nisellin	g Deta	ils
Deck to Bed = 2.	50m								Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)			Fime (hh:mm)
									Water Added Casing Details From (m) To (m) To (m) Diam (mm)			
Terminated at sc	heduled	denth							1.60 9.00			

Method Plant Used Top Base Cable Percussion During 2000 0.00 1						X I	Projec	t No.:	Projec	t Name:					Во	reho	le No.:
Method Plant Used Top Base Cable Percussion Darko 2000 000 200 2030	(KSK)	ΓΔΙ	IS	E	WA	Y					Marine (Outfall G	I			ВН	113
Method Plant Used Top			_G	EC	TECH	-									S	heet	2 of 2
Gable Percussion 0.00							32483	7.57 E									1.50
Command Comm							17335	7.32 N									
August Company Compa							Groun	d Level:							Dr	iller:	CC
11.45															Lo	gger:	SG
11.45	Depth (m)		Casing Depth (m)	Water Depth (m)	Field	Records		Depth (m)	Legend		D	escription	ı		Water	Back	fill
First of Browkide at \$4.5 dbm	(,		. ,	.,,			(52)	[Firm slightly sandy CLA	Y. Sand is f	ine to coar	se.				
First of Browkide at \$4.5 dbm										- -							_
Remarks Nate September Property Pro							-11.45	10.50			End of Bo	orehole at	10.50m				10.5 —
Remarks Nate September Property Pro								-									-
Remarks Rem								-									-
Remarks Rem																	11.5
Remarks Note Strike Chical Ing Details Chica								-									=
Remarks Note Strike Chical Ing Details Chica																	12.0
								-									
								- -									12.5
No.								-									
National Part								-									13.0 —
National Part								-									
According								-									13.5
According								-									-
1.5. 2.5.								_									14.0
1.5. 2.5.								-									
Remarks Deck to Bed = 2.50m Mater Strikes Chiefling Details Transport Rose (a) T								-									14.5
Remarks Deck to Bed = 2.50m Mater Strikes Chiefling Details Transport Rose (a) T								-									
16.0 16.0								-									15.0 —
16.0 16.0								-									
16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 17.5 - 17.5 - 17.5 - 17.5 - 17.5 - 18.0 - 1								-									15.5 —
16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 16.5 - 17.5 - 17.5 - 17.5 - 17.5 - 17.5 - 18.0 - 1								-									
170 - 170																	16.0
170 - 170								-									
17.5 18.0 18.0 18.0 18.5								-									16.5
17.5 18.0 18.0 18.0 18.5								-									17.0
18.0 - 18.0 - 18.0 - 18.5 - 18.5 - 18.5 - 18.5 - 19.0 - 1								-									
18.0 - 18.0 - 18.0 - 18.5 - 18.5 - 18.5 - 18.5 - 19.0 - 1								-									17.5
Water Strikes Chiselling Details From (m) Tom (min) Rose to (m) From (m) Tom (m) Time (phrum)								-									
19.0 19.0 19.0 19.5								-									18.0
19.0 19.0 19.0 19.5								-									
Water Strikes Chiselling Details								-									18.5
Water Strikes Chiselling Details								-									
Water Strikes Chiselling Details								-									19.0
Water Strikes Chiselling Details								-									
Struck at (m) Casing to (m) Time (min) Rose to (m) From (m) Tio (m) Time (hhzmm)								-									19.5
Struck at (m) Casing to (m) Time (min) Rose to (m) From (m) Tio (m) Time (hhzmm)								-									
Struck at (m) Casing to (m) Time (min) Rose to (m) From (m) Tio (m) Time (hhzmm)																	
Water Added Casing Details	Remarks	50m									Struck at (m)			Rose to (m)			
From (m) To (m) To (m) Diam (mm) 10.50 200	Dock to Dea - Z.c	,5111															
10.50 200																	
	Terminated at sch	heduled	dent	h							(III)	10 (11)		200			

					\	Project	t No.:	Project	t Name:	Вс	reho	le N	o.:
XX	CAL	IC	F	WAY		17-016	57	Arklow	Sewerage Scheme Marine Outfall GI		Bł	114	
	CAC	_G	EC	TECH		Coordi	nates:	Client:			Sheet	1 of	f 2
						32490	1.92 E	Irish W					
Method Cable Percussion		nt U		Top 0.00	Base 10.00	17330	7.18 N		s Representative:	Sc	ale:	1:5	0
Cable Percussion	Dali	uu 5	000	0.00	10.00				Looby ARUP J.V.	Dr	iller:	CC	
							d Level: 5 mOD	Dates: 02/08/		Lo	gger	: SG	
Depth	Sample /	Casing Depth	Water	Field Re		Level	Depth (m)			+-	Bac	_	
(m) 0.00 - 0.90	Tests B1	(m)	Depth (m)	Field Ke	ecoras	(mOD)	(Thickness)	Legend	Description Black very sandy silty subangular to subrounded fine to medium GRAVEL.	Water	Вас	CIII	
0.25	ES19							× × ×	Sand is fine to coarse.				
							(0.90)	× × ×					0.5 -
.75	ES20							× × ×					
.90 - 1.50 .00	B2 D11					-2.44	- 0.90	××××	Medium dense black very sandy slightly silty subangular to subrounded	1			1.0 -
.00 - 1.45	SPT (S)	1.00		N=15 (2,3/3	3,4,4,4)		-	× × ×	fine to coarse GRAVEL. Sand is fine to coarse.				
.25	N=15 ES21						-	× × ×					1.5 -
75	ES22						(1.60)	× × ×					
.00	D12						_	× × ×					2.0 —
.00 - 2.50 .00 - 2.45	В3	2 00		N=12 /1 2 /2	2 2 2 21		_	×××					
	SPT (S) N=12	2.00		N=12 (1,2/3	اد,د,د,	-4.04	2.50	×· ^·×					2.5
.25 .50 - 3.00	ES23 B4						- 2.50		Stiff grey slightly sandy CLAY. Sand is fine to coarse.				
.75 .00 - 3.45	ES24 UT17			Ublow=83 1	100%								3.0 -
.00 - 3.43	0117			Oblow-83	100%		-						
.50	D13						-						3.5
.50 - 4.00	B5												5.5
00	D4.4						-						4.0
.00	D14 ES25												4.0 —
.00 - 4.45	SPT (S) N=37	4.00		N=37 (6,6/7	7,8,10,12)		-						
.50 - 5.00	В6						[4.5 -
							-						
.00 .00 - 5.45	ES26 UT18			Ublow=81 1	100%		(5.20)						5.0 -
.50 .50 - 6.00	D15 B7						-						5.5
							-						6.0 -
							-						
.50 - 6.95	SPT (S) N=33	6.50		N=33 (4,5/6	5,8,9,10)		-						6.5
	55							<u> </u>					
.00 - 7.70	B8						-						7.0 -
							-						
70.0	50						-						7.5
.70 - 8.50	В9					-9.24	- 7.70 -	×·×,×	Medium dense brown very silty sandy subangular to subrounded fine to				
.00 - 8.45	SPT (S) N=14	8.00		N=14 (1,2/3	3,3,4,4)		-	×××	medium GRAVEL. Sand is fine to coarse			*	8.0 –
	11-17						_	××××					
							-	×××					8.5
							(2.30)	× × ×					
.00 - 10.00	B10						-	×·×·×					9.0 -
							-	×·×·×					
.50	D16	0.54		N 25 /2	0'		-	× × ×				9	9.5 -
.50 - 9.95	SPT (S) N=25	9.50		N=25 (3,4/5	5,5,7,8)		-	× × ×					
						-11.54	10.00	× × ×		+		œ.	_
emarks			I	ı		I	I	1			ng Det		
eck to Bed = 3.	20m								Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	2	.50	Time (h	
									Water Added Casing Details				
									Water Added Casing Details From (m) To (m) To (m) Diam (mm) 2.00 10.00 200				
rminated at sc	heduled	dept	h										

								Project	Name:						Во	reho	le No.:
(ACK)	CAI	IS	E	WAY		17-016			Sewerage Scheme	Marine (Dutfall G					ВН	14
		—G	EO	TECH		Coordi		Client:							S	heet	2 of 2
	1					32490	1.92 E	Irish W									
Method Cable Percussion		nt Us ido 3		Top 0.00	Base 10.00	17330	7.18 N		s Representative: Looby ARUP J.V.								1:50
						Ground	d Level:	Dates:							Dri	ller:	CC
							5 mOD	02/08/							Lo	gger:	SG
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	Legend		D	escription				Water	Back	fill
10.00 - 10.45	SPT (S) N=30	10.0	. ,	N=30 (4,5/6	5,6,9,9)	(57)				End of Bo	orehole at	10.00m					
	N-30	0					-										_
																	10.5 —
							-										11.0
																	11.0
																	11.5
							-										=
							[12.0 —
							Ė										
							-										12.5
							-										
							_										13.0 —
							-										
							-										13.5 —
							Ė										
							-										14.0
							-										
							-										14.5 — —
							-										
							-										15.0 —
							-										
							-										15.5 — —
							Ŀ										16.0
							-										-
																	16.5
							E										
							-										17.0 —
							-										
							-										17.5 —
							-]
							-										18.0 —
							Ė										
							-										18.5 —
							<u> </u>										
							-										19.0 —
							-										
							-										19.5 —
							-										
Dama:-I:-										İ	\M/ator	Strikes		Chi	ellin	g Deta	ails
Remarks Deck to Bed = 3	.20m									Struck at (m)	Casing to (m)		Rose to (m)	From (m) 2.30	To		Time (hh:mm) 01:00
																	.,
										Water From (m)	Added To (m)		Details Diam (mm)				
Terminated at so	cheduled	dept	h														

202						Project			t Name:	В		le No.:
	CAL	JS	E	VAY TECH		17-016 Coordi		Arklow Client:	sewerage Scheme Marine Outfall GI	\perp	BH	115
		-G	EO	TECH				Irish W			Sheet	1 of 2
Method	Pla	nt Us	sed	Тор	Base	32501			s Representative:	Sc	cale:	1:50
Cable Percussio		ndo 30		0.00	12.38	17319	2.19 N		Looby ARUP J.V.	-		
						Ground	d Level:	Dates:		_D	riller:	CC_
						-2.16	6 mOD	25/08/	' 2017	Lo	ogger:	. SG
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Back	cfill
0.00 - 1.00	B1						_		MADE GROUND: Medium dense black slightly sandy slightly silty subrounded fine to medium GRAVEL with fragments of red brick and			
							-		organics. Sand is fine to coarse.			
0.50	ES28											0.5
							(1.50)					
1.00 1.00 - 1.45	D12 SPT (S)	1.00		N=10 (2,2/2	2,2,3,3)							1.0 -
	N=10						_					
1.50 1.50 - 2.00	ES29 B2					-3.66	1.50	× × ×	Grey very gravelly slightly slity fine to coarse SAND with low cobble	\exists		1.5 -
							(0.50)	* * * * * * *	content and occasional shells. Gravel is subrounded fine to coarse.			
2.00 2.00 - 2.50	D13 B3					-4.16	2.00		Loose to medium dense grey fine to medium SAND.	\exists		2.0 —
2.00 - 2.45	SPT (S) N=9	2.00		N=9 (1,2/2,	2,2,3)		-					
2.50	ES30						<u> </u>					2.5
							[
3.00 3.00 - 3.45	D14 SPT (S)	3.00		N=15 (2,3/3	3,4,4.4)		-					3.0 —
	N=15			- (=,0/	, , , , , ,		(2.70)					
3.50 3.50 - 4.00	ES31 B4						-					3.5
3.30 4.00												
4.00 4.00 - 4.20	D15 B5						-					4.0 —
4.00 - 4.45	SPT (S)	4.00		N=20 (3,4/4	4,5,5,6)		-					
4.50	N=20 ES32						_					4.5
4.70 - 6.00	В6					-6.86	4.70		Stiff grey slightly sandy CLAY. Sand is fine to coarse.			
5.00 - 5.45	UT25			Ublow=92 1	100%		_					5.0 —
							-					
5.50	D16 ES33											5.5
	E333						(2.30)					
6.00 - 7.00	В7						_					6.0 —
							_					
6.50 6.50 - 6.95	D17	6.50		N=44			-					6.5
0.30 - 0.33	SPT (S) N=44	0.30		N=44 (7,7/8,11,1	1,14)		Ė					
7.00 - 8.00	B8					-9.16	7.00	× × ×	Medium dense brown very sandy slightly silty subangular to subrounded	\dashv		7.0 —
							<u> </u>	×××	fine to coarse GRAVEL. Sand is fine to coarse.			
7.50 7.50 - 7.95	D18	7 50		N-15 /1 3/3	33151		-	× × ×				7.5
7.30 - 7.93	SPT (S) N=15	7.50		N=15 (1,2/3	,,5,4,5)		(1.50)	× × ×				
							-	× × ×				8.0 —
							<u> </u>	×. ×. ×				
8.50	D19					-10.66	8.50		Firm brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse.	\dashv		8.5
8.50 - 9.50 8.50 - 8.95	B9 SPT (S)	8.50		N=22 (3,3/4	4,5,6,7)		-		Gravel is subrounded fine to coarse.			
9.00 - 9.45	N=22 UT26			Ublow=57 1	100%		(1.00)					9.0 —
							-					
9.50	D20					-11.66	9.50		- Firm to stiff thinly laminated brown slightly sandy slightly gravelly CLAY.	\dashv		9.5
9.50 - 10.00	B10						-		Sand is fine to coarse. Gravel is subrounded fine to medium.			
10.00 - 11.00	B11						-			+		
Remarks	1	1				1	1	1			ng Det	ails Time (hh:mm
Deck to Bed = 4.	.00m								Struck at (m) Casing to (m) Time (min) Rose to (m) From (m	<u>' '</u>	To (m)	rime (nh:mm
									Water Added Casing Details			
									Water Added Casing Details			
Terminated at re	efusal on	large	bould	der/possibl	e bedrock	<			2.00			

4-5						Project	t No.:	Project	: Name:	Вс	reho	le No.:
-283	CAL	10		A/AV		17-016			Sewerage Scheme Marine Outfall GI			115
	CAL	72	E C	WAY TECH		Coordi	nates:	Client:		+	Sheet	2 of 2
		G	EC	ЛЕСП		32501	5.88 E	Irish W			neet	Z UI Z
Method		nt U		Тор	Base	1	2.19 N		Representative:	Sc	ale:	1:50
Cable Percussion	n Dar	ndo 3	000	0.00	12.38				ooby ARUP J.V.	Dr	iller:	CC
							d Level: 6 mOD	Dates: 25/08/	2017	-	gger	
Depth	Sample /	/ Casing Depth	Water Depth	Field Re		Level	Depth (m)			_	Back	
(m)	Tests SPT (S)	(m)	(m)	N=12 (1,2/3		(mOD)	(Thickness)	Legend	Description Firm to stiff thinly laminated brown slightly sandy slightly gravelly CLAY.	Water	Baci	(1) II
	N=12	0		14-12 (1,2/3	,,,,,,,,				Sand is fine to coarse. Gravel is subrounded fine to medium.			
10.50	D21						-					10.5 —
11.00 - 11.45	UT27			Ublow=50 1	100%		-					11.0 —
11.00 - 12.00	B24						(2.88)					
11.45	D22						-					 11.5 —
							E					
12.00	D23						-					12.0 —
	SPT (S)	12.0 0		N=50 (2,3/5 235mm)	50 for		_					-
				23311111)		-14.54	12.38	DENTE (S	End of Borehole at 12.38m	\dashv		12.5
							_					
							-					13.0
							<u> </u>					-
							-					13.5 —
							_					=
												14.0 —
							-					=
												14.5
							-					-
												15.0 —
							-					=
							Ė					15.5
							-					-
							_					16.0 -
							-					-
							-					-
							-					16.5 —
							-					-
							-					17.0 —
							_					-
							-					17.5 —
							-					
							-					18.0 —
							-					
												18.5 —
							-					
							-					19.0 —
							-					-
							<u> </u>					19.5 —
							-					
										1	Ļ	
Remarks Deck to Bed = 4.0	00m								Water Strikes Chi Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)		ng Det	Time (hh:mm)
, con to bea = 4.0	50111											
									Water Added Casing Details			
									From (m) To (m) To (m) Diam (mm) 12.45 200			
erminated at re	tusal on	large	boul	der/possibl	e bedroc	K						

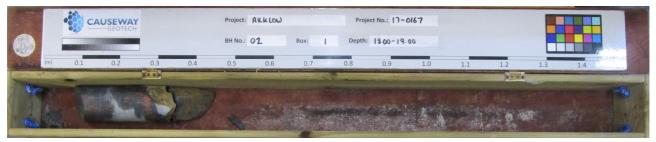
202					Project			t Name:	Bor		No.:
KQK.	CAL	JSE	WAY		17-016			sewerage Scheme Marine Outfall GI		BH1	6
		-GEC	WAY TECH		Coordi		Client:		Sh	eet 1	of 2
		<u> </u>			32472	5.91 E		s Representative:	Sec	e: 1	I · 5 ∩
Method Cable Percussion		nt Used ido 3000	Top 0.00	Base 11.50	17348	4.90 N		s Representative: Looby ARUP J.V.			
					Ground	d Level:	Dates:	•	Dril	ler: /	AH
						3 mOD	05/11/		Log	ger: l	N
Depth	Sample /	Casing Water Depth Depth	Field Re	ecords	Level	Depth (m)	Legend	Description	Water	Backfi	II
(m)	Tests	(m) (m)			(mOD)	(Thickness)		Grey sandy slightly silty subangular to subrounded fine to coarse GRAVEL	>	V V V	7 -
						(0.80)	9	with medium cobble and boulder content. Sand is fine to coarse. Cobbles and boulders are subangular to subrounded.			-
0.50	D20					(0.80)	9 9				0.5
0.80 - 1.20	ES1 B7				-5.13	0.80	a . º a	Soft grey sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is	- 1		_
1.00 - 1.45	SPT (S)		N=5 (1,2/1,	1,2,1)		-	^ ×	subangular to subrounded fine to medium.			1.0
	N=5					(1.00)	×				_
1.50	D21					<u> </u>	×	: 			1.5
1.80 - 2.20	ES2 B8				-6.13	1.80	× ×				-
2.00 - 2.50	UT18		Ublow=8 89	9%		-	X	× , 0 . , , , . ,			2.0
						[X	×			
2.50	D22					-	X	×			2.5
2.80 - 3.20	ES3 B9						×××	×			
3.00 - 3.45	SPT (S)		N=6 (1,1/2,	1,1,2)		-	×××	×			3.0 —
	N=6					(2.70)	×××	×			
3.50	D23					-	×××	×			3.5 —
3.80 - 4.00	ES4 B10					Ė	$\times \times $	×			
4.00 - 4.50	UT17		Ublow=10	93%		_	$\times \times $	×	ì		4.0
						-	×××	×			-
4.50	D24				-8.83	- 4.50	$\times \times \times$				4.5
	ES5				5.55	- 4.50	× × × × ×	Loose grey gravelly very silty fine to coarse SAND. Gravel is subangular to subrounded fine.			-
4.80 - 5.20 5.00 - 5.45	B11 SPT (S)		N=7 (5,2/2,	2 1 2\		_	.×.× ×.×.×				5.0 —
5.00 - 5.45	N=7		14-7 (3,2/2,	· -, 1, 4)		(1.40)	.×.× ×.×.×				3.0 <u> </u>
5 50	חשב					[.×. × . × ×				5.5
5.50	D25 ES6					<u> </u>	.×.× x.×.×				5.5 — -
5.80 - 6.20	B12		N-20 /2 4 /	4 5 5 6'	-10.23	5.90	×××	Medium dense grey sandy slightly silty subangular to subrounded fine to			-
6.00 - 6.45	SPT (C) N=20		N=20 (3,4/4	4,5,5,6)		-	9	coarse GRAVEL with medium cobble and boulder content. Sand is fine to			6.0 —
						<u>-</u>	9	coarse. Cobbles and boulders are subrounded to rounded.			
6.50	D26					-	, a				6.5 —
6.80 - 7.20	B13					-	9 9				
7.00 - 7.45	SPT (C) N=23		N=23 (4,4/5	5,6,5,7)		E	è 0				7.0 —
	-					[800				
7.50	D27					- (3.40)	, o , o				7.5 —
7.80 - 8.20	B19					[å ° .				
8.00 - 8.45	SPT (C) N=31		N=31 (4,5/6	6,7,8,10)		-	å , å				8.0 —
	14-2T					Ė	, o , o				-
8.50	D28					-	å ° ° (8.5 —
8.80 - 9.20	B14					<u>-</u>	å ° ° (
9.00 - 9.45	SPT (C)		N=39			-	, o , o				9.0 —
	N=39		(6,5/8,10,1	1,10)	-13.63	9.30	,	Madium dones to dones green elizability agreedly, elizability eliz			-
9.50	D29					<u> </u>	$\hat{\mathbf{x}} \times \hat{\mathbf{x}} \times \hat{\mathbf{x}}$	Medium dense to dense grey slightly gravelly slightly silty fine to coarse SAND. Gravel is subangular to subrounded fine to medium.			9.5
9.80 - 10.20	B15					-	× × ×				
	-					-	×. ×. ×	:			-
Remarks	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>		selling		
Drilled from float	ting platf	orm						Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To (n	n) Tir	ne (hh:mm)
								Water Added Casing Details From (m) To (m) To (m) Diam (mm)			
Terminated at vir	rtual refu	ısal in grar	nular mater	ial							
										_	

						Project	: No.:	Project	: Name:						Bor	ehol	e No.:
(KSK)	CAI	IS	E)	ΜΔΥ	,	17-016			Sewerage Scheme	Marine C	Outfall GI					BH1	L6
		−G	EO	VAY TECH		Coordi	nates:	Client:							Sł	neet 2	2 of 2
						32472	5.91 E	Irish W									
Method Cable Percussion		nt Us do 30		Top 0.00	Base 11.50	17348	4.90 N		Representative:						Sca	le:	1:50
Cable Percussion	Daii	u0 50	500	0.00	11.50				Looby ARUP J.V.						Dril	ler:	АН
							d Level: 3 mOD	Dates: 05/11/	2017						Log	ger:	LN
Depth	Sample /	Casing	Water Depth	Field R		Level	Depth (m)	Lamoud	2017						+	Backf	\neg
(m) 10.00 - 10.45 10.50 10.80 - 11.20 11.00 - 11.45	Tests SPT (C) N=27 D30 B16 SPT (C) N=45	Casing (m)		N=27 (5,6/ N=45 (6,8/10,12)	7,6,6,8)	-15.83	(Thickness)	Legend	Medium dense to dens SAND. Gravel is subang	e grey sligh	rounded fi	y slightly s ne to med	ilty fine to	coarse	Water	Backt	11.5 —
																	15.5 —
							-										18.0 —
Remarks Drilled from floa Terminated at vii			grar	nular mate	rial					Struck at (m) Water From (m)	Water Casing to (m) Added To (m)	Time (min)	Rose to (m) Details Diam (mm) 200	Chi: From (m)	To (i	g Deta	ils ime (hh:mm)

202					Project			t Name:	Во		e No.:
XX	CAL	JSE\	VAY		17-016			v Sewerage Scheme Marine Outfall GI	1	BH:	17
		-GEO	VAY TECH		Coordi		Client: Irish W		S	heet	1 of 2
Method	Plan	nt Used	Тор	Base	32476			s Representative:	Sca	ale:	1:50
Cable Percussion	_	ido 3000	0.00	12.90	17351			Looby ARUP J.V.			
					Ground	d Level:	Dates:	·		iller:	
							03/11/	/2017	+-	gger:	LN
Depth (m)	Sample / Tests	Casing Water Depth Depth (m) (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backf	ill
						-	9	Medium dense brown very sandy slightly silty subangular to subrounded fine to coarse GRAVEL with medium cobble and boulder content. Sand is			
0.50	D1					-	0 0	fine to coarse. Cobbles and boulders are subangular to subrounded of mixed lithologies.			0.5 —
	ES29					-	9 9	inned idiologics.			
0.80 - 1.20 1.00 - 1.45	B15 SPT (C)		N=27 (3,8/4	17901		-					1.0 —
1.00 - 1.45	N=27		N=27 (3,8/2	+,7,8,8)		-	9 9				1.0 -
1.50	D2					-	å °				- - 1.5 –
	ES30					- -	9 9				• · · · · · · · · · · · · · · · · · · ·
1.80 - 2.20	B16		N-20 (4.24)	1556)		-	9 9				2.0 —
2.00 - 2.45	SPT (C) N=20		N=20 (4,3/4	(۵,د,د,		(4.10) -	å ° °				2.0 -
2.50	D3					-	9 9				2.5 —
2.50	ES31					-	å ° °				2.5 <u>-</u> 2 -
2.80 - 3.20	B17		N-22 /4 F /	. 6 <i>6 E</i>)		<u>-</u>	9 9				
3.00 - 3.45	SPT (C) N=22		N=22 (4,5/5	,0,0,5)		-	9 9				3.0 —
3.50	D4					- -	a ° °				
3.50	D4 ES32					-	a , q				3.5 —
3.80 - 4.20	B18					-	9 9 9				- -
4.00 - 4.45	SPT (C) N=21		N=21 (3,4/5 Water strike		-5.06	4.10	2,00	Medium dense grey sandy slightly silty subangular to subrounded fine to	-		4.0 —
			4.10m			-		coarse GRAVEL with low cobble and boulder content. Sand is fine to			
4.50	D5 ES33					(1.10)		coarse. Cobbles and boulders are subangular to subrounded of mixed lithologies.			4.5 —
	B19					-					
5.00 - 5.45	SPT (C) N=11		N=11 (3,4/5	5,2,2,2)	-6.16	- - - 5.20					5.0 —
					-0.10	3.20	×××	Very soft grey silty sandy slightly gravelly clayey SILT . Sand is fine to coarse. Gravel is subangular to subrounded fine to medium.			
5.50	D7 ES34					-	× × × × × ×	×			5.5 —
5.80 - 6.00	B20					-	××× ×××				
6.00 - 6.50	UT27		Ublow=12 9	98%		- (1.60)	$\times \times $				6.0 —
						-	$\times \times $				
6.50	D8					 [$\times \times $				6.5
6.80 - 7.20	B21				-7.76	6.80	× × ×	Soft to firm grey slightly sandy slightly clayey SILT . Sand is fine to coarse.	\dashv		
7.00 - 7.45	SPT (S) N=9		N=9 (2,3/2,	2,3,2)		-	$\times \times $				7.0 —
						- -	$(\times \times \times)$				
7.50	D9					-	(7.5 — -
7.80 - 8.00	B22					-	(
8.00 - 8.50	UT28		Ublow=15	98%		-	(8.0 —
						(2.90)	(
8.50	D10					-	(8.5 —
8.80 - 9.20	B23					- -	(
9.00 - 9.45	SPT (S) N=16		N=16 (3,3/4	1,4,4,4)		-	(9.0 —
	11-10					-	(-
9.50	D11					-	× × × × × ×				9.5 —
9.80 - 10.20	B24				-10.66	9.70	a ° a		-		-
							, 9 , 0		╧	200	
Remarks	ting plass	orm						Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To		ime (hh:mm)
Drilled from floa	urig plath	OTITI						4.10 4.10 12.90		.90	01:00
								Water Added Casing Details			
								From (m) To (m) To (m) Diam (mm)			
Terminated at re	tusal on l	large boul	der								

20					\	Project			: Name:	Во		le No.:
HCH	CAL	JS	E	WAY		17-016			Sewerage Scheme Marine Outfall GI		BH	17
	-, 14	-G	EC	TECH		Coordi		Client: Irish W		S	heet	2 of 2
Method	Pla	nt U	sed	Тор	Base	32476			s Representative:	Sca	ale:	1:50
Cable Percussion		do 3		0.00	12.90	17351	9.44 N	Byrne I	Looby ARUP J.V.		iller:	
							d Level:	Dates:	2017	\vdash	gger:	
Depth	Sample /	Casing Depth	Water	Field D		-0.9	6 mOD Depth (m)	03/11/		+	T	
(m)	Tests SPT (C)	Depth (m)	Water Depth (m)	Field Re		(mOD)			Description boulders are subrounded to rounded of mixed lithologies.	Water	Back	inii
	N=36			30 (0,770	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	a . a	sociates are subscanded to surface of this earlies agrees.			
0.50	D12							a ' a ' (10.5 -
0.80 - 11.20	B25						(2.00)	a ' a ' (
	SPT (C) N=40			N=40 (8,7/8,10,10	0.12)		-	a . ° ° °				11.0 -
				. , , =,==,2	•		-					
	D13					-12.66	- - 11.70					11.5
	B26 SPT (S)			N=36 (7,8/8	R R Q 11\	12.00			Very stiff grey slightly sandy slightly gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is subangular to			12.0 –
	N=36			14-30 (7,0/8	,,0,3,11]		(4.30)		subrounded fine. Cobbles and boulders are subangular to subrounded of mixed lithologies.			12.0 -
2.50	D14						- (1.20) -					12.5
							-					
						-13.86	12.90	100 No. 60 N	End of Borehole at 12.90m	1		13.0 -
							-					
							-					13.5
							_					14.0 -
							-					14.5
							-					
							-					15.0 -
							-					15.5
							-					
							-					16.0 -
							-					
							_					16.5
							-					
							_					17.0 -
							<u> </u>					
							-					17.5
							[
							-					18.0 -
							-					
							-					18.5
							_					19.0 -
							-					13.0
							-					19.5
							-					
							-			-		-
marks		<u> </u>		1		1	<u>I</u>	I			g Det	
illed from float	ting platf	orm							Struck at (m) Casing to (m) Time (min) Rose to (m) From (m) 12.90	12	(m) 2.90	Time (hh:mm 01:00
									Water Added Casing Details			
									From (m) To (m) To (m) Diam (mm) 12.90 200			
minated at ref	fusal on I	large	boul	der								

202					Project		-	t Name:	Boı		e No.:
KX.	CAL	JSE	WAY		17-016			sewerage Scheme Marine Outfall GI		BH:	18
		-GEO	VAY TECH		Coordi		Client:		SI	heet :	1 of 2
	_	<u> </u>			32479		Irish W		S	le:	1.50
Method Cable Percussion		do 3000	Top 0.00	Base 11.30	17354			s Representative: Looby ARUP J.V.			
					Ground	d Level:	Dates:		Dri	ller:	AH
							06/11/		Log	ger:	LN
Depth (m)	Sample / Tests	Casing Water Depth Depth (m) (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backf	ill
(111)	iests	(m) (m)			(IIIOD)	-	×	Medium Dense greyish black sandy slightly silty subangular to subrounded	_		
						-	× ^ ×	fine to coarse GRAVEL with medium cobble and boulder content. Sand is fine to coarse. Cobbles and boulders are subangular to subrounded of			
0.50	D18 ES9					-	× × ×	mixed lithologies.			0.5 -
0.80 - 2.20	B1					- -	× ^ ×	*			
1.00 - 1.45	SPT (C) N=11		N=11 (3,4/3	3,3,2,3)		_	×.	*			1.0 —
	IN=11					- -	×.				
1.50	D19					(3.00)	×.	*			1.5 -
	ES10					- -					
2.00 - 2.50	UT15		Ublow=11	98%		_					2.0 —
						- -					
2.50	D20					-		•			2.5 -
2.80 - 4.20	ES11 B2					-	. × ×				
	SPT (S)		N=7 (1,1/1,	2,2,2)	-3.72	- - 3.00	× o	Soft grey slightly sandy silty CLAY with occasional bands of grey SAND	4		3.0 —
	N=7					- -	XX	throughout. Sand is fine to coarse.			
3.50	D21					-	×_×_				3.5 -
	ES12					-	×_×_				
4.00 - 4.50	UT16		Ublow=14 9	97%		<u>-</u>	×_×_				4.0 —
						-	×_×_				
4.50	D22					-	×				4.5 –
	ES13					-	×				
4.80 - 6.20 5.00 - 5.45	B3 SPT (S)		N=9 (1,1/2,	2 2 21		(3.80)	×_^_				5.0 —
5.00 - 5.45	N=9		IN-3 (1,1/∠,	رد,۷,۵		-	×				3.0
F F0	רכי					-	×				
5.50	D23 ES14					-	×				5.5 -
				2001		-	X				
6.00 - 6.50	UT17		Ublow=16 8	88%		-	X				6.0 —
						-	X——				
6.50	D24					<u>-</u> -	×-^-				6.5
6.80 - 7.20	B4				-7.52	6.80	<u>×</u>	Soft to firm grey slightly sandy slightly gravelly silty CLAY with occasional	+ $ $		
7.00 - 7.45	SPT (S) N=7		N=7 (2,2/1,	2,2,2)		-	×	bands of grey SAND throughout. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium			7.0 —
	/					- -	X—X	suvangular to subrounded lifte to medium			
7.50	D25					(1.50)	X				7.5 –
7.80 - 8.20	B5					-	X				
8.00 - 8.45	SPT (C)		N=24 (2,3/4	4,5,7,8)		_	X				8.0 —
	N=24				-9.02	- - 8.30	X	Ponco grovyony candy clightly cithy cubangular to cube and of fine to	4		
8.50	D26					-	4 X	Dense grey very sandy slightly silty subangular to subrounded fine to coarse GRAVEL with low cobble and boulder content. Sand is fine to			8.5 -
8.80 - 9.20	В6					- -	a X	coarse. Cobbles and boulders are subrounded to rounded of mixed lithologies.			
9.00 - 9.45	SPT (C)		N=41			-	a X: 9 a X				9.0 —
	N=41		(6,8/8,10,1	0,13)		(3.00)	X X				
9.50	D27					- -	4 X				9.5 –
9.80 - 10.20	В7					-	å X				
J.00 - 1U.ZU	וט					-	X X		\perp		
Remarks					İ		L			g Deta	
Drilled from float	ting platfo	orm						Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To (ime (hh:mm)
İ											
								Water Added Casing Details From (m) To (m) To (m) Diam (mm)			
Terminated at vir	rtual refu	sal in gran	nular mater	ial							
acca ac VII		biui							_		


						Project		Project	: Name:						Bor	ehole	No.:
XX	CAI	IS	E	WAY		17-016			Sewerage Scheme	Marine (Outfall G	l				BH18	В
		-G	EO	TECH		Coordi		Client:				_		_	Sł	eet 2	of 2
NA - 411	DI-				D	32479	1.47 E	Irish W							C	a. 1	·EO
Method Cable Percussion		nt Us do 30		Top 0.00	Base 11.30	17354	7.27 N		s Representative: Looby ARUP J.V.							e : 1	
						Ground	d Level:	Dates:	71101 3.4.						Dril	ler: A	.H
							2 mOD	06/11/	2017						Log	ger: L	N
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)	Legend		D	escription				Water	Backfill	
10.00 - 10.45	SPT (C)	,,	(,	N=49	12.44\	(05)	-	• × • • • × 9	Dense grey very sandy	slightly silt	y subangu	lar to subr	ounded fir	ne to			
	N=49			(7,7/10,12,	13,14)		-	a ×: , a× 9	coarse GRAVEL with lov coarse. Cobbles and bo								
10.50	D28						-	a × , a × 9	lithologies.								10.5 —
10.80 - 11.20	B8						-	a X									
11.00 - 11.20	SPT (C)			50 (8,17/50 50mm)) for		-	a X , a X 8									11.0
						-12.02	11.30	V-1,0;, 8-5		End of Bo	orehole at	11.30m			1 [- 11.5 —
							-										
																	12.0 -
							-										
							-										12.5
							ŀ										1 1
							-										13.0 —
							-										1 =
							-										13.5 —
																	1]
							_										14.0 —
							-										
							-										14.5 —
							-										
							-										15.0 —
							[1]
							Ē										15.5 —
							-										=
							-										16.0 —
							_										16.5
							-										
							-										17.0 -
							<u> </u>										
							<u> </u>										17.5
							-]
							_										18.0 —
							Ė										
							-										18.5
							<u> </u>										
							-										19.0 —
							-]
							-										19.5 —
							-										
Domorte											Water	Strikes		Chie	elling	Detail:	口
Remarks Drilled from floa	ting platf	orm								Struck at (m)			Rose to (m)	From (m)	To (n		e (hh:mm)
										Water From (m)	Added To (m)	To (m)	Details Diam (mm)	}			
Terminated at vi	rtual refu	ısal in	n grar	nular mater	ial							11.30	200				

					Project			t Name:	Вс		e No.:
KX.	CAL	JSE\	VAY TECH		17-016			r Sewerage Scheme Marine Outfall GI		BH	19
		-GEO	TECH		Coordi		Client: Irish W		9	Sheet	1 of 1
Method	Dia	nt Used	Ton	Base	32426	6.57 E		s Representative:	رد د	ale:	1.50
Cable Percussion		do 3000	Top 0.00	6.50	17358	2.51 N		Looby ARUP J.V.			
					Ground	d Level:	Dates:		_Dr	iller:	АН
						D mOD	07/11/		Lo	gger:	LN
	Sample /	Casing Water Depth Depth	Field Re	cords	Level	Depth (m)	Legend	Description	Water	Backi	fill
(m)	Tests	(m) (m)			(mOD)	(Thickness)		Medium dense grey very sandy slightly silty subangular to subrounded fine	_		N.
1.00 - 1.45 1.50 1.80 - 2.20	D15 ES7 B1 SPT (S) N=24 D16 ES8 B2		N=24 (4,6/5		-3.00	(1.80)	NIC X	to coarse GRAVEL with low cobble and boulder content. Sand is fine to coarse. Cobbles and boulders are subangular to subrounded of mixed lithologies. Very soft greyish brown sandy organic silty CLAY. Sand is fine to coarse.			1.0 -
2.00 - 2.50	UT13		Ublow=12 1	100%		(0.80)	ane <u>×</u> ane <u>×</u> ane × ane ×				2.0 —
2.80 - 3.20	45 SPT (S) N=8 (2,1/2,2,7)		2,2,2)	-3.80	2.60	*, *, *, *, *, *, *, *, *, *, *, *,	Loose grey slightly gravelly very silty fine to coarse SAND. Gravel is subangular to subrounded fine to medium.			2.5 -	
3.50	N=8 D18 ES10				-4.70	3.50	* * * * * * * * * *	Very soft greyish brown sandy slightly gravelly clayey SILT. Sand is fine to			3.5 -
3.80 - 4.20 4.00 - 4.50	B4 UT14		Ublow=15 1	100%		- - - -	* * * * * * * * * * * *	coarse. Gravel is subangular to subrounded fine.			4.0 —
4.50 4.80 - 5.20	D19 ES11 B5					(1.80)	X				4.5 -
	SPT (S) N=17		N=17 (2,2/4	1,3,5,5)	-6.50	- - - 5.30	*	Weathered grey AMPHIBOLITE recovered as sandy slightly silty angular to			5.0 —
	D20 ES12 B6					-		subangular medium to coarse GRAVEL and low cobble content. Sand is fine to coarse. Gravel is composed exclusively of amphibolite. Cobbles are angular to subangular of amphibolite.			5.5 -
6.00 - 6.45	SPT (C) N=45		N=45 (4,5/8,10,12	2,15)		- (1.20) - - -					6.0 —
					-7.70	- 6.50 -		End of Borehole at 6.50m		\$ 0° 6 0	6.5 -
						- - - - -					7.0 -
						- - - -					8.0 —
						- - - - -					8.5 -
						- - - -					9.0 —
						- - - -					9.5 -
									1		
Remarks										ng Deta	
Drilled from float Terminated on la								Struck at (m) Casing to (m) Time (min) Rose to (m) From (m)	To	o (m)	Time (hh:mm

APPENDIX C
Core photographs

BH02 18.00m to 19.00m

BH02 23.50m to 25.00m

BH05 22.50m to 24.10m

BH06 17.00m to 18.50m

BH06 24.50m to 25.20m

BH07 12.50m to 14.00m

BH07 14.00m to 15.50m

BH07 15.50m to 17.00m

BH07 17.00m to 18.50m

BH08 14.50m to 16.00m

BH08 16.00m to 17.50m

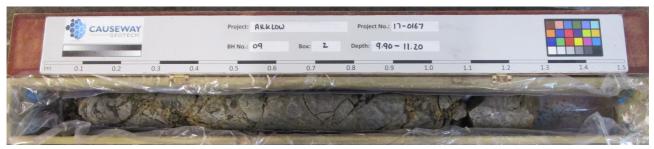
BH08 17.50m to 19.00m

BH08 19.00m to 20.50m

BH08 20.50m to 22.00m

BH08 22.00m to 23.50m

BH08 23.50m to 25.00m



BH08 25.00m to 26.50m

BH09 8.90m to 9.90m

BH09 9.90m to 11.20m

BH09 11.20m to 12.40m

BH09 12.40m to 13.20m

BH09 13.20m to 14.30m

BH10 10.00m to 11.50m

BH10 11.50m to 13.00m

BH10 13.00m to 14.50m

BH10 14.50m to 16.00m

APPENDIX D Geotechnical laboratory test results

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Client:	Irish Water
Engineer:	Byrne Looby ARUP J.V.
From:	Stephen Watson
	Laboratory Manager
	Causeway Geotech Ltd
Tel:	+44(0)2827666640
E-mail:	stephen.watson@causewaygeotech.com
Date:	26/09/17
Ref:	17-0167 - Schedule 1 - Issue 2

Arklow Sewerage Scheme Marine Outfall GI

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the *Contents page(s)*.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 60 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Stephen Watson Laboratory Manager

Project Name Arklow Sewerage Scheme Marine Outfall GI

Report Reference. 17-0167 - Schedule 1 - Issue 2

The table below details the tests carried out, the specifications used and the number of tests included in this report:

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	Number of test results included in the report
SOIL	Moisture content - oven drying method	BS 1377-2:1990	16
SOIL	Liquid limit - cone penetrometer	BS 1377-2:1990	10
SOIL	Liquid limit - cone penetrometer - one point	BS 1377-2:1990	10
SOIL	Plastic limit	BS 1377-2:1990	10
SOIL	Plasticity index and liquidity index	BS 1377-2:1990	10
SOIL	Particle size distribution - wet sieving	BS 1377-2:1990	25
SOIL	Particle size distribution - dry sieving	BS 1377-2:1990	25
SOIL	Particle size distribution -sedimentation hydrometer method	BS 1377-2:1990	16
SOIL	Undrained shear strength – triaxial compression without measurement of pore pressure (loads from 0.12 to 24 kN)	BS 1377- 7:1990	8
SOIL	Shear strength by direct shear	BS1377: Part 7: Clause 4: 1990	5
SOIL	pH Value of Soil		6
SOIL	Sulphate Content water extract		6

Summary of Classification Test Results

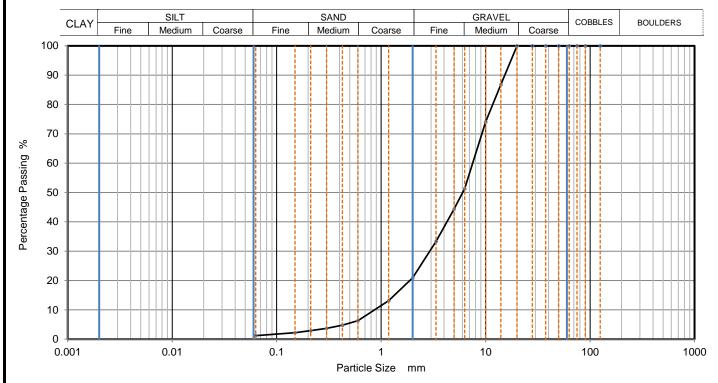
Project No.

Project Name

17-0167

Arklow Sewerage Scheme Marine Outfall GI

		Sar	nple			Dens	ity	W	Passing	LL	PL	PΙ	Particle	Cooperate
Hole No.	Ref	Тор	Base	Туре	Soil Description	bulk Mg/m	dry 13	%	425µm %	%	%	%	density Mg/m3	Casagrande Classification
BH12	3	2.30		В	Grey slightly sandy silty CLAY.	0		23.0	96	50 -1pt	21	29		СН
BH12	4	3.00		В	Grey slightly sandy slightly gravelly silty CLAY.			37.0						
BH12	12	3.50		D	Grey slightly sandy slightly gravelly silty CLAY.			26.0						
BH12	13	4.00		D	Grey slightly sandy slightly gravelly silty CLAY.			23.0	90	50 -1pt	21	29		CI
BH12	14	5.50		D	Grey slightly sandy slightly gravelly silty CLAY.			24.0						
BH12	15	6.50		D	Grey slightly sandy silty CLAY.			20.0	91	49 -1pt	22	27		CI
BH12	17	9.50		D	Brown slightly sandy slightly gravelly silty CLAY.			24.0	91	49 -1pt	21	28		CI
BH13	11	3.50		D	Grey slightly sandy silty CLAY.			23.0	89	50 -1pt	20	30		CI
BH13	12	4.00		D	Grey slightly sandy silty CLAY.			22.0						
BH13	13	5.50		D	Grey slightly sandy silty CLAY.			23.0	91	46 -1pt	21	25		CI
BH13	14	6.50		D	Grey slightly sandy silty CLAY.			22.0						
BH13	15	8.50		D	Grey slightly sandy silty CLAY.			30.0	94	46 -1pt	21	25		CI
BH13	16	9.50		D	Grey slightly sandy silty CLAY.			26.0	87	47 -1pt	20	27		CI
All tests perfo	ormed	in acco	rdance v	vith BS	S1377:1990 unless specified	d otherwi	se							
Key								Date F	rinted		Appr	oved	By	Table
Density t Linear m	easurer	ment unles	s:		e unless : sp - sn	e density nall pyknom	eter		22/09/20	17	ZPPI	oveu		1
wd - wate wi - imm					asagrande method gj - gas ngle point test	o jai					Step	hen.	Watson	sheet 1


Summary of Classification Test Results

Project No.

Project Name

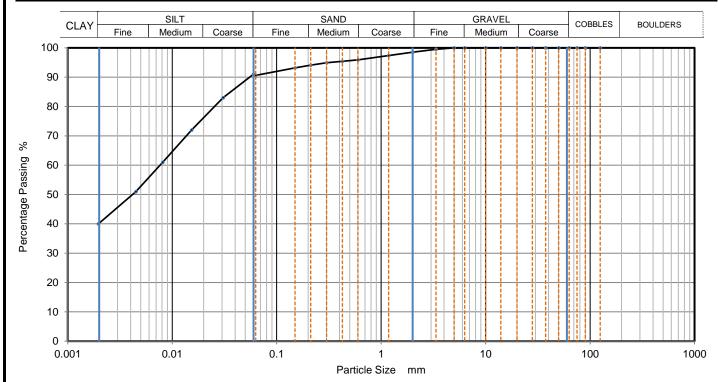
Density test Liquid Limit Particle density Linear measurement unless: 4pt cone unless: sp - small pyknometer wd - water displacement cas - Casagrande method gj - gas jar 1 22/09/2017 sheet	17-0	0167		Arklow Seweraç						age Scheme Marine Outfall GI					
BH14	Hole No.	Ref			Type	Soil Description	bulk	dry		425µm				density	Casagrande
BH14			·		ļ		Mg/m	13	%	%	%	%	%	Mg/m3	
BH14 1s 5.50 D Grey slightly sandy sity CLAY. 24.0 89 47-1pt 25 22 C1 Lill tests performed in accordance with BS1377:1990 unless specified otherwise (Sey Density less Usual Limit Parison General Value Construction (Construction of Construction Constru	BH14	13	3.50		D	Grey slightly sandy silty CLAY.			21.0	80	45 -1pt	22	23		СІ
Approved By Table Linguist unifers :	BH14	14	4.00		D	Grey slightly sandy silty CLAY.			22.0						
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet	BH14	15	5.50		D	Grey slightly sandy silty CLAY.			24.0	89	47 -1pt	25	22		CI
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet															
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet															
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet															
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet															
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet															
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet															
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet															
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet															
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet															
Cley Density test Liquid Limit Linear measurement unless: Wd - water displacement Approved By Table 22/09/2017 Date Printed Approved By 1 1 Sheet															
Density test Liquid Limit Particle density Linear measurement unless: 4pt cone unless: sp - small pyknometer wd - water displacement cas - Casagrande method gj - gas jar 1 22/09/2017 sheet	All tests perfe	ormed	in acco	rdance v	vith BS	S1377:1990 unless specifie	d otherwi	ise							
Linear measurement unless: 4pt cone unless: sp - small pyknometer 22/09/2017 wd - water displacement cas - Casagrande method gj - gas jar sheet	Key								Date F	rinted		Appr	oved	Ву	Table
wd - water displacement cas - Casagrande method gj - gas jar			ment unles	s:				eter	,	22/09/20	17				1
i i i i i i i i i i i i i i i i i i i	wd - wat	ter displa	acement		cas - C	asagrande method gj - ga				, 50/20		Sten	hen.		sheet 2

CAUSEWAY	DARTI	CLE SIZE DIST	Job Ref	17-0167	
—— GEOTECH	PANII	CLE SIZE DIST	Borehole/Pit No.	BH12	
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	1
Soil Description	Brown slightly sandy suba	angular to subround	Depth, m	0.00	
Specimen Reference	3	Specimen Depth	m	Sample Type	В
Test Method	BS1377:Part 2:1990, clau	se 9.2		KeyLAB ID	Caus201709070

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	87		
10	74		
6.3	51		
5	44		
3.35	33		
2	21		
1.18	13		
0.6	6		
0.425	5		
0.3	4		
0.212	3]	
0.15	2		
0.063	1		

Dry Mass of sample, g	3045

Sample Proportions	% dry mass
Cobbles	0
Gravel	79
Sand	20
Fines < 0.063mm	1


Grading Analysis		
D100	mm	
D60	mm	7.52
D30	mm	2.92
D10	mm	0.865
Uniformity Coefficient		8.7
Curvature Coefficient		1.3

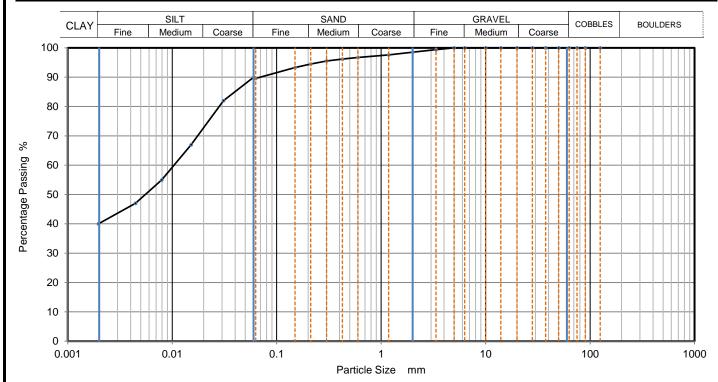
Remarks

Preparation and testing in accordance with BS1377 unless noted below

Approved		Fig	1
Stephen.Watson	22/09/2017 15:23	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION Arklow Sewerage Scheme Marine Outfall GI			Job Ref	17-0167
——GEOTECH				Borehole/Pit No.	BH12
Site Name				Sample No.	3
Soil Description	Grey slightly sandy silty CLAY.			Depth, m	2.30
Specimen Reference	7 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201709072	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0599	91
90	100	0.0307	83
75	100	0.0153	72
63	100	0.0081	61
50	100	0.0045	51
37.5	100	0.0020	40
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99		
1.18	97		
0.6	96	Particle density	(assumed)
0.425	95	2.65	Mg/m3
0.3	95		_
0.212	94		
0.15	93		
0.063	91		


Dry Mass of sample, g	1815
-----------------------	------

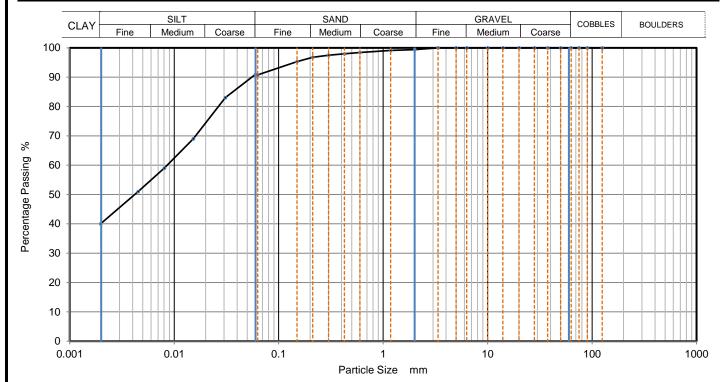
Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	8
Silt	50
Clay	40

Grading Analysis		
D100	mm	
D60	mm	0.00754
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen.Watson	22/09/2017 15:23	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION Arklow Sewerage Scheme Marine Outfall GI			Job Ref	17-0167
——GEOTECH				Borehole/Pit No.	BH12
Site Name				Sample No.	5
Soil Description	Grey slightly sandy slightly gravelly silty CLAY.			Depth, m	4.00
Specimen Reference	3 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	S1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201709077

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0603	90	
90	100	0.0310	82	
75	100	0.0152	67	
63	100	0.0079	55	
50	100	0.0044	47	
37.5	100	0.0020	40	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	99			
2	99			
1.18	98			
0.6	97	Particle density	(assumed)	
0.425	96	2.65	Mg/m3	
0.3	96			
0.212	95			
0.15	93			
0.063	90			


Dry Mass of sample, g	1270

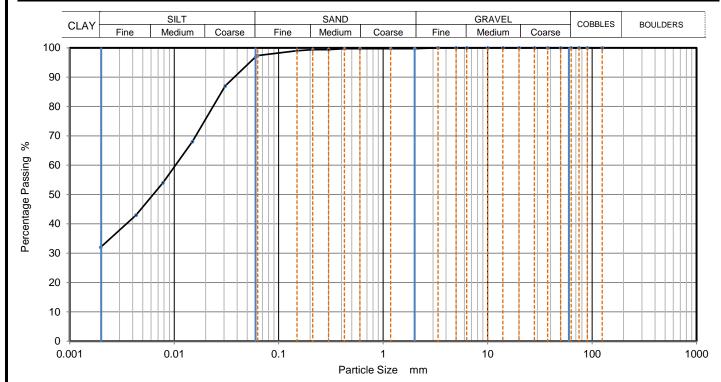
Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	9
Silt	50
Clay	40

Grading Analysis		
D100	mm	
D60	mm	0.0104
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Stephen.Watson 22/09/2017 15:23 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	22/09/2017 15:23	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH12
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	6
Soil Description	Grey slightly sandy slightly gravelly silty CLAY.		Depth, m	5.50
Specimen Reference	Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201709079

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0600	91	
90	100	0.0308	83	
75	100	0.0152	69	
63	100	0.0080	59	
50	100	0.0045	51	
37.5	100	0.0020	40	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	99			
1.18	99			
0.6	98	Particle density	(assumed)	
0.425	98	2.65	Mg/m3	
0.3	98			
0.212	97			
0.15	95			
0.063	91			


Dry Mass of sample, g	1245
Dry Mass of sample, g	1245

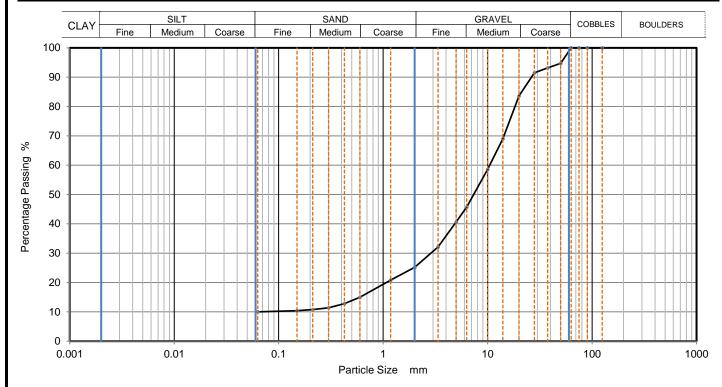
Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	9
Silt	51
Clay	40

Grading Analysis		
D100	mm	
D60	mm	0.00867
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen.Watson	22/09/2017 15:23	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
—— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH12
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	7
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	7.00
Specimen Reference	3 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090712

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0603	97
90	100	0.0307	87
75	100	0.0149	68
63	100	0.0078	54
50	100	0.0043	43
37.5	100	0.0020	32
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.65	Mg/m3
0.3	99		
0.212	99		
0.15	99		
0.063	97		


Dry Mass of sample, g	1275

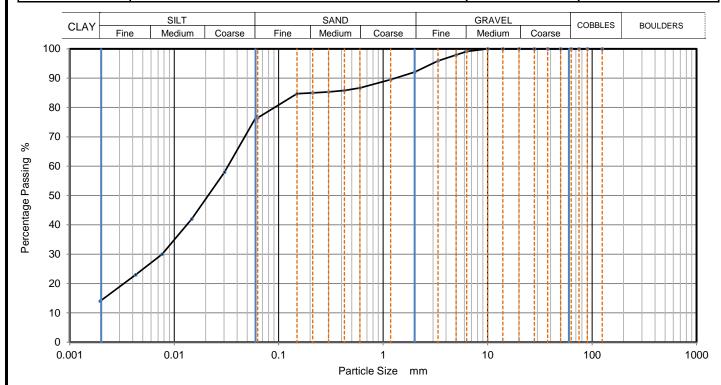
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	2
Silt	65
Clay	33

Grading Analysis		
D100	mm	
D60	mm	0.0103
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen.Watson	22/09/2017 15:23	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——— GEOTECH				Borehole/Pit No.	BH12
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	8
Soil Description	Brown slightly sandy subangular to subrounded fine to coarse GRAVEL.		Depth, m	8.40	
Specimen Reference	3 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090714	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	95		
37.5	93		
28	92		
20	84		
14	69		
10	59		
6.3	46		
5	41		
3.35	32		
2	25		
1.18	21		
0.6	15		
0.425	13		
0.3	11		
0.212	11		
0.15	10		
0.063	10		


Dry Mass of sample, g	6465

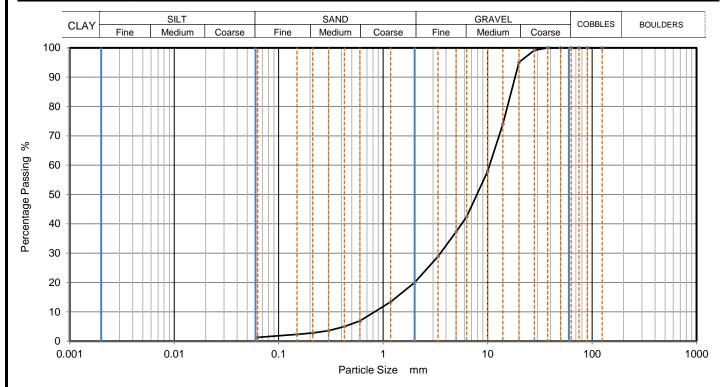
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	75	
Sand	15	
Fines < 0.063mm	10	

Grading Analysis		
D100	mm	
D60	mm	10.5
D30	mm	2.86
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen.Watson	22/09/2017 15:23	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——GEOTECH				Borehole/Pit No.	BH12
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	9	
Soil Description	Brown slightly sandy slightly gravelly silty CLAY.		Depth, m	9.50	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090716	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0614	77	
90	100	0.0303	58	
75	100	0.0147	42	
63	100	0.0076	30	
50	100	0.0043	23	
37.5	100	0.0020	14	
28	100			
20	100			
14	100			
10	100			
6.3	99			
5	98			
3.35	96			
2	92			
1.18	90			
0.6	87	Particle density	(assumed)	
0.425	86	2.65	Mg/m3	
0.3	85		_	
0.212	85			
0.15	85			
0.063	77			


Day Mass of sample a	1700
Dry Mass of sample, g	1790

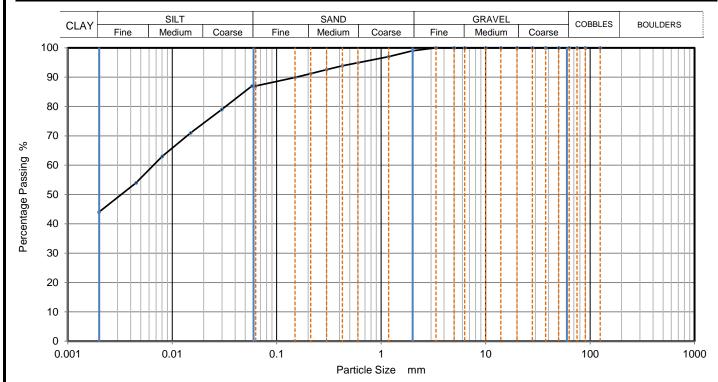
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	8	
Sand	16	
Silt	62	
Clay	14	

Grading Analysis		
D100	mm	
D60	mm	0.0328
D30	mm	0.00756
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——— GEOTECH				Borehole/Pit No.	BH13
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	1
Soil Description	Brown slightly sandy subangular to subrounded fine to coarse GRAVEL.		Depth, m	0.00	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090717	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	99		
20	95		
14	74		
10	58		
6.3	42		
5	37		
3.35	29		
2	20		
1.18	13		
0.6	7		
0.425	5		
0.3	4		
0.212	3]	
0.15	2]	
0.063	1		


Dry Mass of sample, g	3755

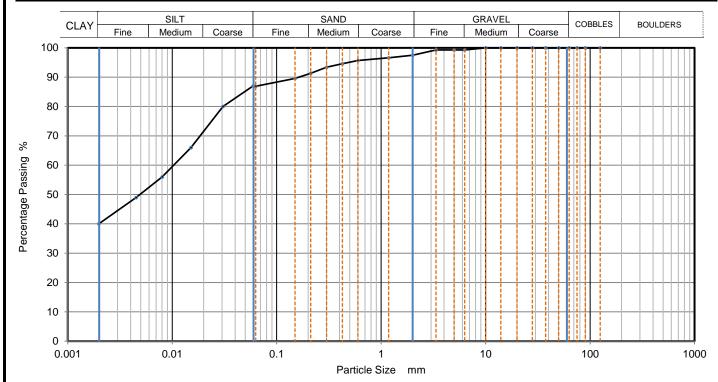
Sample Proportions	% dry mass
Cobbles	0
Gravel	80
Sand	19
Fines < 0.063 mm	1

Grading Analysis		
D100	mm	
D60	mm	10.4
D30	mm	3.53
D10	mm	0.83
Uniformity Coefficient		13
Curvature Coefficient		1.4

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——GEOTECH				Borehole/Pit No.	BH13
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	3
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	2.90	
Specimen Reference	3 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090719	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0579	87	
90	100	0.0298	79	
75	100	0.0150	71	
63	100	0.0080	63	
50	100	0.0045	54	
37.5	100	0.0020	44	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	99			
1.18	97			
0.6	95	Particle density	(assumed)	
0.425	94	2.90	Mg/m3	
0.3	93			
0.212	91			
0.15	90			
0.063	87			


Dry Mass of sample, g	1300
-----------------------	------

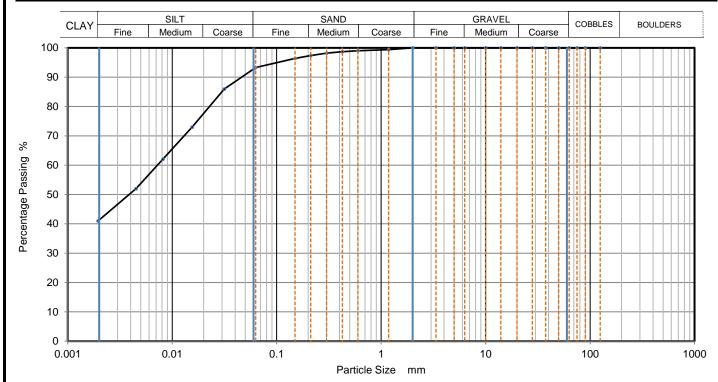
Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	12
Silt	43
Clay	44

Grading Analysis		
D100	mm	
D60	mm	0.00672
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——GEOTECH				Borehole/Pit No.	BH13
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	4
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	4.00	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090723	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0594	87	
90	100	0.0306	80	
75	100	0.0151	66	
63	100	0.0080	56	
50	100	0.0045	49	
37.5	100	0.0020	40	
28	100			
20	100			
14	100			
10	100			
6.3	99			
5	99			
3.35	99			
2	98			
1.18	97			
0.6	96	Particle density	(assumed)	
0.425	95	2.90	Mg/m3	
0.3	93			
0.212	91			
0.15	90			
0.063	87			


Dry Mass of sample, g	1435
-----------------------	------

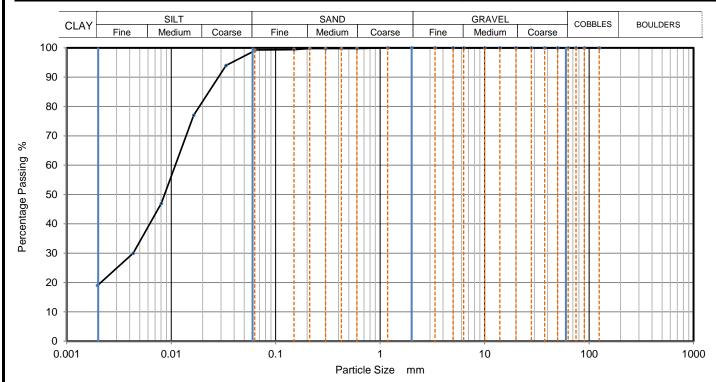
Sample Proportions	% dry mass
Cobbles	0
Gravel	3
Sand	11
Silt	47
Clay	40

Grading Analysis		
D100	mm	
D60	mm	0.0102
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
—— GEOTECH				Borehole/Pit No.	BH13
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	5
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	5.50	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090725	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0615	93	
90	100	0.0315	86	
75	100	0.0155	73	
63	100	0.0081	62	
50	100	0.0045	52	
37.5	100	0.0020	41	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	99			
0.6	99	Particle density	(assumed)	
0.425	99	2.90	Mg/m3	
0.3	98			
0.212	97			
0.15	96			
0.063	93			


Dry Mass of sample, g	1075
-----------------------	------

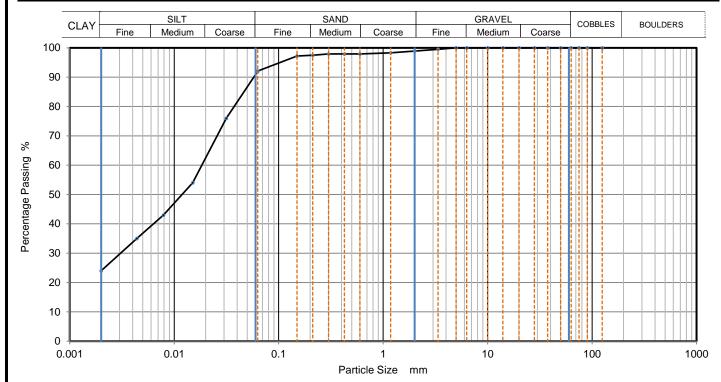
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	7
Silt	52
Clay	42

Grading Analysis		
D100	mm	
D60	mm	0.00718
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Stephen.Watson 22/09/2017 15:24 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——GEOTECH				Borehole/Pit No.	BH13
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	6	
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	7.00	
Specimen Reference	3 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090728	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	99
90	100	0.0334	94
75	100	0.0164	77
63	100	0.0081	47
50	100	0.0043	30
37.5	100	0.0020	19
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.90	Mg/m3
0.3	100		
0.212	100		
0.15	99		
0.063	99		


Dry Mass of sample, g	1580
-----------------------	------

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	1
Silt	80
Clay	20

Grading Analysis		
D100	mm	
D60	mm	0.011
D30	mm	0.00423
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——— GEOTECH				Borehole/Pit No.	BH13
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	8
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	9.40	
Specimen Reference	3 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090731	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	92	
90	100	0.0315	76	
75	100	0.0150	54	
63	100	0.0079	43	
50	100	0.0044	35	
37.5	100	0.0020	24	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	99			
1.18	98			
0.6	98	Particle density	(assumed)	
0.425	98	2.90	Mg/m3	
0.3	98			
0.212	98			
0.15	97			
0.063	92			

Dry Mass of sample, g	1420

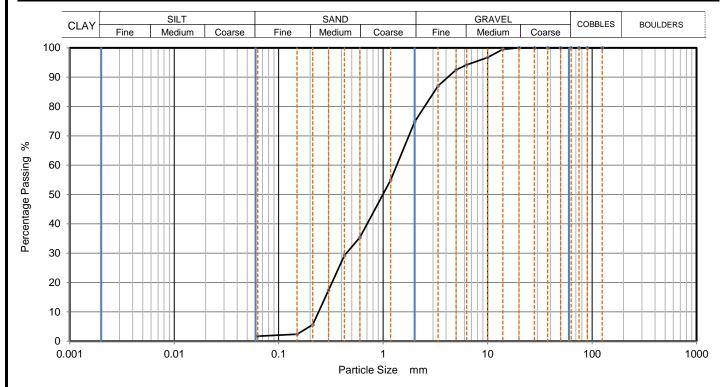
Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	7
Silt	68
Clay	24

Grading Analysis		
D100	mm	
D60	mm	0.0183
D30	mm	0.003
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——— GEOTECH				Borehole/Pit No.	BH14
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	1	
Soil Description	Black slightly gravelly subangular fine to coarse GRAVEL.		Depth, m	0.00	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017091222	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	97		
5	95		
3.35	90		
2	80		
1.18	66		
0.6	46		
0.425	37		
0.3	23		
0.212	14][
0.15	10][
0.063	7		


Dry Mass of sample, g	730

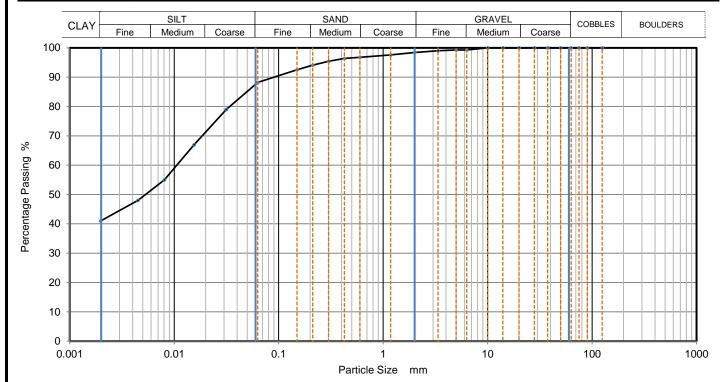
Sample Proportions	% dry mass
Cobbles	0
Gravel	20
Sand	73
Fines < 0.063mm	7

Grading Analysis		
D100	mm	
D60	mm	0.965
D30	mm	0.359
D10	mm	0.141
Uniformity Coefficient		6.8
Curvature Coefficient		0.95

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——— GEOTECH				Borehole/Pit No.	BH14
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	3	
Soil Description	Black slightly sandy silty subangular to subrounded fine GRAVEL.		Depth, m	2.00	
Specimen Reference	3 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090733	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	97		
6.3	94		
5	93		
3.35	87		
2	75		
1.18	55		
0.6	35		
0.425	29		
0.3	17		
0.212	6		
0.15	2		
0.063	2		


Dry Mass of sample, g	2660

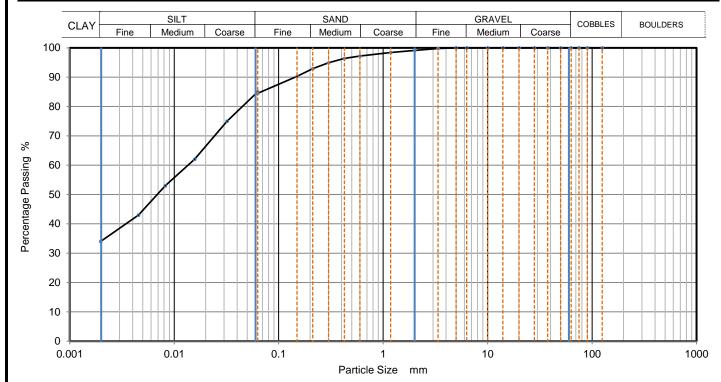
Sample Proportions	% dry mass
Cobbles	0
Gravel	25
Sand	73
Fines < 0.063mm	2

Grading Analysis		
D100	mm	
D60	mm	1.35
D30	mm	0.445
D10	mm	0.241
Uniformity Coefficient		5.6
Curvature Coefficient		0.61

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	BH14
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	4
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	2.50	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090734	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0620	88	
90	100	0.0315	79	
75	100	0.0155	67	
63	100	0.0081	55	
50	100	0.0045	48	
37.5	100	0.0020	41	
28	100			
20	100			
14	100			
10	100			
6.3	99			
5	99			
3.35	99			
2	98			
1.18	98			
0.6	97	Particle density	(assumed)	
0.425	96	2.90	Mg/m3	
0.3	95			
0.212	94			
0.15	93			
0.063	88			


Dry Mass of sample, g	1120
-----------------------	------

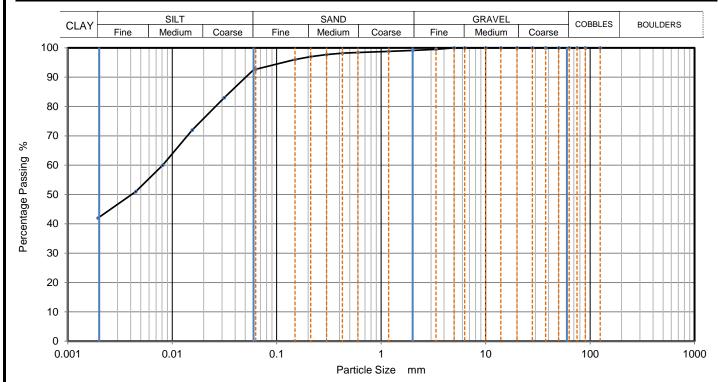
Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	10
Silt	48
Clay	41

Grading Analysis		
D100	mm	
D60	mm	0.0107
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——— GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	BH14
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	5
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	3.50	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090737	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	85	
90	100	0.0320	75	
75	100	0.0157	62	
63	100	0.0082	53	
50	100	0.0045	43	
37.5	100	0.0020	34	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	99			
1.18	98			
0.6	97	Particle density	(assumed)	
0.425	96	2.90	Mg/m3	
0.3	95			
0.212	93			
0.15	90			
0.063	85			


Dry Mass of sample, g	1325

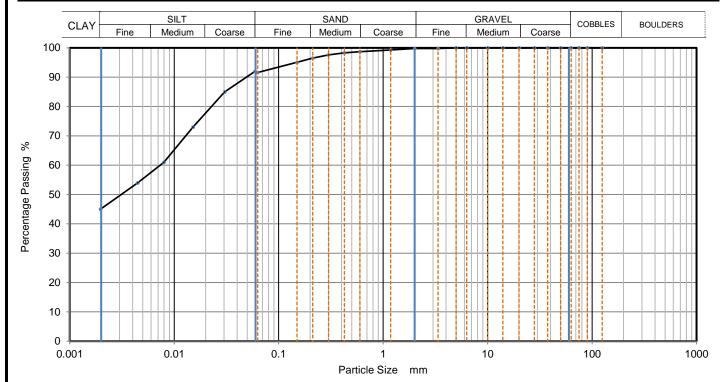
Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	15
Silt	50
Clay	34

Grading Analysis		
D100	mm	
D60	mm	0.0139
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Stephen.Watson 22/09/2017 15:24 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——GEOTECH				Borehole/Pit No.	BH14
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	6
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	4.50	
Specimen Reference	3 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090739	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0619	93
90	100	0.0315	83
75	100	0.0156	72
63	100	0.0081	60
50	100	0.0045	51
37.5	100	0.0020	42
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99		
1.18	99		
0.6	98	Particle density	(assumed)
0.425	98	3.00	Mg/m3
0.3	98		_
0.212	97		
0.15	96		
0.063	93		


Dry Mass of sample, g	1415
-----------------------	------

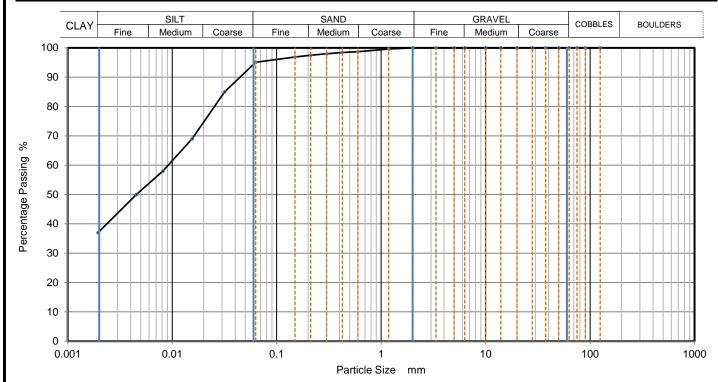
Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	6
Silt	51
Clay	42

Grading Analysis		
D100	mm	
D60	mm	0.00798
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——GEOTECH				Borehole/Pit No.	BH14
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	7
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	5.50	
Specimen Reference	3 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090742	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0592	92
90	100	0.0305	85
75	100	0.0151	73
63	100	0.0080	61
50	100	0.0045	54
37.5	100	0.0020	45
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99	Particle density	(assumed)
0.425	98	2.90	Mg/m3
0.3	98		
0.212	97		
0.15	95		
0.063	92		


Dry Mass of sample, g	1335
-----------------------	------

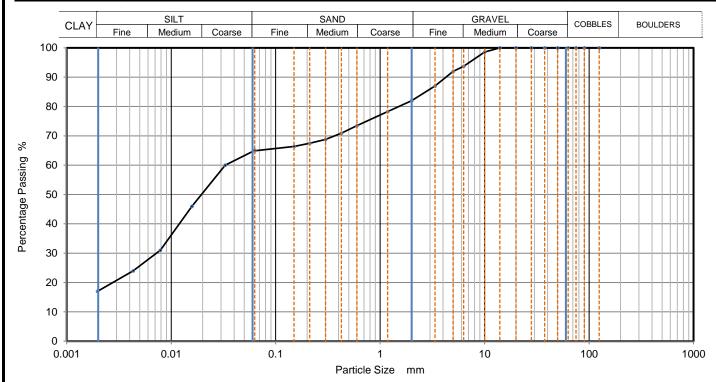
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	8
Silt	47
Clay	45

Grading Analysis		
D100	mm	
D60	mm	0.0073
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——— GEOTECH				Borehole/Pit No.	BH14
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	8
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	7.00	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090743	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0625	95	
90	100	0.0318	85	
75	100	0.0155	69	
63	100	0.0081	58	
50	100	0.0045	50	
37.5	100	0.0020	37	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	99	Particle density	(assumed)	
0.425	98	2.90	Mg/m3	
0.3	98			
0.212	98			
0.15	97			
0.063	95			


Dry Mass of sample, g	1240

Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	5
Silt	58
Clay	37

Grading Analysis		
D100	mm	
D60	mm	0.00913
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

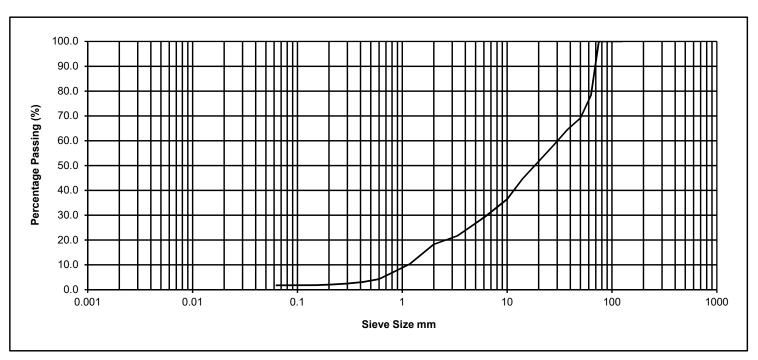
Approved	Sheet printed	Fig	1
Stephen. Watson	22/09/2017 15:24	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——GEOTECH				Borehole/Pit No.	BH14
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	9
Soil Description	Brown slightly sandy slightly gravelly silty CLAY.		Depth, m	7.70	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090744	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	65	
90	100	0.0329	60	
75	100	0.0158	46	
63	100	0.0079	31	
50	100	0.0043	24	
37.5	100	0.0020	17	
28	100			
20	100			
14	100			
10	99			
6.3	94			
5	92			
3.35	87			
2	82			
1.18	78			
0.6	74	Particle density	(assumed)	
0.425	71	2.90	Mg/m3	
0.3	69			
0.212	68			
0.15	66			
0.063	65			

Dry Mass of sample, g	2085
-----------------------	------

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	18	
Sand	17	
Silt	48	
Clay	17	


Grading Analysis		
D100	mm	
D60	mm	0.0338
D30	mm	0.00738
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Stephen.Watson 22/09/2017 15:24 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	22/09/2017 15:24	Sheet	

% Sieve Size mm Passing 125.000 100.0 75.000 100.0 63.000 78.3 50.000 69.1 37.500 64.4 28.000 58.4 20.000 51.6 14.000 44.6 10.000 36.5 6.300 29.7 5.000 26.7 3.350 21.7 2.000 18.2 1.180 10.3 4.3 0.600 0.425 3.1 0.300 2.5 0.212 2.1 1.8 0.150 0.063 1.8 0.045 0.032 0.020 0.012 0.009 0.006 0.004 0.003 0.002 0.001

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
	Silt	Sand	Gravel		
	1.8	16.5	60.1	0.0	0.0

Date sample tested

VS

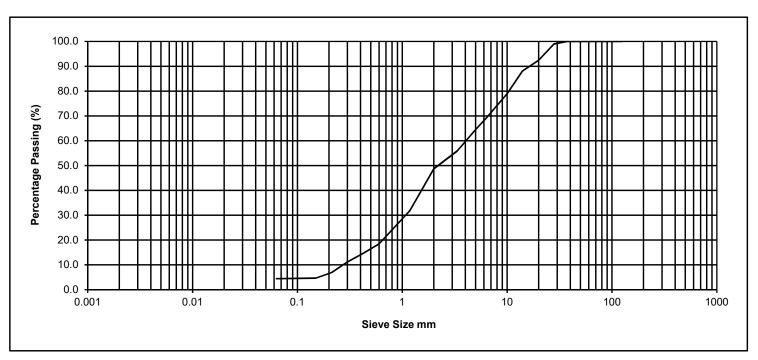
Sample Description Sandy GRAVEL

Operator

Project No. BH/TP No.

17-0167 BH12

1.3m


Project Arklow sewerage Scheme Checked Approved 25/09/2017 Depth

Sample No.

% Sieve Size mm Passing 125.000 100.0 75.000 100.0 63.000 100.0 50.000 100.0 37.500 100.0 28.000 99.0 20.000 92.4 14.000 88.1 10.000 78.9 6.300 69.1 5.000 64.5 3.350 55.9 2.000 48.7 1.180 31.8 0.600 18.5 0.425 14.6 0.300 11.2 0.212 6.9 0.150 4.6 0.063 4.4 0.045 0.032 0.020 0.012 0.009 0.006 0.004 0.003 0.002 0.001

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
	Silt	Sand	Gravel		
	4.4	44.3	51.3	0.0	0.0

VS

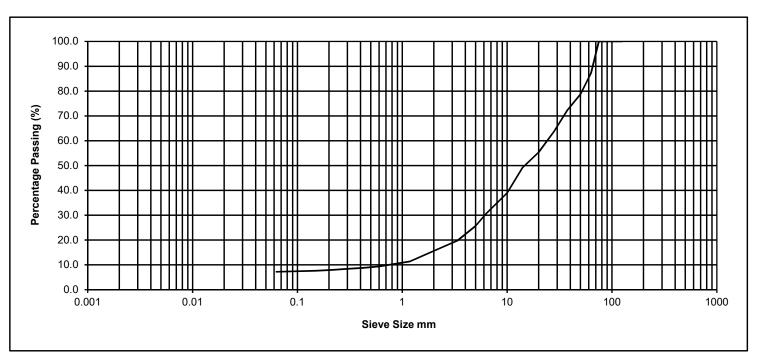
Sample Description Sandy GRAVEL

Operator

Project No. BH/TP No. 17-0167 BH13

Project Arklow sewerage Scheme
SS Checked VS Approved

Date sample tested 25/09/2017 Depth


Sample No.

1.6m

% Sieve Size mm Passing 125.000 100.0 75.000 100.0 63.000 87.2 78.7 50.000 37.500 72.3 28.000 63.7 20.000 55.4 14.000 49.1 10.000 39.0 6.300 30.6 5.000 25.7 3.350 19.7 2.000 15.6 1.180 11.4 0.600 9.4 0.425 8.8 0.300 8.4 0.212 7.9 7.7 0.150 0.063 7.2 0.045 0.032 0.020 0.012 0.009 0.006 0.004 0.003 0.002 0.001

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
	Silt	Sand	Gravel		
	7.2	8.4	71.6	0.0	0.0

VS

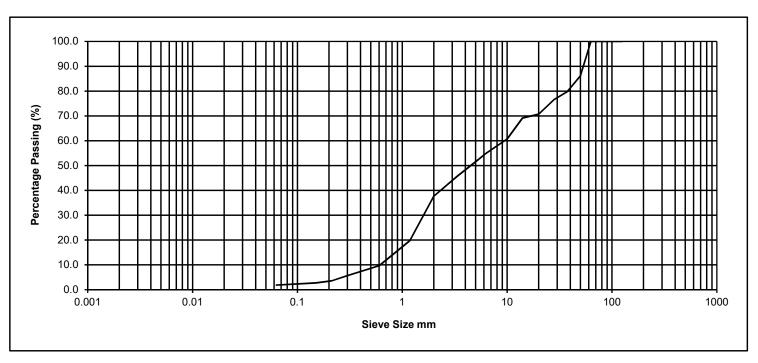
Sample Description Silty sandy GRAVEL

Project No. BH/TP No. 17-0167 BH13

Project Arklow sewerage Scheme
SS Checked VS Approved

Operator

Date sample tested 25/09/2017 Depth


Sample No.

8.9m

% Sieve Size mm Passing 125.000 100.0 75.000 100.0 63.000 100.0 50.000 86.1 37.500 79.8 28.000 76.5 20.000 70.7 14.000 69.1 10.000 60.7 6.300 55.0 5.000 51.6 3.350 45.7 2.000 37.7 1.180 19.7 0.600 9.6 0.425 7.6 0.300 5.7 0.212 3.6 2.7 0.150 0.063 1.8 0.045 0.032 0.020 0.012 0.009 0.006 0.004 0.003 0.002 0.001

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
	Silt	Sand	Gravel		
	1.8	35.8	62.3	0.0	0.0

VS

Sample Description Sandy GRAVEL

Project No. BH/TP No. 17-0167 BH14

0.9m

Project Arklow sewerage Scheme
SS Checked VS Approved

Operator

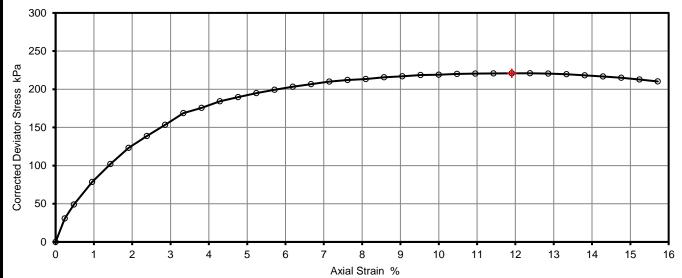
Date sample tested 25/09/2017 Depth

Sample No.

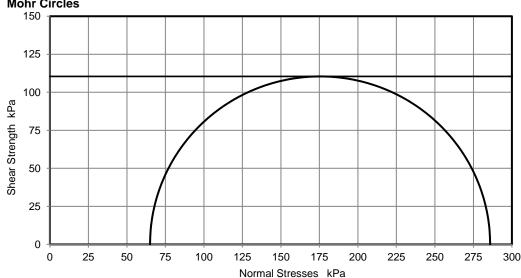
CAUSEWAY	Unconsolidate		ed Triaxial ut measurement	Job Ref	17-0167
——GEOTECH	of pore pressi			Borehole/Pit No.	BH12
Site Name	Site Name Arklow Sewerage Scheme Marine Outfall GI		Sample No.	18	
Soil Description	Grey slightly sandy slightly gravelly silty CLAY.		Depth	3.00	
Specimen Reference	3	Specimen Depth	m	Sample Type	UT
Specimen Description	Stiff grey slightly sandy slightly gravelly silty CLAY.		KeyLAB ID	Caus201709074	
Test Method	BS1377 : Part 7 : 19	90, clause 8, sin	gle specimen	Date of test	19/09/2017

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density

Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu Mode of Failure

1	
210.0	mm
105.2	mm
2.02	Mg/m3
23.9	%
1.63	Mg/m3


2.0	%/min
65	kPa
11.9	%
221	kPa
110	kPa ½
Brittle	

½(σ1 - σ3)f

Deviator Stress v Axial Strain

Mohr Circles

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377.

This is provided for information only.

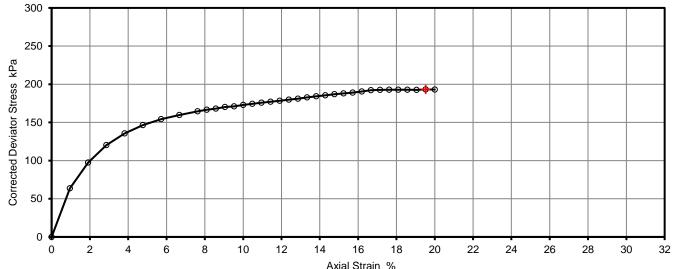
Remarks

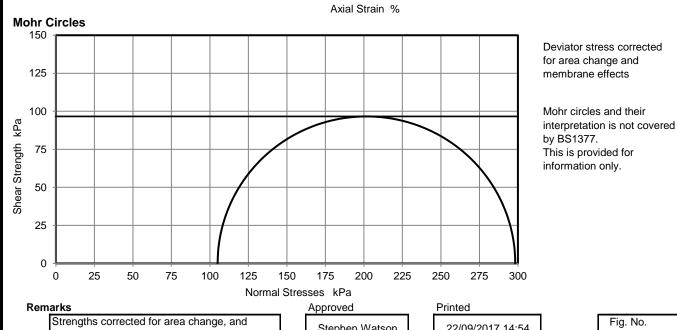
Lab Sheet Reference :

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377 Approved

Stephen.Watson

Printed


22/09/2017 14:54


CAUSEWAY	Unconsolida		ed Triaxial ut measurement	Jo	ob Ref	17-0167
GEOTECH	of pore press			В	orehole/Pit No.	BH12
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sa	ample No.	19	
Soil Description	Grey slightly sandy	/ slightly gravelly s	ilty CLAY.	De	epth	5.00
Specimen Reference	3	Specimen Depth	m	Sa	ample Type	UT
Specimen Description	Stiff grey slightly sa	andy slightly grave	lly silty CLAY.	Ke	eyLAB ID	Caus201709078
Test Method	BS1377 : Part 7 : 1	1990, clause 8, sin	gle specimen	Da	ate of test	19/09/2017
	T4 Ni. mala au				1	٦
	Test Number Length				210.0	mm
	Diameter				105.2	mm
	Bulk Density				2.01	Mg/m3
	Moisture Content				22.4	
	Dry Density				1.64	Mg/m3
	Rate of Strain				2.0	%/min
	Cell Pressure				105	kPa
	At failure	Axial Strain			19.5	%
		Deviator Stress	, (σ1 - σ3)f		193	kPa
		Undrained Shea			97	kPa ½(σ1 - σ3)f
		Mode of Failure	<u> </u>		Brittle	7

D

membrane effects based on Fig 11 BS1377

Lab Sheet Reference :

Stephen.Watson

22/09/2017 14:54

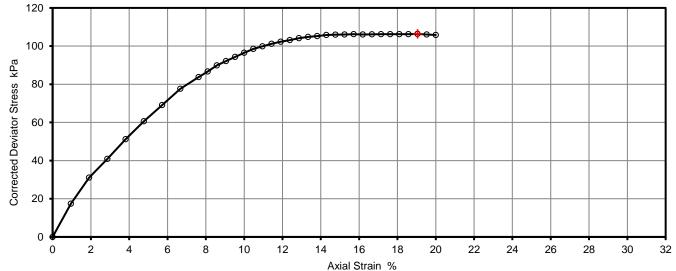
1

Sheet

CALISEWAY		ated Undrained ⁻ on Test without r		Job Ref	17-0167
CAUSEWAY		sure - single sp		Borehole/Pit No.	BH12
Site Name	Arklow Sewerage	Scheme Marine Outfall	GI	Sample No.	20
Soil Description	Grey slightly sand	ly silty CLAY.		Depth	8.00
Specimen Reference	3	Specimen Depth	m	Sample Type	UT
Specimen Description	Firm grey slightly	sandy silty CLAY.		KeyLAB ID	Caus2017090713
Test Method	BS1377 : Part 7 :	1990, clause 8, single s	pecimen	Date of test	19/09/2017

Test Number Length Diameter Bulk Density Moisture Content Dry Density

Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, ($\sigma1$ - $\sigma3$)f Undrained Shear Strength, cu Mode of Failure

1	
210.0	mm
105.2	mm
2.03	Mg/m3
21.9	%
1.66	Mg/m3

2.0	%/min
165	kPa
19.0	%
106	kPa
53	kPa ½
Brittle	

kPa ½(σ1 - σ3)f

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

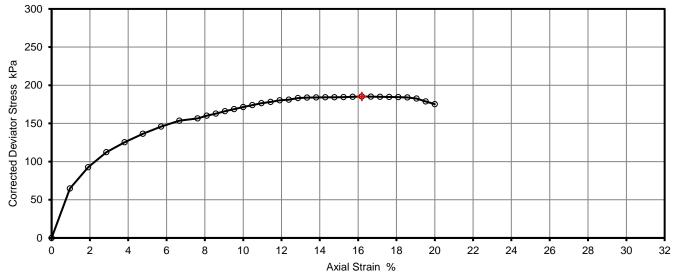
Remarks

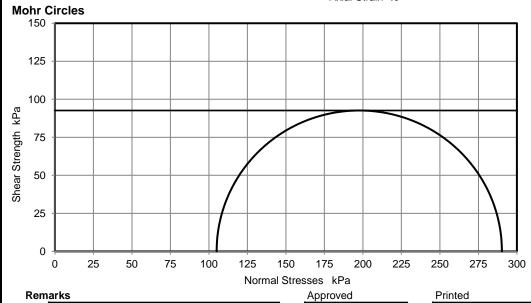
Lab Sheet Reference:

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377

Approved

Stephen.Watson


Printed


22/09/2017 14:54

Unconsolidated Undrained Triaxial Compression Test without measurement	17-0167
of pore pressure - single specimen Borehole/Pit No.	BH13
Site Name Arklow Sewerage Scheme Marine Outfall GI Sample No.	17
Soil Description Grey slightly sandy silty CLAY. Depth	3.00
Specimen Reference Specimen Depth M Sample Type	UT
Specimen Stiff grey slightly sandy silty CLAY. KeyLAB ID	Caus2017090720
Test Method BS1377 : Part 7 : 1990, clause 8, single specimen Date of test	19/09/2017
Diameter 105.2 r Bulk Density 2.07 r Moisture Content 26.9	mm mm Mg/m3 % Mg/m3
Rate of Strain 2.0	%/min
	kPa %
	_% кРа
Undrained Shear Strength, cu 107 Mode of Failure	kPa ½(σ1 - σ3)f
Deviator Stress v Axial Strain	
250	
ψ 200 · · · · · · · · · · · · · · · · · ·	
ğ 150 ·	
Start Street and the start of t	
D 100 50 50	
Š 50 1	
0 2 4 6 8 10 12 14 16 18 20 22 24	26 28 30 32
Axial Strain % Mohr Circles	
	Deviator stress corrected or area change and membrane effects
	Mohr circles and their nterpretation is not covered
£ 75	oy BS1377. Γhis is provided for
	nformation only.
Shear Strength KPa 22	
25	
0 25 50 75 100 125 150 175 200 225 250 275 300	
Normal Stresses kPa Remarks Approved Printed	_
	Fig. No.
Testing terminated at 20% strain Stephen.Watson 22/09/2017 14:55	1

CAUSEWAY	Unconsolida Compression		Job Ref	17-0167	
—— GEOTECH	of pore press		Borehole/Pit No.	BH13	
Site Name	Arklow Sewerage S	Scheme Marine Ou	utfall GI	Sample No.	18
Soil Description	Grey slightly sandy	silty CLAY.		Depth	5.00
Specimen Reference	3	Specimen Depth	m	Sample Type	UT
Specimen Description	Stiff grey slightly sa	andy silty CLAY.		KeyLAB ID	Caus2017090724
Test Method	BS1377 : Part 7 : 1	1990, clause 8, sin	gle specimen	Date of test	19/09/2017
	Test Number			1	٦
	Length		210.0	mm	
	Diameter		105.2	mm	
	Bulk Density		2.01	Mg/m3	
	Moisture Content		23.0	- %	
	Dry Density			1.64	Mg/m3
	Rate of Strain		2.0	%/min	
	Cell Pressure		105	kPa	
	At failure	Axial Strain		16.2	%
		Deviator Stress		185	kPa
		Undrained Shea	_	93	kPa ½(σ1 - σ3)f
		Mode of Failure	1	Brittle	

Deviator Stress v Axial Strain

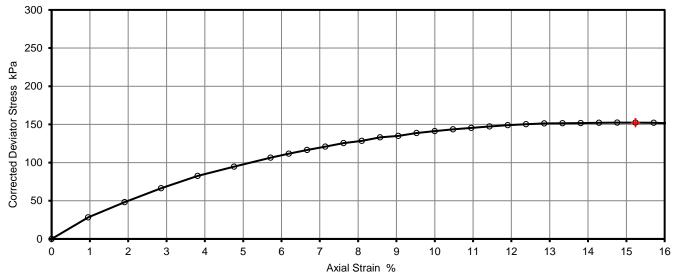
Deviator stress corrected for area change and membrane effects

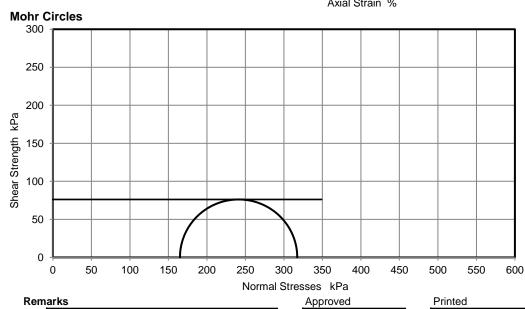
Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Lab Sheet Reference :

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377 Stephen.Watson

22/09/2017 14:55


CAUSEWAY	Unconsolida Compression		Job Ref	17-0167		
—— GEOTECH	of pore press		Borehole/Pit No.	BH13		
Site Name	Arklow Sewerage S	Scheme Marine Ou	Sample No.	19		
Soil Description	Grey slightly sandy	silty CLAY.		Depth	8.00	
Specimen Reference	1	Specimen Depth	m	Sample Type	UT	
Specimen Description	Stiff grey slightly sa	andy silty CLAY.		KeyLAB ID	Caus201709190	
Test Method	BS1377 : Part 7 : 1	1990, clause 8, sin	Date of test	20/09/2017		
	Test Number Length Diameter			1 210.0 105.2	mm mm	
	Bulk Density Moisture Content Dry Density			2.03 21.8 1.67	Mg/m3 % Mg/m3	
	Rate of Strain Cell Pressure At failure	Axial Strain		2.0 165 15.2	%/min kPa %	
		D	152			


Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu Mode of Failure

2	70
1.67	Mg/m3
2.0	%/min
165	kPa
15.2	%
152	kPa
76	kPa ½(σ1 - σ3)f

Brittle

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for

information only.

Remarks

Lab Sheet Reference :

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377

Stephen.Watson

Printed

22/09/2017 14:55

	T		
CAUSEWAY	Unconsolidated Undrained Triaxial Compression Test without measurement	Job Ref	17-0167
——GEOTECH	of pore pressure - single specimen	Borehole/Pit No.	BH14
Site Name	Arklow Sewerage Scheme Marine Outfall GI	Sample No.	17
Soil Description	Grey slightly sandy silty CLAY.	Depth	3.00
Specimen Reference	3 Specimen m	Sample Type	UT
Specimen Description	Stiff grey slightly sandy silty CLAY.	KeyLAB ID	Caus2017090735
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen	Date of test	20/09/2017
	Test Number Length Diameter Bulk Density Moisture Content Dry Density	1 210.0 105.2 2.05 23.4 1.66	mm mm Mg/m3 % Mg/m3
	Rate of Strain	2.0	%/min
	Cell Pressure At failure Axial Strain	105 20.0	kPa %
	Deviator Stress, (σ 1 - σ 3)f	258	kPa
	Undrained Shear Strength, cu Mode of Failure	129	kPa ½(σ1 - σ3)f
Deviator Stress v /	Axial Strain		
300			
250		•	
	200000000000000000000000000000000000000		
Deviator Stress kPa			
Stree			
ia 150 • • • • • • • • • • • • • • • • • • •			
Sourceded 50			
ਤੌਂ 50			
o /			
0 2		20 22 24	26 28 30 32
Mohr Circles	Axial Strain %		
300			Deviator stress corrected for area change and
250			membrane effects
200			Mohr circles and their
			interpretation is not covered
# 150 ·			by BS1377. This is provided for
Strer			information only.
Shear Strength kPa			
50			
0 50		500 550 600	
Remarks	Normal Stresses kPa Approved	Printed	
	ated at 20% strain Stephen.Watson	22/09/2017 14:55	Fig. No.
Lab Sheet Reference] 1 Sheet
			7

CAUSEWAY	Unconsolidated Undrained Triaxial Causeway Compression Test without measurement							Job Ref			17-0167		
GEOTECH	of pore pres	Bor	Borehole/Pit No.			BH14							
Site Name	Arklow Sewerage	Scheme Mar	ine Out	fall GI			Sar	Sample No.			18		
Soil Description	Grey slightly sandy silty CLAY.							oth		5.00			
Specimen Reference	3	Specim Depth	nen			m	Sar	mple Typ	е			UT	
Specimen Description	Stiff grey slightly s	sandy silty CL	AY.				Key	/LAB ID		C	aus20	01709074	10
Test Method	BS1377 : Part 7 :	1990, clause	8, sing	le specin	nen		Dat	e of test			20/0	09/2017	
	Test Number Length Diameter Bulk Density Moisture Content Dry Density							1 210.0 105.2 2.00 23.5 1.62		mm mm Mg/m3 % Mg/m3			
	Rate of Strain							2.0		%/min			
	Cell Pressure At failure	Axial Stra	ain					65 kPa 16.2 %					
	, it railers	Deviator	Stress,					247		kPa			
		Undraine Mode of I		r Strengt	h, cu			123 Brittle		kPa	½(σ1	- σ3)f	
		Wode of t	allule					Dittio		_			
riator Stress v A	Axial Strain												
250			,000		0 0 0 0		•						
200													
150													
100													
50													
0 2	4 6 8	10	12	14	16	18	20	22	24	26	28	30	32
0.01				Axia	l Strain	%							
or Circles									\neg	Deviat	or etra	ess corre	rted
250											a cha	nge and	otou
200										interpr	etatio	and their	
150											provi	ded for	
100				_						inform	ation (only.	
50													
	100 150 00	0 050	300	350	400	450	500	550	600				
0 50	100 150 20	0 250	300	550	700	700	500	550	000				
	100 150 20		al Stress	ses kPa Approve	ı	400	Printe		000				

Sheet

Lab Sheet Reference :

-							
Arklow	Sewerage :	Scheme					
Ref:	17-0167		Size mm		100	Initial wet mass g	674
BH	BH12		Thickness	mm	35.25	Bulk Density mg/m3	1912
Depth m	1.3m			-			
Our Ref	Q			σ' _ν kPa			
Soil type	Sandy GRAV	EL					
Rate of sh	earing mm/m	in	0.5	30			
>10 mm remo	ved			60			
				120			
Peak	I I-Da	Ultimate	1.0-				
σ' _n kPa	τ kPa	σ' _n kPa	τ kPa				
30	34	30	28				
60							
120	108	120	101				

Peak angle of internal friction	42
Cohesion kPa	
Ultimate angle of internal friction	39

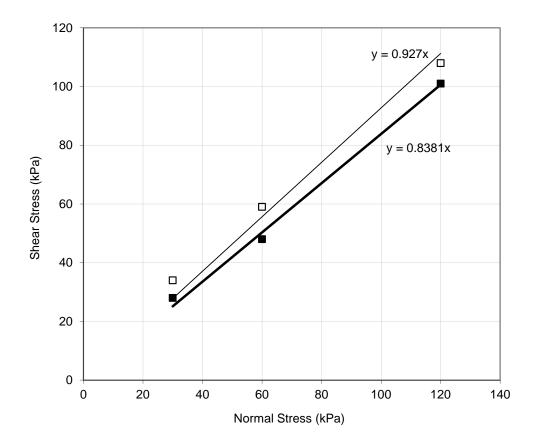


Figure 1 Failure Envelope

Arklow Sewerage Scheme

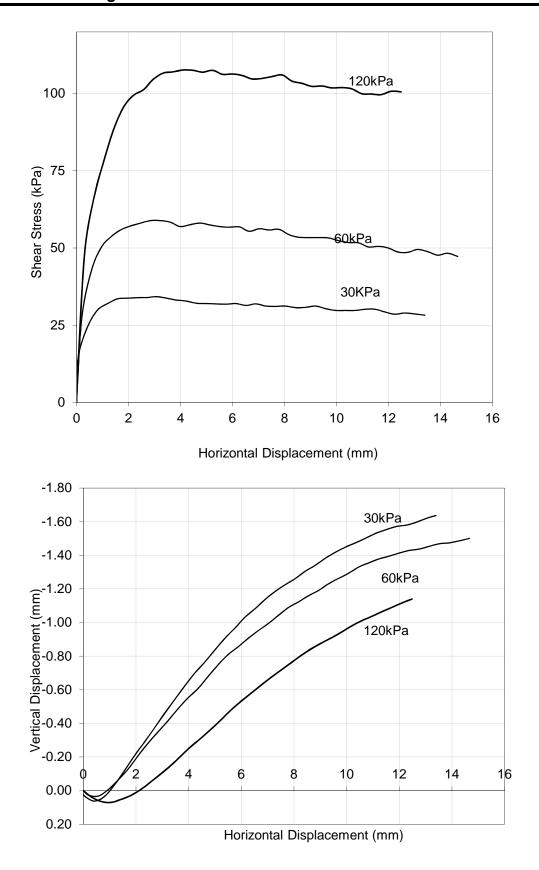
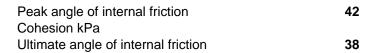



Figure 2 Stress-strain behaviour

A al-l acce	0	0-1					
Arkiow	Sewerage	Scneme				1	
Ref:	17-0167	Size mm		100	Initial wet mass g	71	
ВН	BH13		Thickness mm			Bulk Density mg/m3	202
Depth m	1.3m			•		•	-
Our Ref	R			σ' _v kPa			
Soil type	Sandy GRAV	EL					
Rate of sh	nearing mm/m	in	0.5	30			
>10 mm remo	oved			60			
				120			
Peak		Ultimate					
σ' _n kPa	τ kPa	σ' _n kPa	τ kPa				
30	30	30	27				
60	56	60	50				
120	109	120	93				

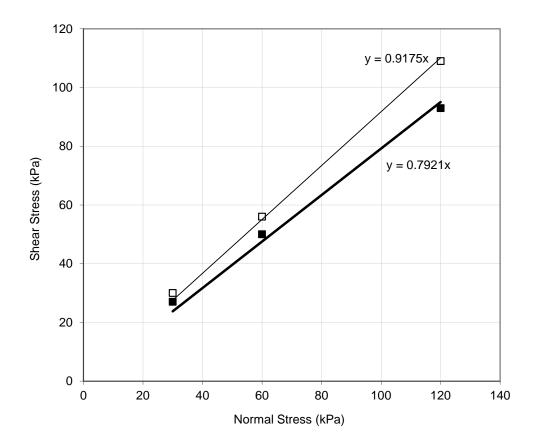


Figure 1 Failure Envelope

Arklow Sewerage Scheme

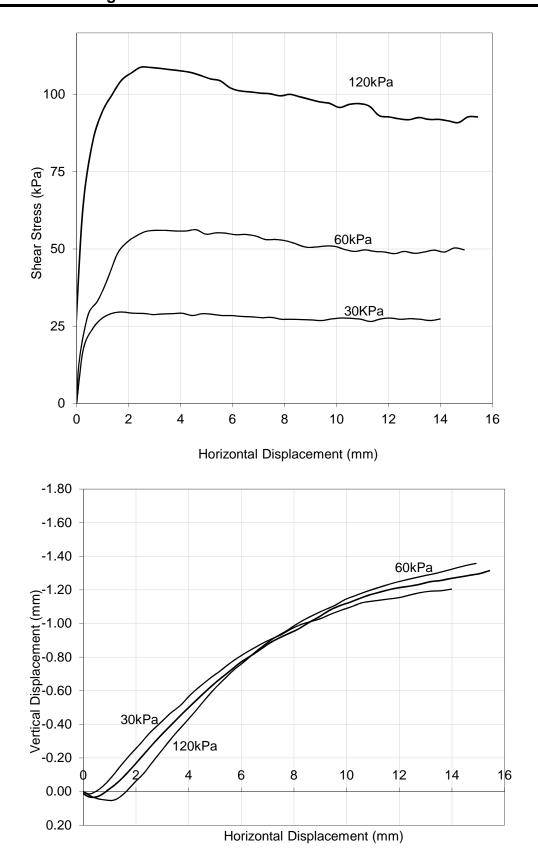


Figure 2 Stress-strain behaviour

Arklow	Sewerage	Schomo					
AIKIOW	Sewerage	Scheine					
Ref:	17-0167		Size mm		100	Initial wet mass g	820
ВН	BH13		Thickness	mm	36.75	Bulk Density mg/m3	2231
Depth m	8.9m						_
Our Ref	R			σ' _v kPa			
Soil type	Sandy GRA\	ÆL					
Rate of sh	nearing mm/m	nin	0.5	40			
>10 mm remo	oved			80			
				160			
Peak		Ultimate					
σ' _n kPa	τ kPa	σ' _n kPa	τ kPa				
40	O	40	39				
80	0	80	81				
160	O	160	154				

Peak angle of internal friction Cohesion kPa Ultimate angle of internal friction

44

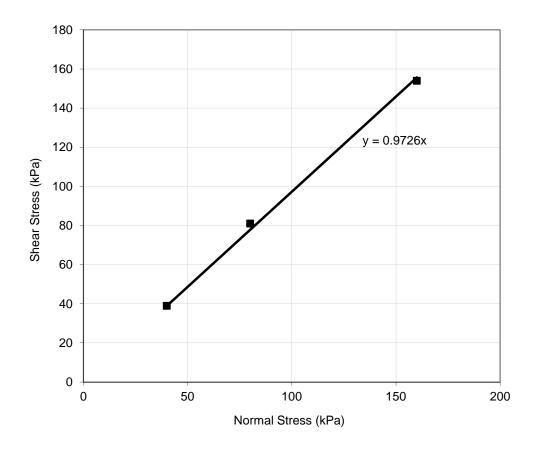


Figure 1 Failure Envelope

Arklow Sewerage Scheme

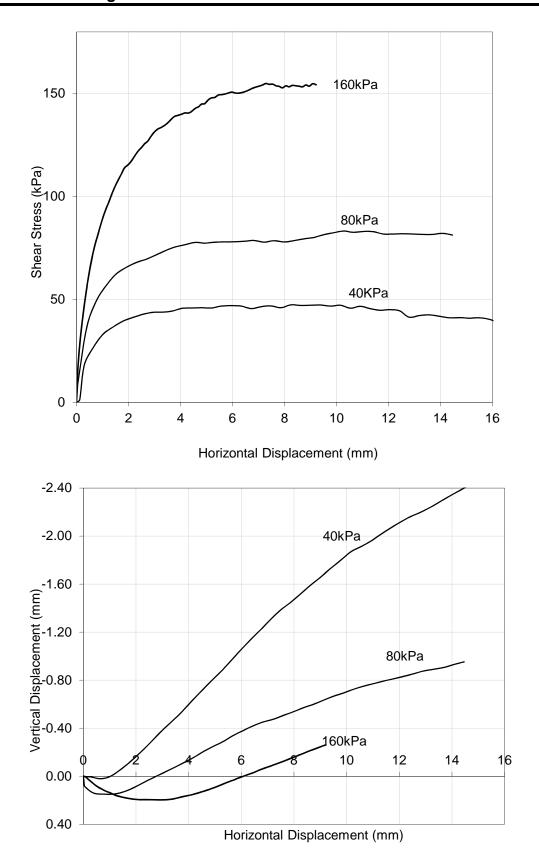


Figure 2 Stress-strain behaviour

Arklow	Sewerage	Scheme					
Ref:	17-0167		Size mm		100	Initial wet mass g	662
BH	BH14		Thickness	mm	34.75	Bulk Density mg/m3	1905
Depth m	0.9m						
Our Ref	Р			σ' _v kPa			
Soil type	Sandy GRAV	EL					
Rate of sh	earing mm/m	in	0.5	30			
>10 mm remo	ved			60			
				120			
Peak		Ultimate					
σ' _n kPa	τ kPa	σ' _n kPa	τ kPa				
30	36	30	30				
60	61	60	54				
120	104	120	96				

Peak angle of internal friction 41
Cohesion kPa
Ultimate angle of internal friction 39

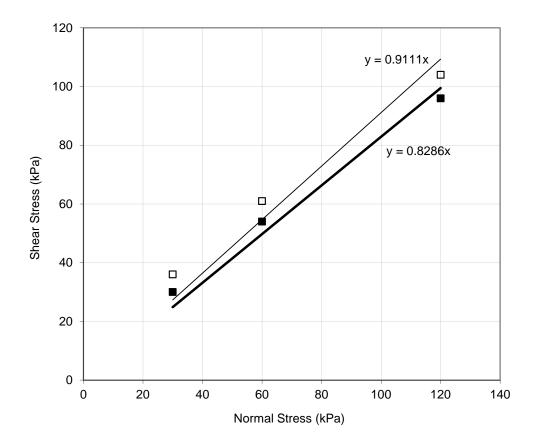


Figure 1 Failure Envelope

Arklow Sewerage Scheme

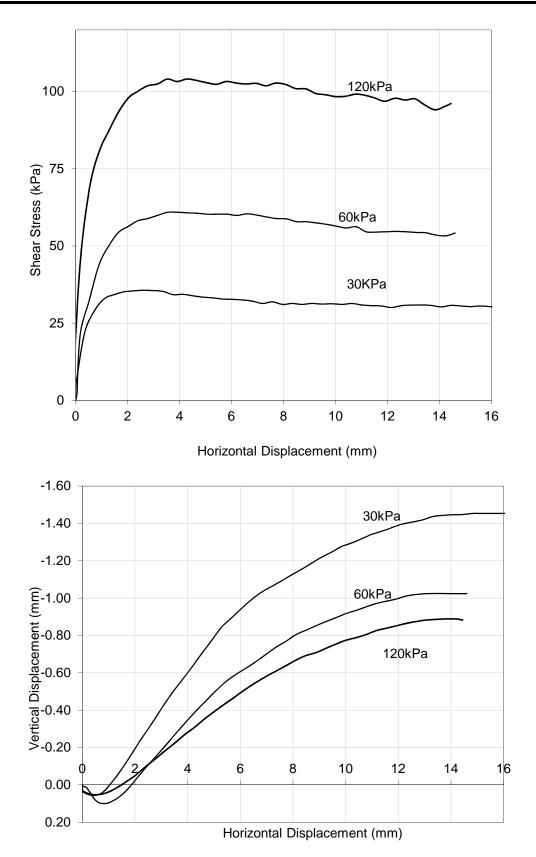
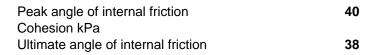



Figure 2 Stress-strain behaviour

Arklow	Sewerage	Scheme					
Ref:	17-0167		Size mm		100	Initial wet mass g	680
ВН	BH14		Thickness	mm	35.25	Bulk Density mg/m3	1929
Depth m	9.0m						
Our Ref	Т			σ' _v kPa			
Soil type	Sandy GRAV	EL					
Rate of sh	nearing mm/m	in	0.5	40			
>10 mm remo	oved			80			
				160			
Peak	I I B	Ultimate					
σ' _n kPa	τ kPa	σ' _n kPa	τ kPa				
4(
80							
160	136	160	124				

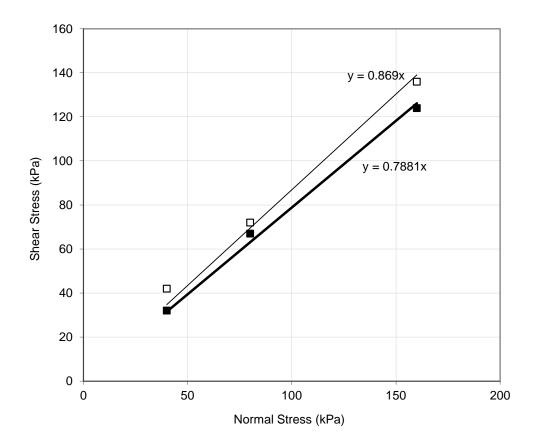


Figure 1 Failure Envelope

Arklow Sewerage Scheme

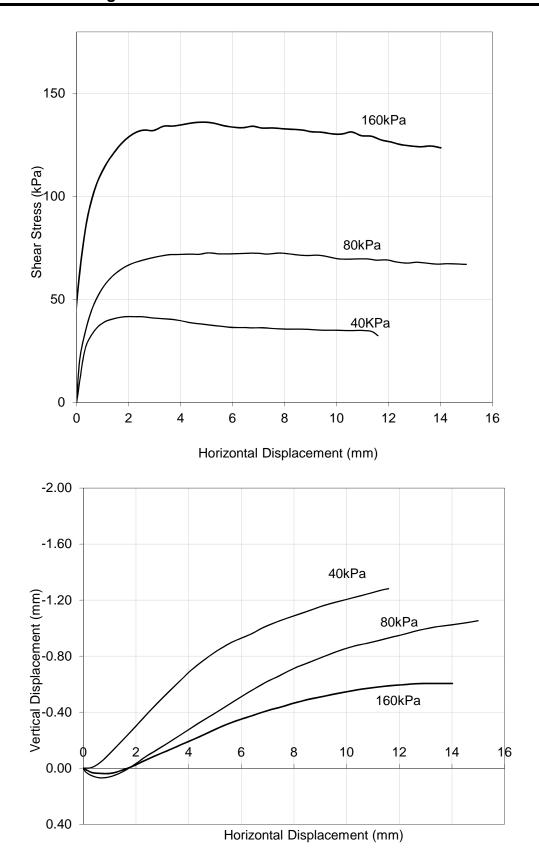


Figure 2 Stress-strain behaviour

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report No.: 17-24130-1

Initial Date of Issue: 18-Sep-2017

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Aisling O'Kane

Colm Hurley

Darren O'Mahony John Cameron John Duggan Matthew Gilbert Neil Haggan Paul Dunlop Paul McNamara Stephen Curtis Stephen Franey Stephen Watson

Project 17-0167 Arklow Sewerage Scheme

Marine Outfall GI

Quotation No.: Date Received: 13-Sep-2017

Order No.: Date Instructed: 13-Sep-2017

No. of Samples: 6

Turnaround (Wkdays): 5 Results Due: 19-Sep-2017

Date Approved: 18-Sep-2017

Approved By:

Details: Keith Jones, Technical Manager

Project: 17-0167 Arklow Sewerage Scheme Marine Outfall GI

Client: Causeway Geotech Ltd	Chemtest Job No.:		17-24130	17-24130	17-24130	17-24130	17-24130	17-24130		
Quotation No.:	Chemtest Sample ID.:			510601	510602	510603	510604	510605	510606	
Order No.:		Client Location ID.:			D10	D12	D9	D12	D1	D11
		Client Sample Ref.:		BH12	BH12	BH13	BH13	BH14	BH14	
	Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
	Top Depth (m):			1.00	3.50	1.00	4.00	0.00	1.00	
		Bottom Depth (m):							0.90	
			Date Sa	ampled:	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017	12-Sep-2017
Determinand	Accred.	SOP	Units	LOD						
Moisture	N	2030	%	0.020	12	18	12	16	48	18
рН	U	2010		N/A	9.0	8.3	8.5	8.5	7.4	6.7
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.21	0.12	0.15	0.077	1.7	0.71

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Client:	Irish Water
Engineer:	Byrne Looby ARUP J.V.
From:	Stephen Watson
	Laboratory Manager
	Causeway Geotech Ltd
Tel:	+44(0)2827666640
E-mail:	stephen.watson@causewaygeotech.com
Date:	26/09/17
Ref:	17-0167 Schedule 2 - Issue 2

Arklow Sewerage Scheme Marine Outfall GI

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the *Contents page(s)*.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 60 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Stephen Watson Laboratory Manager

Project Name Arklow Sewerage Scheme Marine Outfall GI

Report Reference. 17-0167 - Schedule 2 - Issue 2

The table below details the tests carried out, the specifications used, and the number of tests included in this report:

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	Number of test results included in the report
SOIL	Moisture content - oven drying method	BS 1377-2:1990	15
SOIL	Liquid limit - cone penetrometer	BS 1377-2:1990	6
SOIL	Liquid limit - cone penetrometer - one point	BS 1377-2:1990	6
SOIL	Plastic limit	BS 1377-2:1990	6
SOIL	Plasticity index and liquidity index	BS 1377-2:1990	6
SOIL	Particle size distribution - wet sieving	BS 1377-2:1990	23
SOIL	Particle size distribution - dry sieving	BS 1377-2:1990	23
SOIL	Particle size distribution -sedimentation hydrometer method	BS 1377-2:1990	12
SOIL	Undrained shear strength – triaxial compression without measurement of pore pressure (loads from 0.12 to 24 kN)	BS 1377- 7:1990	5
SOIL	Shear strength by direct shear	BS1377: Part 7: Clause 4: 1990	4
SOIL	pH Value of Soil		1
SOIL	Sulphate Content water extract		1
SOIL	Organic Matter Content		1

Summary of Classification Test Results

Project No.

Project Name

Liquid Limit

4pt cone unless:

cas - Casagrande method

1pt - single point test

Linear measurement unless:

wd - water displacement

wi - immersion in water

17-0167

Arklow Sewerage Scheme Marine Outfall GI

17-0	7167				AIK	iow Sew	erage	Scrien	ie iviaili	le Outlai	ıGı			
Hole No.	D. (mple		Soil Description	Dens bulk	ity dry	W	Passing 425µm	LL	PL	PI	Particle density	Casagrande Classification
	Ref	Тор	Base	Туре		Mg/m	1 13	%	%	%	%	%	Mg/m3	Classification
BH02	14	1.00		D	Black slightly silty slightly gravelly fine to coarse SAND.			76.0	56	72 -1pt	57	15		MV
BH02	15	2.00		D	Black slightly silty slightly gravelly fine to coarse SAND.			60.0						
BH02	16	3.00		D	Black slightly sandy subrounded to rounded fine to coarse GRAVEL.			11.0						
BH02	17	4.00		D	Brown slightly sandy silty CLAY.			26.0						
BH02	19	7.50		D	Brown slightly sandy slightly gravelly silty CLAY.			21.0	91	30 -1pt	15	15		CL
BH02	20	10.50		D	Brownish grey slightly sandy silty CLAY.			32.0	86	30 -1pt	15	15		CL
BH02	21	11.00		D	Brownish grey slightly sandy silty CLAY.			21.0						
BH02	36	17.00		D	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL.			12.0						
BH15	12	1.00		D	MADE GROUND: Black slightly sandy slightly silty subrounded fine to medium GRAVEL with fragments of red brick.			11.0						
BH15	16	5.50		D	Grey slightly sandy silty CLAY.			25.0	86	49 -1pt	15	34		CI
BH15	17	6.50		D	Grey slightly sandy silty CLAY.			24.0						
BH15	20	9.50		D	Brown slightly sandy slightly gravelly silty CLAY.			21.0	94	49 -1pt	21	28		CI
BH15	21	10.50		D	Brown slightly sandy slightly gravelly silty CLAY.			30.0						
All tests perfe	All tests performed in accordance with BS1377:1990 unless specified otherwise													
Key								Date F	rinted		Appr	oved	Ву	Table

Particle density

gj - gas jar

sp - small pyknometer

23/09/2017

sheet

Stephen.Watson

Summary of Classification Test Results

Project No.

Project Name

Liquid Limit

4pt cone unless:

cas - Casagrande method

1pt - single point test

Density test

Linear measurement unless:

wd - water displacement

wi - immersion in water

17-0167

Arklow Sewerage Scheme Marine Outfall GI

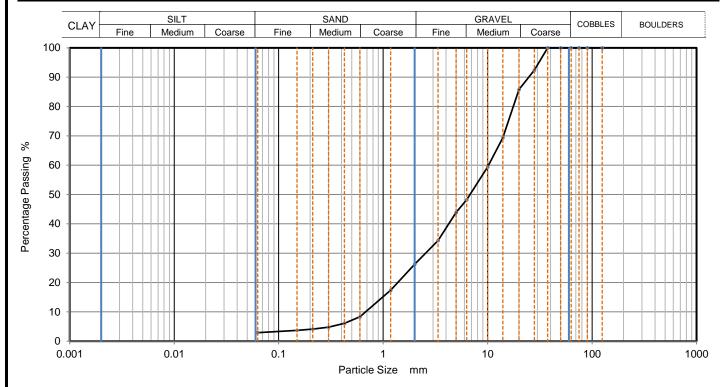
17-0	7167				Ark	low Sew	erage	Scrien	ie iviann	e Outrai	GI			
Hole No.	Ref		nple Base	Туре	Soil Description	Dens bulk	dry	W	Passing 425µm	LL	PL		Particle density	
				<u> </u>		Mg/m	13	%	%	%	%	%	Mg/m3	
BH15	22	11.45		D	Brown slightly sandy slightly gravelly silty CLAY.			31.0	100	49 -1pt	20	29		CI
BH15	23	12.00		D	Brown slightly sandy slightly gravelly silty CLAY.			24.0						
	All tests performed in accordance with BS1377:1990 unless specified otherwise													
Key	test			Liquid I	imit Portici	e density		Date F	rinted		Appr	oved	Ву	Table

Particle density

gj - gas jar

sp - small pyknometer

23/09/2017


1

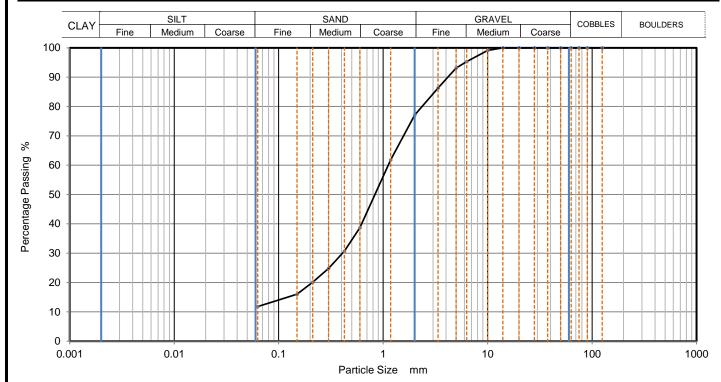
2

sheet

Stephen.Watson

CAUSEWAY	DARTI	CLE SIZE DIST	DIDITION	Job Ref	17-0167	
——GEOTECH	PANII	Borehole/Pit No.	ВН02			
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	1	
Soil Description	Black slightly sandy subro	unded to rounded f	Depth, m	0.00		
Specimen Reference	2 Specimen m			Sample Type	В	
Test Method	BS1377:Part 2:1990, claus	se 9.2		KeyLAB ID	Caus2017090745	

Siev	ving	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	100					
50	100					
37.5	100					
28	92					
20	86					
14	69					
10	59					
6.3	48					
5	44					
3.35	34					
2	26					
1.18	17					
0.6	8		-			
0.425	6					
0.3	5					
0.212	4					
0.15	4					
0.063	3					


Dry Mass of sample, g	9059

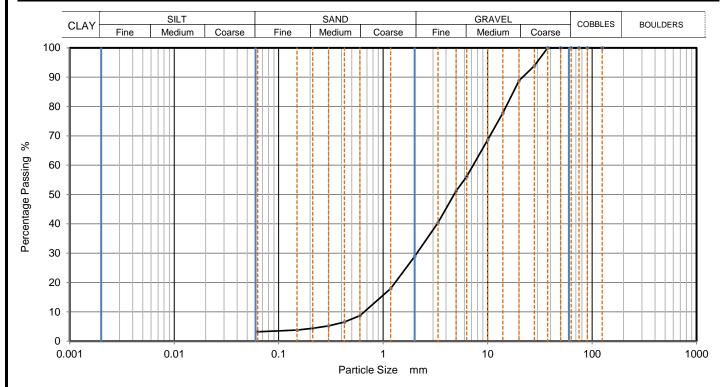
Sample Proportions	% dry mass			
Cobbles	0			
Gravel	74			
Sand	23			
Fines < 0.063 mm	3			

Grading Analysis		
D100	mm	
D60	mm	10.2
D30	mm	2.55
D10	mm	0.68
Uniformity Coefficient	·	15
Curvature Coefficient		0.94

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY DARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH	PANII	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.	ВН02
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	2
Soil Description	Black slightly silty slightly gravelly fine to coarse SAND.		Depth, m	1.00	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090746	

Sieving		Sedimer	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	95		
5	93		
3.35	86		
2	77		
1.18	62		
0.6	39		
0.425	31		
0.3	25		
0.212	20		
0.15	16		
0.063	12		


Dry Mass of sample, g	745
-----------------------	-----

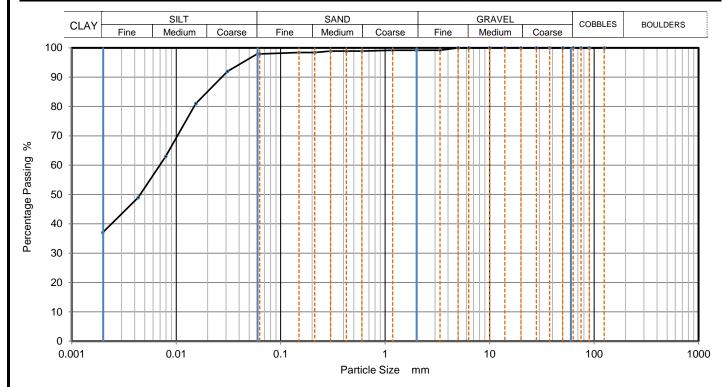
Sample Proportions	% dry mass
Cobbles	0
Gravel	23
Sand	65
Fines < 0.063mm	12

Grading Analysis		
D100	mm	
D60	mm	1.12
D30	mm	0.407
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY DARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.	ВН02	
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	3
Soil Description	Black slightly sandy subrounded to rounded fine to coarse GRAVEL.		Depth, m	2.30	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	3S1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090749	

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	94		
20	89		
14	78		
10	69		
6.3	56		
5	51		
3.35	40		
2	29		
1.18	18		
0.6	9		
0.425	7][
0.3	5		
0.212	4]	
0.15	4][
0.063	3		


Dry Mass of sample, g	8232

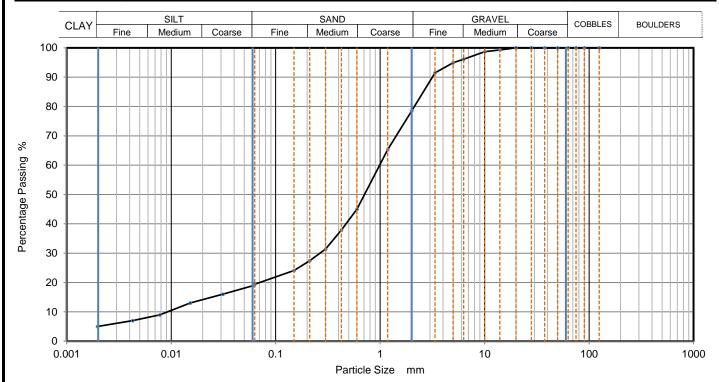
Sample Proportions	% dry mass
Cobbles	0
Gravel	71
Sand	26
Fines < 0.063mm	3

Grading Analysis		
D100	mm	
D60	mm	7.29
D30	mm	2.11
D10	mm	0.659
Uniformity Coefficient		11
Curvature Coefficient		0.92

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY PARTICLE SIZE DIST		DIDI ITION	Job Ref	17-0167	
——— GEOTECH	PANII	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.	вно2
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	5
Soil Description	Brown slightly sandy silty CLAY.		Depth, m	4.90	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090752	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0599	98	
90	100	0.0310	92	
75	100	0.0154	81	
63	100	0.0079	63	
50	100	0.0043	49	
37.5	100	0.0020	37	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	99			
2	99			
1.18	99			
0.6	99	Particle density	(assumed)	
0.425	99	3.00	Mg/m3	
0.3	99			
0.212	98			
0.15	98			
0.063	98			


Dry Mass of sample, g	514
Dry Mass of Sample, g	314

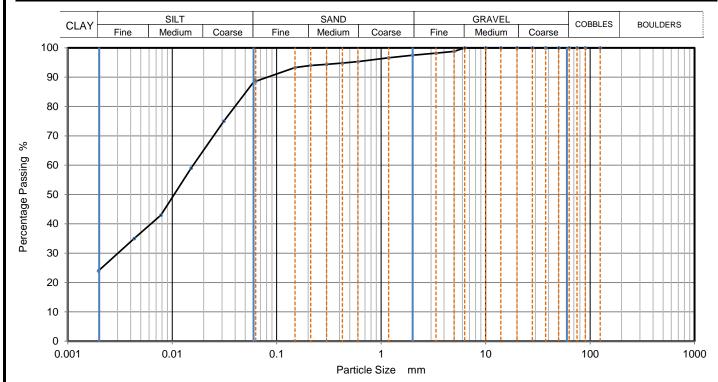
Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	1
Silt	60
Clay	38

Grading Analysis		
D100	mm	
D60	mm	0.00689
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY PARTIC		TE CIZE DISTRIBUITION		Job Ref	17-0167
——— GEOTECH	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.	вно2	
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	6
Soil Description	Brown sandy slightly gravelly silty CLAY.		Depth, m	6.00	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	0S1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090754

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0620	19
90	100	0.0312	16
75	100	0.0152	13
63	100	0.0078	9
50	100	0.0043	7
37.5	100	0.0020	5
28	100		
20	100		
14	99		
10	99		
6.3	96		
5	95		
3.35	92		
2	79		
1.18	65		
0.6	45	Particle density	(assumed)
0.425	38	2.90	Mg/m3
0.3	31		_
0.212	27		
0.15	24		
0.063	19		


Dry Mass of sample, g	4095

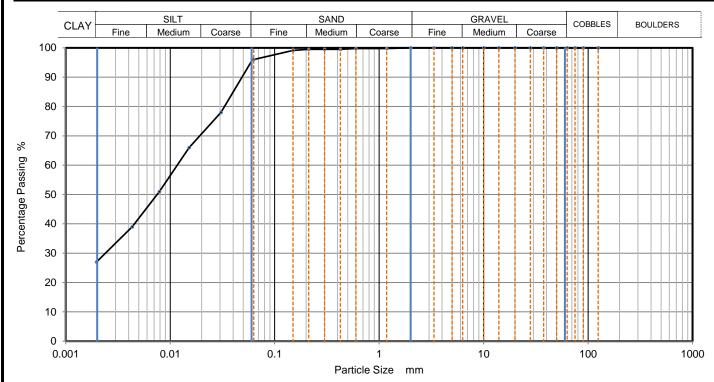
Sample Proportions	% dry mass
Cobbles	0
Gravel	22
Sand	59
Silt	14
Clay	5

Grading Analysis		
D100	mm	
D60	mm	0.989
D30	mm	0.266
D10	mm	0.00871
Uniformity Coefficient		110
Curvature Coefficient		8.2

Approved	Sheet printed	Fig	1
	23/10/2017 17:19		
		Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
—— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно2	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	7
Soil Description	Brown slightly sandy slightly gravelly silty CLAY.		Depth, m	6.40	
Specimen Reference	2 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090755	

Sieving		Sedimo	entation
	Sieving		I
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0620	89
90	100	0.0312	75
75	100	0.0152	59
63	100	0.0078	43
50	100	0.0043	35
37.5	100	0.0020	24
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	99		
3.35	98	1	1
2	98		
1.18	97		
0.6	95	Particle density	(assumed)
0.425	95	2.90	Mg/m3
0.3	94		
0.212	94		
0.15	93	1	
0.063	89		


Dry Mass of sample, g	1392
-----------------------	------

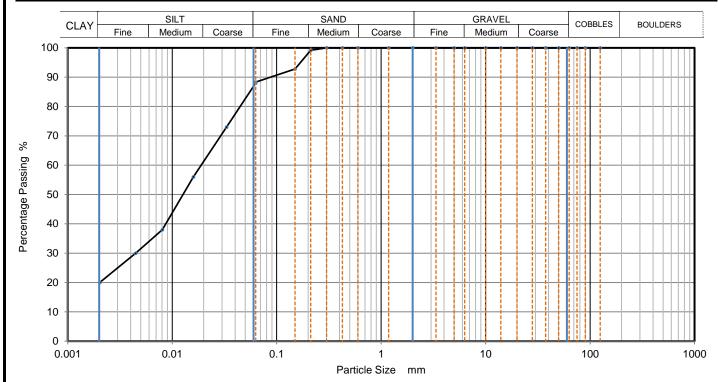
Sample Proportions	% dry mass
Cobbles	0
Gravel	3
Sand	9
Silt	64
Clay	24

Grading Analysis		
D100	mm	
D60	mm	0.0158
D30	mm	0.00302
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
—— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно2	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	8
Soil Description	Brown slightly sandy slightly gravelly silty CLAY.		Depth, m	7.00	
Specimen Reference	2 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090756	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0615	96	
90	100	0.0306	78	
75	100	0.0152	66	
63	100	0.0079	51	
50	100	0.0043	39	
37.5	100	0.0020	27	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	100	Particle density	(assumed)	
0.425	100	2.90	Mg/m3	
0.3	100		_	
0.212	100			
0.15	99			
0.063	96			


Dry Mass of sample, g	896
-----------------------	-----

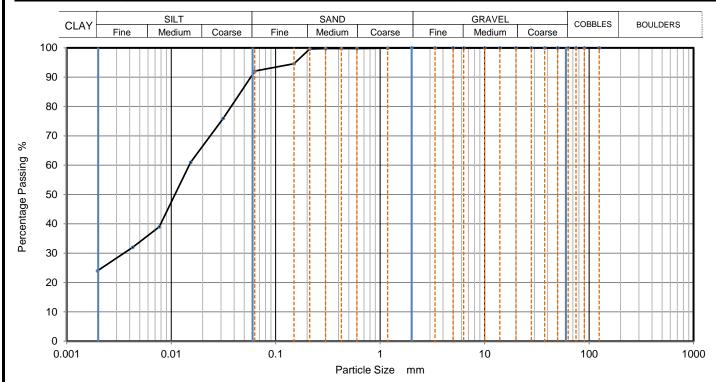
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	4
Silt	69
Clay	27

Grading Analysis		
D100	mm	
D60	mm	0.0117
D30	mm	0.0024
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
	23/10/2017 17:19		
		Sheet	

CAUSEWAY			Job Ref	17-0167	
—— GEOTECH			Borehole/Pit No.	вно2	
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	9
Soil Description	Brownish grey slightly sandy silty CLAY.		Depth, m	9.00	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090759	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	88
90	100	0.0332	73
75	100	0.0160	56
63	100	0.0080	38
50	100	0.0045	30
37.5	100	0.0020	20
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.65	Mg/m3
0.3	100		
0.212	99		
0.15	93		
0.063	88		


Dry Mass of sample, g	1520

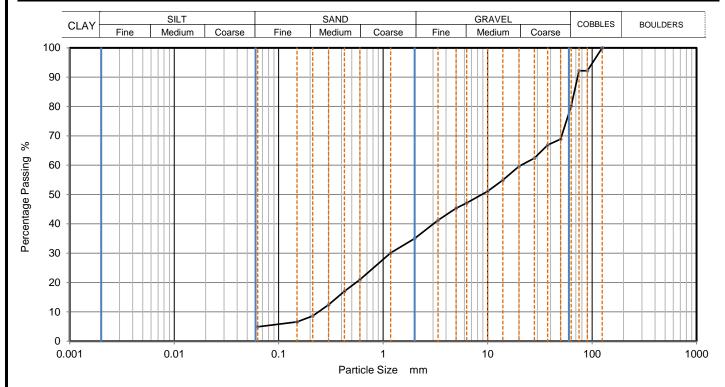
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	12
Fines < 0.063mm	88

Grading Analysis		
D100	mm	
D60	mm	0.0192
D30	mm	0.00437
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Stephen.Watson 23/10/2017 17:19 Sheet	Approved	Sheet printed	Fig	1
	Stephen. Watson	23/10/2017 17:19	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
			Borehole/Pit No.	вно2	
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	10
Soil Description	Brownish grey slightly sandy silty CLAY.		Depth, m	10.00	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090761	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	92
90	100	0.0315	76
75	100	0.0153	61
63	100	0.0077	39
50	100	0.0043	32
37.5	100	0.0020	24
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.90	Mg/m3
0.3	100		
0.212	100		
0.15	95		
0.063	92		


Dry Mass of sample, g	1527
-----------------------	------

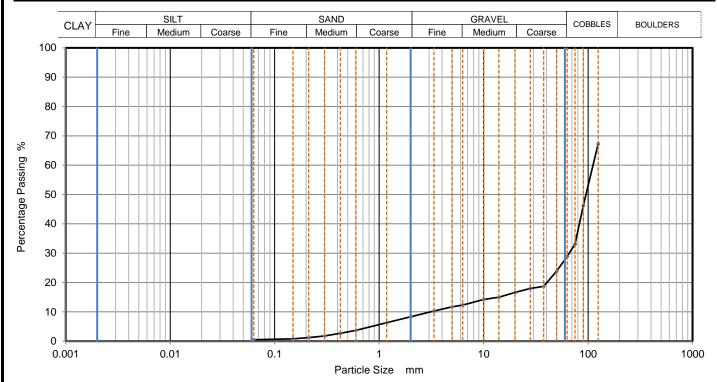
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	8
Silt	68
Clay	24

Grading Analysis		
D100	mm	
D60	mm	0.0151
D30	mm	0.00366
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY	DARTI	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167
——— GEOTECH	PANII			Borehole/Pit No.	ВН02
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	11
Soil Description	Brown sandy subangular to subrounded fine to coarse GRAVEL with low cobble content.		Depth, m	11.50	
Specimen Reference	2	Specimen Depth	m	Sample Type	В
Test Method	3S1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090765	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	92		
75	92		
63	80		
50	69		
37.5	67		
28	62		
20	60		
14	55		
10	51		
6.3	47		
5	45		
3.35	41		
2	35		
1.18	30		
0.6	21		
0.425	17		
0.3	12		
0.212	9		
0.15	7		
0.063	5		


Dry Mass of sample, g	17913

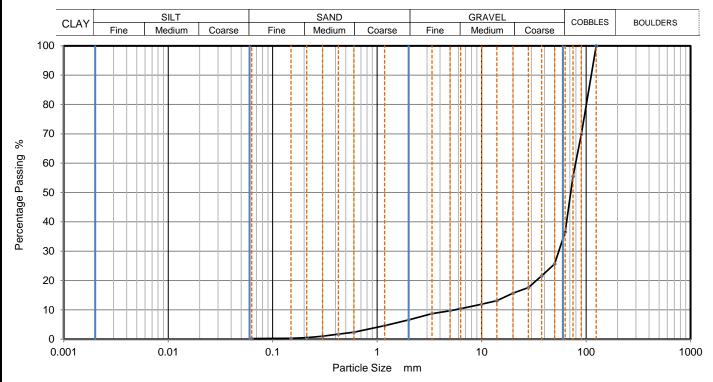
Sample Proportions	% dry mass
Cobbles	20
Gravel	45
Sand	30
Fines < 0.063mm	5

Grading Analysis		
D100	mm	125
D60	mm	21
D30	mm	1.17
D10	mm	0.241
Uniformity Coefficient	·	87
Curvature Coefficient		0.27

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY	DARTICI E SIZE DISTRIBUTIONI		Job Ref	17-0167	
—— GEOTECH	PANII	PARTICLE SIZE DISTRIBUTION –		Borehole/Pit No.	вно2
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	12
Soil Description	Grey brown subangular to subrounded COBBLES with some grey slightly sandy subangular to subrounded fine to coarse GRAVEL.		Depth, m	13.00	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090766	

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	67		
90	46		
75	33		
63	29		
50	24		
37.5	19		
28	18		
20	17		
14	15		
10	14		
6.3	12		
5	12		
3.35	10		
2	8		
1.18	6		
0.6	4		
0.425	3		
0.3	2		
0.212	1]	
0.15	1]	
0.063	1		


Dry Mass of sample, g	25400
-----------------------	-------

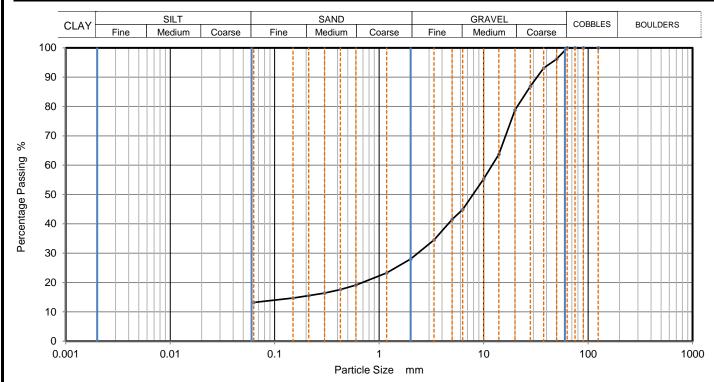
Sample Proportions	% dry mass
Cobbles	71
Gravel	21
Sand	8
Fines < 0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	112
D30	mm	65.9
D10	mm	3.13
Uniformity Coefficient		36
Curvature Coefficient		12

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY	VAY DADTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH	PANII	PARTICLE SIZE DISTRIBUTION –		Borehole/Pit No.	вно2
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	35
Soil Description	Grey brown subangular to subrounded COBBLES with some grey slightly sandy subangular to subrounded fine to coarse GRAVEL		Depth, m	15.00	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090767	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	70		
75	56		
63	37		
50	26		
37.5	22		
28	18		
20	16		
14	13		
10	12		
6.3	10		
5	10		
3.35	9		
2	7		
1.18	5		
0.6	2		
0.425	2		
0.3	1		
0.212	1		
0.15	0		
0.063	0		


_	
Dry Mass of sample, g	16434

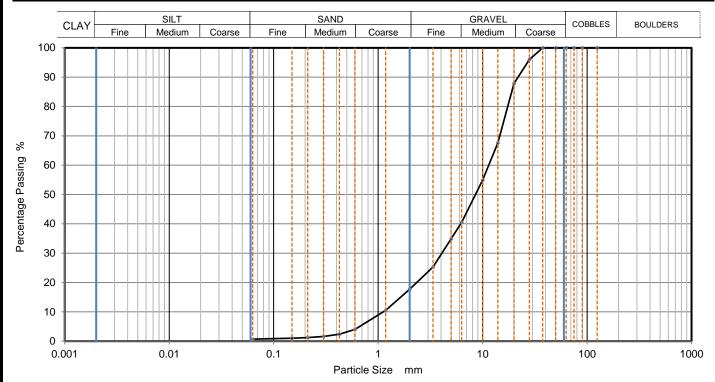
Sample Proportions	% dry mass
Cobbles	63
Gravel	30
Sand	6
Fines < 0.063mm	0

Grading Analysis		
D100	mm	125
D60	mm	79.4
D30	mm	54.8
D10	mm	5.49
Uniformity Coefficient		14
Curvature Coefficient		6.9

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
—— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно2	
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	37
Soil Description	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL.		Depth, m	16.90	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090768	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	96		
37.5	93		
28	87		
20	79		
14	64		
10	55		
6.3	45		
5	42		
3.35	35		
2	28		
1.18	23		
0.6	19		
0.425	18		
0.3	16		
0.212	16		
0.15	15		
0.063	13		


Dry Mass of sample, g	10636

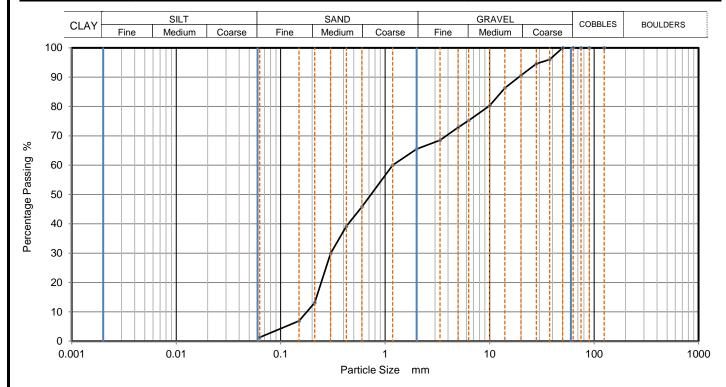
Sample Proportions	% dry mass
Cobbles	0
Gravel	72
Sand	15
Fines < 0.063 mm	13

Grading Analysis		
D100	mm	
D60	mm	12.1
D30	mm	2.34
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY DARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
—— GEOTECH	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.	BH15	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	1
Soil Description	MADE GROUND: Black slightly sandy slightly silty subrounded fine to medium GRAVEL with fragments of red brick.		Depth, m	0.00	
Specimen Reference	2	Specimen Depth	m	Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090770	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	96		
20	88		
14	68		
10	55		
6.3	41		
5	35		
3.35	25		
2	18		
1.18	11		
0.6	4		
0.425	2		
0.3	2		
0.212	1]	
0.15	1		
0.063	1		


Dry Mass of sample, g	5806
Diy ividas or sample, g	3000

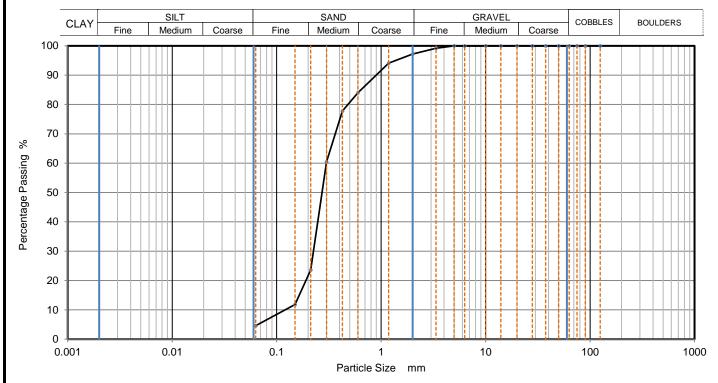
Sample Proportions	% dry mass
Cobbles	0
Gravel	82
Sand	17
Fines < 0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	11.4
D30	mm	4.08
D10	mm	1.12
Uniformity Coefficient		10
Curvature Coefficient		1.3

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.	BH15	
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	2
Soil Description	Grey slightly gravelly fine to coarse SAND.		Depth, m	1.50	
Specimen Reference	2	Specimen Depth	m	Sample Type	В
Test Method	3S1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090772	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	96		
28	95		
20	91		
14	86		
10	80		
6.3	75		
5	73		
3.35	69		
2	66		
1.18	60		
0.6	46		
0.425	39		
0.3	30		
0.212	13		
0.15	7		
0.063	1		


Dry Mass of sample, g	3989

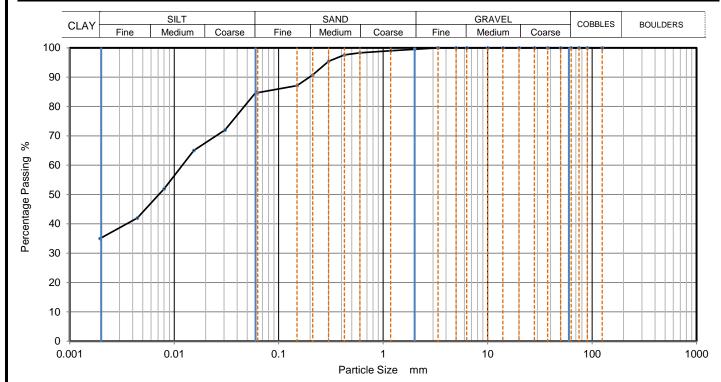
Sample Proportions	% dry mass
Cobbles	0
Gravel	35
Sand	64
Fines < 0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	1.18
D30	mm	0.301
D10	mm	0.179
Uniformity Coefficient		6.6
Curvature Coefficient		0.43

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH	PANII	ICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH15
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	3
Soil Description	Grey slightly gravelly fine to medium SAND.		Depth, m	2.00	
Specimen Reference	2	Specimen Depth	m	Sample Type	В
Test Method	BS1377:Part 2:1990, claus	SS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090773

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	97		
1.18	94		
0.6	84		
0.425	78		
0.3	61		
0.212	24		
0.15	12		
0.063	5		


Dry Mass of sample, g	2743

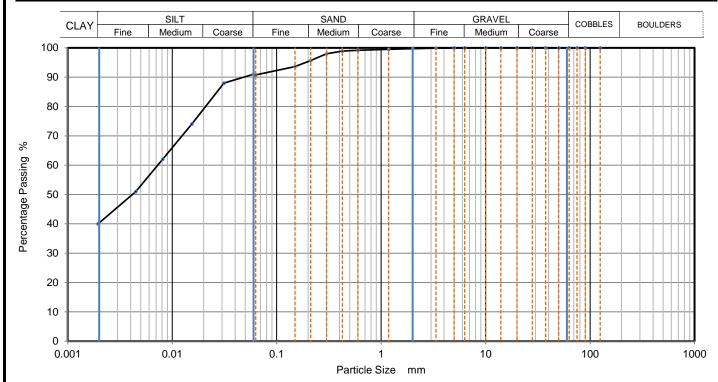
Sample Proportions	% dry mass
Cobbles	0
Gravel	3
Sand	93
Fines < 0.063mm	5

Grading Analysis		
D100	mm	
D60	mm	0.299
D30	mm	0.225
D10	mm	0.12
Uniformity Coefficient		2.5
Curvature Coefficient		1.4

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
—— GEOTECH	PANII	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.	BH15
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	6
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	4.70	
Specimen Reference	2	Specimen Depth	m	Sample Type	В
Test Method	BS1377:Part 2:1990, claus	ses 9.2 and 9.5		KeyLAB ID	Caus2017090775

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0609	85
90	100	0.0307	72
75	100	0.0154	65
63	100	0.0080	52
50	100	0.0044	42
37.5	100	0.0020	35
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	98	Particle density	(assumed)
0.425	98	3.00	Mg/m3
0.3	95		
0.212	91		
0.15	87		
0.063	85		


Dry Mass of sample, g 1903	Dry Mass of sample, g	1903
----------------------------	-----------------------	------

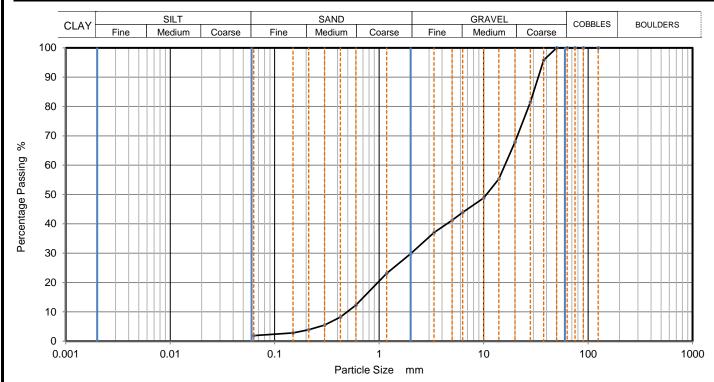
Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	15
Silt	50
Clay	35

Grading Analysis		
D100	mm	
D60	mm	0.012
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
—— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH15	
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	7
Soil Description	Grey slightly sandy silty CLAY.		Depth, m	6.00	
Specimen Reference	2 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090778	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0599	91
90	100	0.0312	88
75	100	0.0154	74
63	100	0.0081	62
50	100	0.0045	51
37.5	100	0.0020	40
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99	Particle density	(assumed)
0.425	99	3.00	Mg/m3
0.3	98		
0.212	96		
0.15	94		
0.063	91		


Dry Mass of sample, g	1572

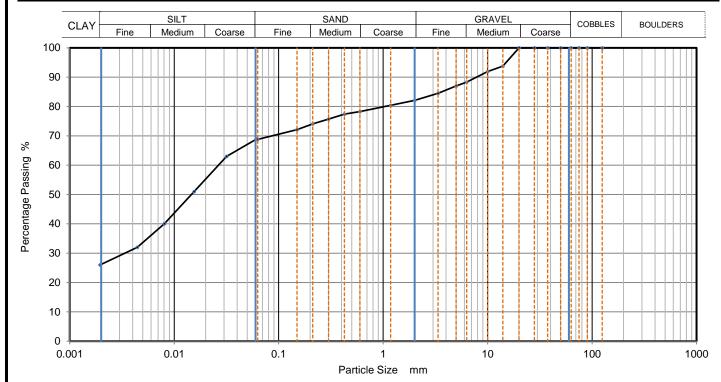
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	9
Silt	51
Clay	40

Grading Analysis		
D100	mm	
D60	mm	0.00714
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
—— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH15	
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	8
Soil Description	Brown sandy subangular to subrounded fine to coarse GRAVEL.		Depth, m	7.00	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017090780	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	96		
28	82		
20	68		
14	55		
10	49		
6.3	44		
5	41		
3.35	37		
2	30		
1.18	23		
0.6	12		
0.425	8		
0.3	6		
0.212	4		
0.15	3		
0.063	2		


Dry Mass of sample, g	9967

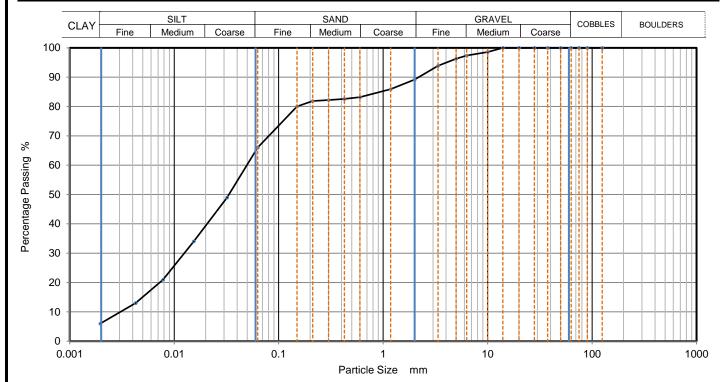
Sample Proportions	% dry mass
Cobbles	0
Gravel	70
Sand	28
Fines < 0.063 mm	2

Grading Analysis		
D100	mm	
D60	mm	16
D30	mm	2.03
D10	mm	0.493
Uniformity Coefficient		32
Curvature Coefficient		0.52

Approved	Sheet printed	Fig	1
	23/10/2017 17:19	Chast	
		Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——— GEOTECH	PANII	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.	BH15
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	9
Soil Description	Brown slightly sandy slightly gravelly silty CLAY.		Depth, m	8.50	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090781	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0620	69
90	100	0.0318	63
75	100	0.0155	51
63	100	0.0081	40
50	100	0.0044	32
37.5	100	0.0020	26
28	100		
20	100		
14	94		
10	92		
6.3	88		
5	87		
3.35	85		
2	82		
1.18	80		
0.6	78	Particle density	(assumed)
0.425	77	2.90	Mg/m3
0.3	76		
0.212	74		
0.15	72		
0.063	69		


Dry Mass of sample, g	1180
-----------------------	------

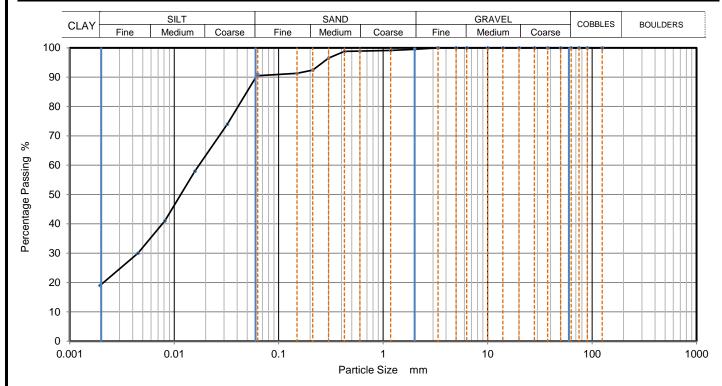
Sample Proportions	% dry mass
Cobbles	0
Gravel	18
Sand	13
Silt	42
Clay	27

Grading Analysis		
D100	mm	
D60	mm	0.027
D30	mm	0.00322
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
	23/10/2017 17:19		
		Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH	PANII	PARTICLE SIZE DISTRIBUTION -		Borehole/Pit No.	BH15
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	10
Soil Description	Brown slightly sandy slightly gravelly silty CLAY.		Depth, m	9.50	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090783	

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	66
90	100	0.0320	49
75	100	0.0154	34
63	100	0.0078	21
50	100	0.0043	13
37.5	100	0.0020	6
28	100		
20	100		
14	100		
10	99		
6.3	97		
5	96		
3.35	94		
2	89		
1.18	86		
0.6	83	Particle density	(assumed)
0.425	83	2.70	Mg/m3
0.3	82		
0.212	82		
0.15	80		
0.063	66		


Dry Mass of sample, g	1713
-----------------------	------

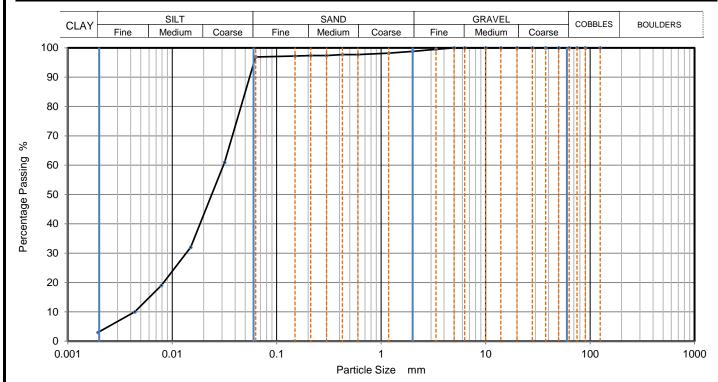
Sample Proportions	% dry mass
Cobbles	0
Gravel	11
Sand	23
Silt	60
Clay	7

Grading Analysis		
D100	mm	
D60	mm	0.0496
D30	mm	0.0124
D10	mm	0.00305
Uniformity Coefficient		16
Curvature Coefficient		1

23/10/2017 17:19 Sheet	Approved	Sheet printed	Fig	1
Sheet		23/10/2017 17:19		
			Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH15	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	11
Soil Description	Brown slightly sandy slightly gravelly silty CLAY.		Depth, m	10.00	
Specimen Reference	2 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090785	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	91
90	100	0.0323	74
75	100	0.0158	58
63	100	0.0081	41
50	100	0.0045	30
37.5	100	0.0020	19
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99	Particle density	(assumed)
0.425	99	2.90	Mg/m3
0.3	97		_
0.212	92		
0.15	91		
0.063	91		


Dry Mass of sample, g	1785
-----------------------	------

Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	9
Silt	71
Clay	20

Grading Analysis		
D100	mm	
D60	mm	0.0176
D30	mm	0.00444
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
	23/10/2017 17:19		
		Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH15	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	24
Soil Description	Brown slightly sandy slightly gravelly silty CLAY.		Depth, m	11.00	
Specimen Reference	2 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017090788	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	97
90	100	0.0318	61
75	100	0.0150	32
63	100	0.0079	19
50	100	0.0044	10
37.5	100	0.0020	3
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99		
1.18	98		
0.6	98	Particle density	(assumed)
0.425	98	2.90	Mg/m3
0.3	97		
0.212	97		
0.15	97		
0.063	97		

Dry Mass of sample, g	939
-----------------------	-----

Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	2
Silt	94
Clay	3

Grading Analysis		
D100	mm	
D60	mm	0.0307
D30	mm	0.0134
D10	mm	0.00447
Uniformity Coefficient		6.9
Curvature Coefficient		1.3

Approved	Sheet printed	Fig	1
	23/10/2017 17:19		
		Sheet	

	Unconsolidated Undrained Triaxial	ob Ref	17-0167							
CAUSEWAY GEOTECH	Compression Test without measurement	orehole/Pit No.	BH02							
Site Name	or pore pressure - single specimen	ample No.	24							
Soil Description Specimen	Spacimon	epth	5.00							
Reference	2 Specimen m Sa									
Specimen Description		eyLAB ID	Caus2017090753							
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen Da	ate of test	21/09/2017							
	Test Number Length Diameter Bulk Density Moisture Content Dry Density	105.2 2.00 27.1	mm mm Mg/m3 % Mg/m3							
	Rate of Strain		%/min							
	Cell Pressure At failure Axial Strain		kPa %							
	Deviator Stress, (σ1 - σ3)f Undrained Shear Strength, cu	102	kPa kPa ½(σ1 - σ3)f							
	Mode of Failure	31	KFA /2(01-03)1							
Deviator Stress v A	xial Strain									
120										
100										
кРа										
Deviator Stress kPa										
ty 60 →										
Devia										
Corrected 50 Post of the contract of the contr										
0 2	4 6 8 10 12 14 16 18 20	22 24	26 28 30 32							
Mohr Circles	Axial Strain %									
150		1	Deviator stress corrected for area change and membrane effects							
100		i	Mohr circles and their interpretation is not covered by BS1377.							
Shear Strength kPa		-	This is provided for information only.							
50										
0	50 75 100 125 150 175 200 205 250	275 200								
0 25	50 75 100 125 150 175 200 225 250 Normal Stresses kPa	275 300								
Remarks	Approved Prin		Fig. No.							
		3/09/2017 09:40	1							
Lab Sheet Reference	∌ .		Sheet 1							

Site Name Arklow Sewerage Scheme Marine Outfall GI Sample No. 25 Soil Description Brown slightly sandy slightly gravelly slity CLAY. Depth 7.00 Specimen Reference 2 Specimen Depth Mr. Sample Type UT Specimen Pirm brown slightly sandy slightly gravelly slity CLAY. KeyLAB ID Caus2017090757 Test Method BS1377 : Part 7 : 1990, clause 8, single specimen Date of test 21/09/2017 Test Number Length Diameter Bulk Density 19, 210, 0 mm Mg/m3 Mg/m3 Mg/m3 Mg/m3 Rate of Strain Cell Pressure Art failure At failure Axial Strain Deviator Stress, (σ1 - σ3) f Undrained Shear Strength, cu Mode of Failure Attor Stress v Axial Strain 20, 0 m/m Mg/m3 Mg/m	CAUSEWAY	Uncon							nnt	Job	Ref			17-0	0167		
Site Name	GEOTECH	_	-								Borehole/Pit No.			BH02			
Specimen Reference 2 Specimen Depth m Sample Type UT Reference Description Firm brown slightly sandy slightly gravelly silty CLAY. ReyLAB ID Caus2017090757 Test Method BS1377: Part 7: 1990, clause 8, single specimen Date of test 21/09/2017 Test Number Length 105:2 mm Mg/m3 Diameter Bulk Density Mg/m3 Rate of Strain Cell Pressure Axial Strain Deviator Stress, (01-03) I Undrained Shear Strength, cu Mode of Failure ator Stress v Axial Strain 200 % RPa 1/4 (01-03) I Mg/m3 ator Stress v Axial Strain 200 % RPa 1/4 (01-03) I Mg/m3 Torcicles Deviator stress corrected for area change and membrane effects and their interpretation is not covere by BS1377. This is provided for information only.	Site Name	Arklow Se						25									
Depth Sality System Firm brown slightly sandy slightly gravelly silty CLAY. KeyLAB ID Caus2017090757 Caus2017090757 Test Method BS1377 : Part 7 : 1990, clause 8, single specimen Date steet 21/09/2017	Soil Description	Brown slig	htly san	ıdy slig	htly grav	velly silt	y CLAY.			Dep	th			7.	00		
Specimen			2			n			m	San	nple Typ	е	UT				
Test Mumber Length Diameter Bulk Density Moisture Content Dry Density Rate of Strain Cell Pressure At failure Axial Strain Deviator Stress, (σ1 - σ3) f Undrained Shear Strength, cu Mode of Failure Axial Strain 20 00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3 ar Circles Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS 133 77. This is provided for information only.	Specimen	Firm brow	n slightly	-	•	y gravel	ly silty C	LAY.		Key	LAB ID		(Caus2017090757			
Length Diameter Bulk Density Molsture Content Dry Density Rate of Strain Cell Pressure At failure Axial Strain Deviator Stress, (σ1 - σ3) f Undrained Shear Strength, cu Mode of Failure Axial Strain 20 Mode of Failure Axial Strain Axial Strain Deviator Stress v Axial Strain Deviator Stress v Axial Strain Deviator Stress v Axial Strain Deviator Stress v Axial Strain Deviator Stress v Axial Strain Deviator Stress v Axial Strain w Deviator Stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by b S1377. This is provided for information only.		BS1377 :	Part 7 :	1990, (clause 8	3, single	specim	en		Date	e of test			21/09)/2017		
Cell Pressure At failure Axial Strain Deviator Stress, (\sigma 1 - \sigma 3) f Undrained Shear Strength, cu Mode of Failure ator Stress v Axial Strain 20 00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3 Axial Strain % Telrcies Deviator stress corrected for area change and membrane effects Moh cricres and their interpretation is not covere by BS1377. This is provided for information only.		Length Diameter Bulk Dens Moisture (Dry Densi	sity Content ity								210.0 105.2 1.98 18.7 1.67		mm Mg/m % Mg/m	3			
20 00 80 40 40 20 00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3 Axial Strain % Ir Circles Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.		Cell Press		De ^s Un	viator St drained	tress,(Shear S					140 20.0 105		kPa % kPa		σ3)f		
Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.		Axial Strai	n														
80 40 40 20 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3 Axial Strain % Tecircles 50 To peviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.									, , , , , ,	+							
Axial Strain % Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.						•	999										
Axial Strain % Tercircles Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.	30			مصمير													
Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.																	
Axial Strain % Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.	60																
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3 Axial Strain % Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.																	
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3 Axial Strain % Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.	40																
Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.	40																
for area change and membrane effects Mohr circles and their interpretation is not covere by BS1377. This is provided for information only.	40	4 6	8	1	0 1	12				20	22	24	26	28	30	3:	
interpretation is not covere by BS1377. This is provided for information only.	40 20 0 2 r Circles	4 6	8	1	0 1	12				220	22	24					
This is provided for information only.	20 0 0 0 20 20 20 20 30 20 30 50	4 6	8	1	0 1	12				220	22	24	Devia for are	tor stres	s corre		
	40 20 0 0 2 ar Circles	4 6	8	1	0 1	12				220	22	24	Devia for are memb Mohr interp	tor stres ea chang orane eff circles a retation	s corre ge and fects and the	ected	
	40 20 0 2 ar Circles 50 25 00 75	4 6	8	1	0 1	12				220	22	24	Devia for are memb Mohr interp by BS This is	tor stresea changorane efficircles a retation 1377.	s correge and fects and their is not conditional fects.	ected	
	40 20 0 2 ar Circles 50 25 00 75 50	4 6	8	1	0 1	12				220	22	24	Devia for are memb Mohr interp by BS This is	tor stresea changorane efficircles a retation 1377.	s correge and fects and their is not conditional fects.	ected	

Stephen.Watson

23/09/2017 09:40

Testing terminated at 20% strain

Lab Sheet Reference :

Fig. No.

Sheet

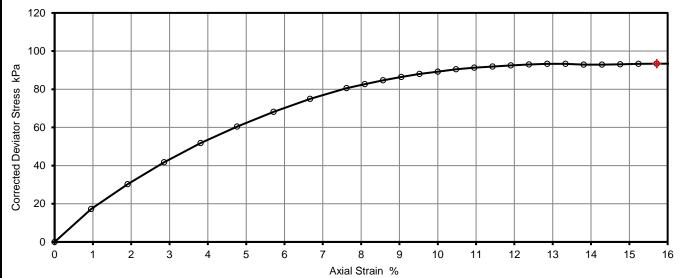
1

CAUSEWAY		ated Undrained on Test without	Job Ref	17-0167	
——GEOTECH	I -	sure - single s	Borehole/Pit No.	BH02	
Site Name	Arklow Sewerage	Scheme Marine Outf	Sample No.	27	
Soil Description	Brownish grey sli	ghtly sandy silty CLA	Depth	10.50	
Specimen Reference	2	Specimen Depth	m	Sample Type	UT
Specimen Description	Firm brownish gre	ey slightly sandy silty	CLAY.	KeyLAB ID	Caus2017090763
Test Method	BS1377 : Part 7 :	1990, clause 8, singl	e specimen	Date of test	21/09/2017

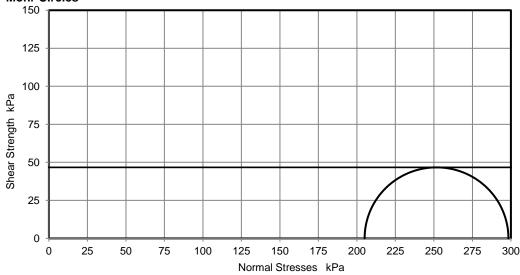
Test Number Length Diameter Bulk Density Moisture Content Dry Density

Rate of Strain Cell Pressure At failure

Axial Strain Deviator Stress, ($\sigma1$ - $\sigma3$)f Undrained Shear Strength, cu Mode of Failure


1	
210.0	mm
105.2	mm
1.96	Mg/m3
28.9	%
1.52	Mg/m3

2.0	%/min
205	kPa
15.7	%
93	kPa
47	kPa ½


Plastic

kPa ½(σ1 - σ3)f

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for

information only.

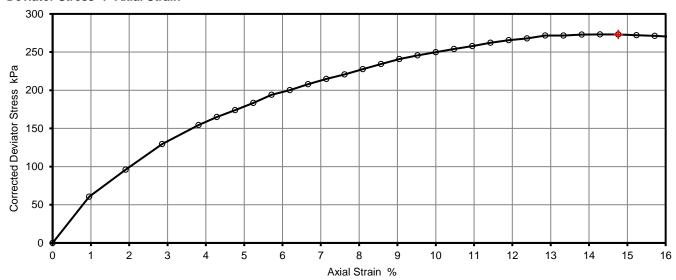
Remarks

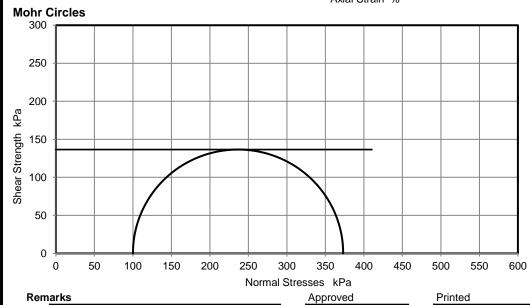
Lab Sheet Reference:

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377

Stephen.Watson

Approved


Printed


23/09/2017 09:40

CAUSEWAY		ated Undraine		Job Ref	17-0167
GEOTECH GEOTECH	<u>-</u>	ssure - single	t measurement specimen	Borehole/Pit No.	BH15
Site Name	Arklow Sewerage	Scheme Marine Ou	Sample No.	25	
Soil Description	Grey slightly sand	dy silty CLAY.	Depth	5.00	
Specimen Reference	2	Specimen Depth	m	Sample Type	UT
Specimen Description	Stiff grey slightly	sandy silty CLAY.	KeyLAB ID	Caus2017090776	
Test Method	BS1377 : Part 7 :	1990, clause 8, sing	le specimen	Date of test	21/09/2017
	Test Number			1	٦
	Length			210.0	mm
	Diameter		105.2	mm	
	Bulk Density			1.99	Mg/m3
	Moisture Content			23.9	<u></u> %
	Dry Density			1.61	Mg/m3
	Rate of Strain			2.0	%/min
	Cell Pressure			100	kPa

Deviator Stress v Axial Strain

At failure

Axial Strain

Mode of Failure

Deviator Stress, (σ 1 - σ 3)f

Undrained Shear Strength, cu

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for

information only.

Remarks

Lab Sheet Reference :

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377 Stephen.Watson

23/09/2017 09:40

14.8

273

137

Brittle

kPa

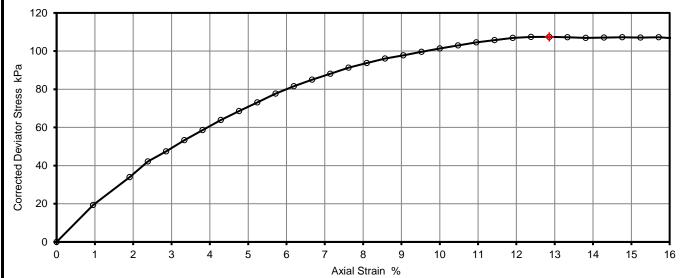
kPa ½(σ1 - σ3)f

CAUSEWAY		ated Undrained on Test without	Job Ref	17-0167	
CAUSEWAY	I -	ssure - single s	Borehole/Pit No.	BH15	
Site Name	Arklow Sewerage	Scheme Marine Outfa	Sample No.	26	
Soil Description	Brown slightly sa	ndy slightly gravelly silt	Depth	9.00	
Specimen Reference	2	Specimen Depth	m	Sample Type	UT
Specimen Description	Firm brown slight	ly sandy slightly gravel	y silty CLAY.	KeyLAB ID	Caus2017090782
Test Method	BS1377 : Part 7 :	1990, clause 8, single	Date of test	21/09/2017	

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density

Rate of Strain Cell Pressure At failure

Axial Strain Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu Mode of Failure

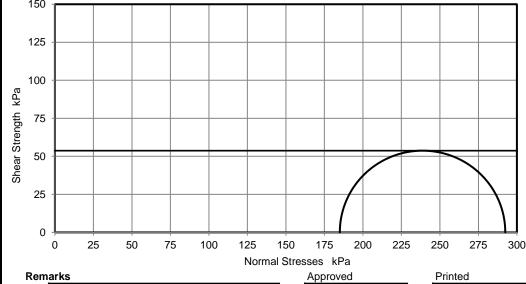

1	
210.0	mm
105.2	mm
2.05	Mg/m3
30.4	%
1.57	Mg/m3


2.0	%/min
185	kPa
12.9	%
107	kPa
54	kPa ½

Brittle

½(σ1 - σ3)f

Deviator Stress v Axial Strain



Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for

information only.

Remarks

Lab Sheet Reference :

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377

Stephen.Watson

23/09/2017 09:40

	Sewerage	Scheme					
Ref:	17-0167		Size mm		100	Initial wet mass g	78
BH	BH02		Thickness	mm	35.25	Bulk Density mg/m3	221
Depth m	3.0m						
Our Ref	Υ			σ' _ν kPa			
Soil type	Sandy GRA	VEL .					
Rate of sh	nearing mm/n	nin	0.5	30			
>10 mm remo	oved			30			
				120			
Peak		Ultimate					
σ' _n kPa	τ kPa	σ' _n kPa	τ kPa				
30	0	30	38				
30	0	30	38				
120	0	120	108				

Peak angle of internal friction Cohesion kPa Ultimate angle of internal friction

43

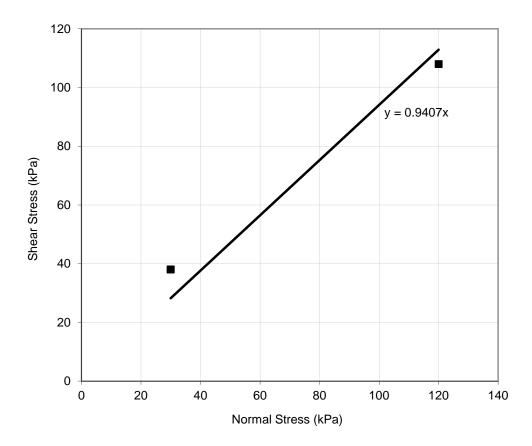


Figure 1 Failure Envelope

Arklow Sewerage Scheme

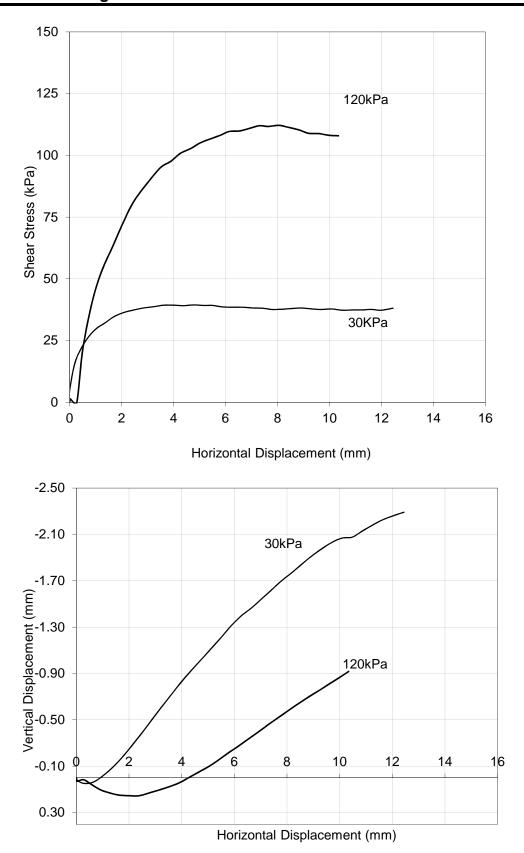


Figure 2 Stress-strain behaviour

Arklow	Sewerage	Scheme					
	_					Loading 30 kPa	
Ref:	17-0167	Ç	Size mm		100	Initial wet mass g	719
ВН	BH02		Thickness	mm	35.75	Bulk Density mg/m3	1804
Depth m	9.0m					Final wet mass g	685
Our Ref	Z			σ' _ν kPa		Dry mass g	615
Soil type	Clayey sand	ly SILT				Initial water content %	16.9
Rate of sh	earing mm/n	nin	0.015	30		Final water content %	11.4
_				80		Loading 80 kPa	
				160		Initial wet mass g	793
Peak		Ultimate				Bulk Density mg/m3	1804
σ' _n kPa	τ kPa	σ' _n kPa τ	t kPa			Final wet mass g	751
30)	30	22	1		Dry mass g	641
80)	80	53	1		Initial water content %	23.7
160)	160	106			Final water content %	17.2
				-		Loading 160 kPa	
						Initial wet mass g	771
						Bulk Density mg/m3	1804
						Final wet mass g	714
Peak angl	e of internal	friction				Dry mass g	601
Cohesion	kPa			0		Initial water content %	28.3
Ultimate a	ngle of interr	nal friction		33		Final water content %	18.8

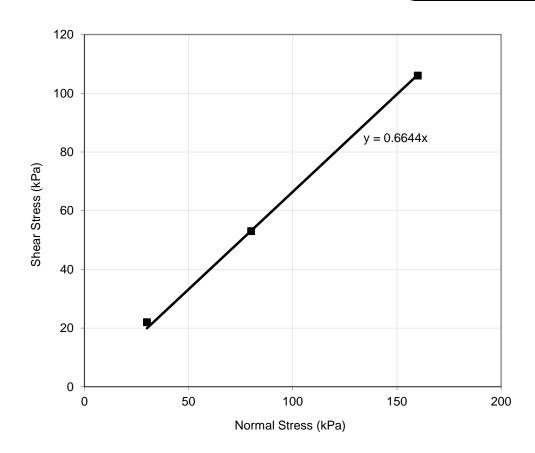


Figure 1 Failure Envelope

Arklow Sewerage Scheme

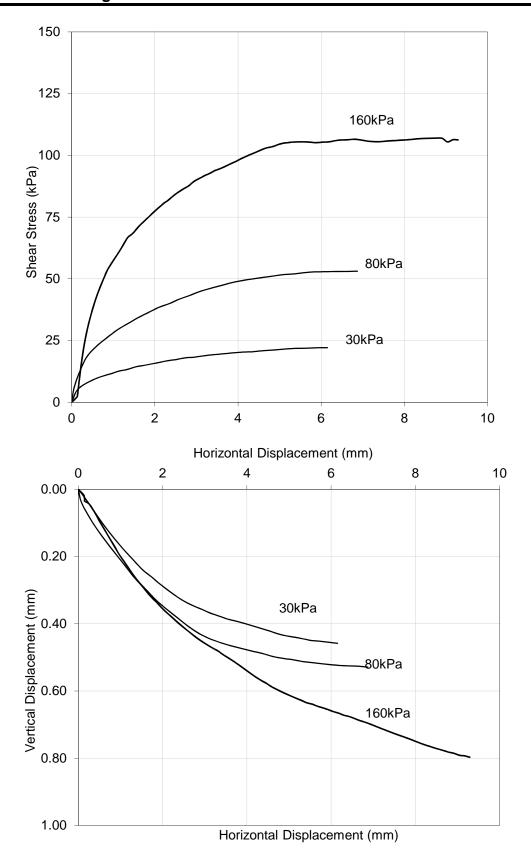


Figure 2 Stress-strain behaviour

Ref:	17-0167		Size mm		100	Initial wet mass g	688
BH	BH02		Thickness	mm	33.75	Bulk Density mg/m3	2038
Depth m	14.0m						
Our Ref	W			σ' _ν kPa			
Soil type	SAND	•					
Rate of sh	nearing mm/m	nin	0.5	70			
>10 mm remo	oved			140			
Peak		Ultimate		210			
σ' _n kPa	τ kPa	σ' _n kPa	τ kPa	1			
70	0	70	59				
140	0	140	124	1			
210	0	210	180				

Peak angle of internal friction Cohesion kPa Ultimate angle of internal friction

40

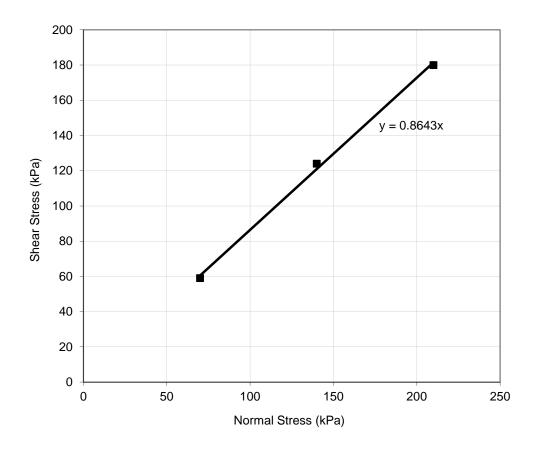


Figure 1 Failure Envelope

Arklow Sewerage Scheme

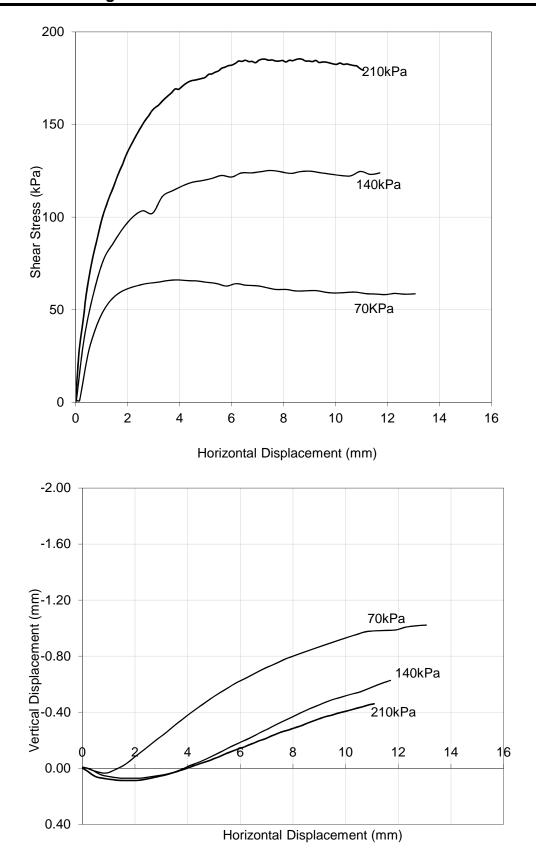


Figure 2 Stress-strain behaviour

Arklow	Sewerage	Scheme					
Ref:	17-0167		Size mm		100	Initial wet mass g	616
BH	BH15		Thickness	mm	33.25	Bulk Density mg/m3	1852
Depth m	3.5m						
Our Ref	U			σ' _ν kPa			
Soil type	SAND	-					
Rate of sh	nearing mm/m	in	0.5	30			
>10 mm remo	oved			60 120			
Peak		Ultimate					
σ' _n kPa	τ kPa	σ' _n kPa	τ kPa				
30	27	30	25	1			
60	47	60	41				
120	86	120	77				

Peak angle of internal friction 36
Cohesion kPa
Ultimate angle of internal friction 33

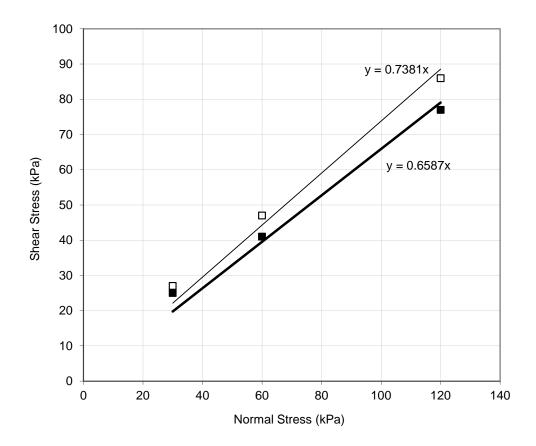


Figure 1 Failure Envelope

Arklow Sewerage Scheme

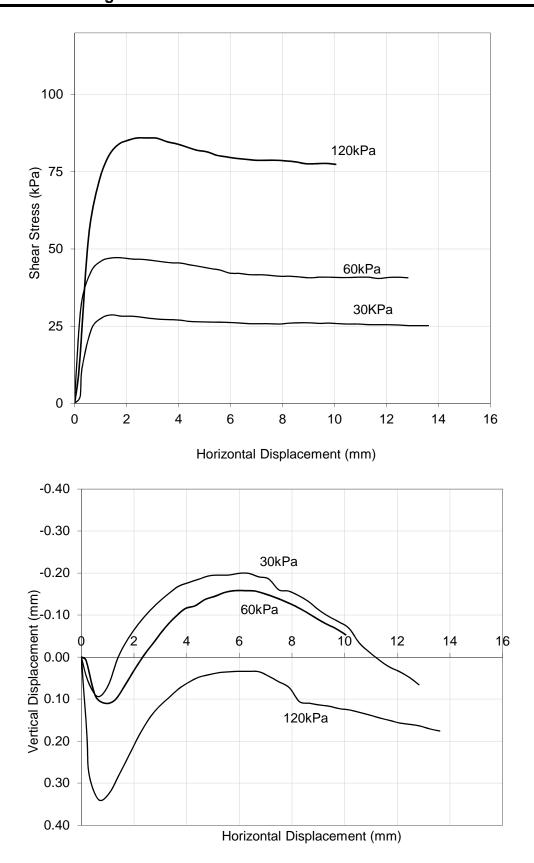


Figure 2 Stress-strain behaviour

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report No.: 17-24593-1

Initial Date of Issue: 22-Sep-2017

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Aisling O'Kane

Colm Hurley

Darren O'Mahony John Cameron John Duggan Matthew Gilbert Neil Haggan Paul Dunlop Paul McNamara Stephen Curtis Stephen Franey Stephen Watson

Project 17-0167 - Arklow Sewerage Scheme

Marine Outfall GI

Quotation No.: Date Received: 18-Sep-2017

Order No.: Date Instructed: 18-Sep-2017

No. of Samples: 2

Turnaround (Wkdays): 5 Results Due: 22-Sep-2017

Date Approved: 22-Sep-2017

Approved By:

Details: Keith Jones, Technical Manager

Project: 17-0167 - Arklow Sewerage Scheme Marine Outfall GI

Client: Causeway Geotech Ltd		Che	ntest Jo	17-24593	17-24593	
Quotation No.:	(Chemte	st Sam	ple ID.:	512740	512741
Order No.:		Clie	nt Locat	ion ID.:	BH02	BH02
		Clie	nt Samp	le Ref.:	14	15
			Sample	е Туре:	SOIL	SOIL
			Top Dep	1.00	2.00	
			Date Sa	ampled:	15-Sep-2017	15-Sep-2017
Determinand	Accred.	SOP	Units	LOD		
Moisture	N	2030	%	0.020	41	35
рН	U 2010 N/A					8.7
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010		0.85
Organic Matter	U	2625	%	0.40	4.7	

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

LABORATORY RESTRICTION REPORT

Project Reference	17-0167		То	Darren O'Mahony	
Project Name	Arklow Sewerage Scheme M	Position	Project Manager		
,	<u> </u>			From	Stephen Watson
TR reference	17-0167 / 2		2	Position	Laboratory Manager

The following sample(s) and test(s) are restricted as detailed below.

Hole	Sample			Test		
Number	Number	Depth	Туре	Type	Reason for Restriction	Required Action
		(m)				
BH02	16	3	D	Atterberg Limits	GRAVEL - Scheduled testing not suitable.	Cancelled
BH02	36	17	D	Atterberg Limits	GRAVEL - Scheduled testing not suitable.	Cancelled
BH15	12	1	D	Atterberg Limits	GRAVEL - Scheduled testing not suitable.	Cancelled
BH15	5	4.00- 4.20	В	PSD Shearbox	No suitable test specimen. Sample damaged in transit to laboratory.	Cancelled
BH15	27	11.00- 11.45	UT	QUICK triaxial	No sample located	Cancelled

For electronic reporting a form of electronic signature or printed name is acceptable

Laboratory Signature Stephen Watson	Project Manager Signature Darren O'Mahony				
Date	Date				
25 September 2017	25 September 2017				

RM P

Issue No. 1 Page 1 of 1 Date 25/09/2017

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Client:	Irish Water
Engineer:	Byrne Looby ARUP J.V.
From:	Stephen Watson
	Laboratory Manager
	Causeway Geotech Ltd
Tel:	+44(0)2827666640
E-mail:	stephen.watson@causewaygeotech.com
Date:	26/09/17
Ref:	17-0167 Schedule 3

Arklow Sewerage Scheme Marine Outfall GI

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the *Contents page(s)*.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 60 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Stephen Watson Laboratory Manager

Project Name Arklow Sewerage Scheme Marine Outfall GI

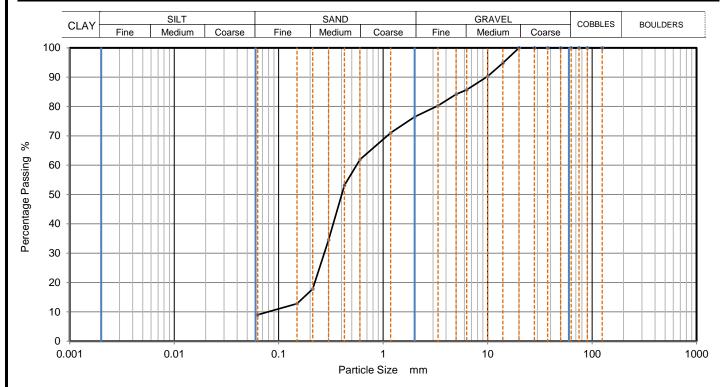
Report Reference. 17-0167 - Schedule 3

The table below details the tests carried out, the specifications used and the number of tests included in this report:

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	Number of test results included in the report
SOIL	Moisture content - oven drying method	BS 1377-2:1990	4
SOIL	Liquid limit - cone penetrometer	BS 1377-2:1990	3
SOIL	Liquid limit - cone penetrometer - one point	BS 1377-2:1990	3
SOIL	Plastic limit	BS 1377-2:1990	3
SOIL	Plasticity index and liquidity index	BS 1377-2:1990	3
SOIL	Particle size distribution - wet sieving	BS 1377-2:1990	13
SOIL	Particle size distribution - dry sieving	BS 1377-2:1990	13
SOIL	Particle size distribution -sedimentation hydrometer method	BS 1377-2:1990	8
SOIL	Undrained shear strength – triaxial compression without measurement of pore pressure (loads from 0.12 to 24 kN)	BS 1377- 7:1990	3
SOIL	Shear strength by direct shear	BS1377: Part 7: Clause 4: 1990	2
SOIL	pH Value of Soil		3
SOIL	Sulphate Content water extract		3
SOIL	Organic Matter Content		0

Summary of Classification Test Results

Project No.


Project Name

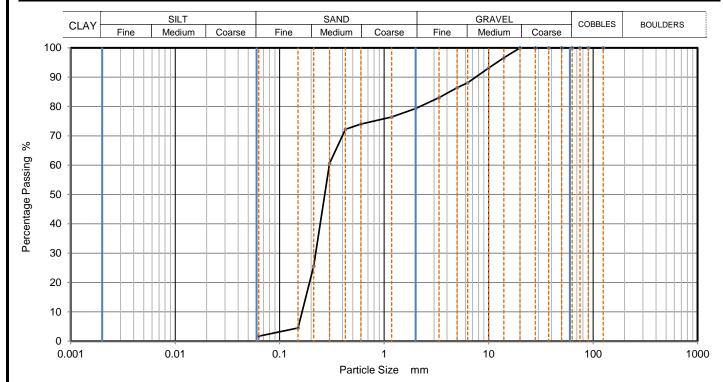
17-0167

Arklow Sewerage Scheme Marine Outfall GI

17-0	17-0167 Arklow Sewerage Scheme Marine Outfall GI													
		Sar	nple			Dens		W	Passing	LL				Canagranda
Hole No.	Ref	Тор	Base	Туре	Soil Description	bulk	dry		425µm				density	Casagrande Classification
		. 0		. , , , ,		Mg/m	13	%	%	%	%	%	Mg/m3	
BH01	12	6.50		D	Brown slightly sandy clayey SILT.			21.0	96	25 -1pt	20	5		ML
BH01	13	7.00		D	Brown slightly sandy clayey SILT.			20.0						
BH01	15	8.50		D	Brownish grey slightly sandy clayey SILT.			23.0	96	25 -1pt	20	5		ML
BH01	19	10.50		D	Brownish grey slightly sandy clayey SILT.			28.0	100	25 -1pt	21	4		ML
All tests perfe	ormed	in acco	rdance v	vith BS	\$1377:1990 unless specified	d otherw	ise							
Key								Date F	rinted		Appr	oved	Ву	Table
Density Linear n		ment unles		Liquid I		e density nall pyknom	neter		26/09/20	17				1
wd - wat	er displ	acement		cas - C	asagrande method gj - ga		.5.51		-5,05,20		<u>.</u>	L		sheet
wi - imn	nersion	in water		1pt - sii	ngle point test						Step	nen.	Watson	1

CAUSEWAY	DARTI	Job Ref	17-0167		
——GEOTECH	PANII	CLE SIZE DIST	Borehole/Pit No.	BH01	
Site Name	Arklow Sewerage Sche	me Marine Outfa	Sample No.	1	
Soil Description	Black slightly gravelly fine	to coarse SAND.	Depth, m	0.00	
Specimen Reference	3	Specimen Depth	Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	se 9.2		KeyLAB ID	Caus201709120

Siev	ving	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	100					
50	100					
37.5	100					
28	100					
20	100					
14	95					
10	90					
6.3	86					
5	84					
3.35	80					
2	77					
1.18	71					
0.6	62					
0.425	53					
0.3	35					
0.212	18]				
0.15	13					
0.063	9					


Dry Mass of sample, g	1077
-----------------------	------

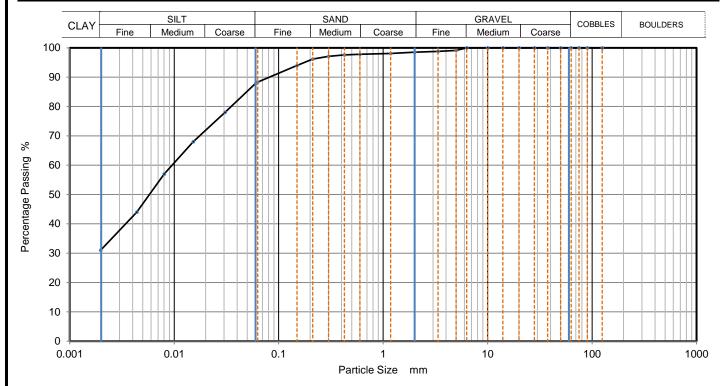
Sample Proportions	% dry mass			
Cobbles	0			
Gravel	24			
Sand	68			
Fines < 0.063mm	9			

Grading Analysis		
D100	mm	
D60	mm	0.557
D30	mm	0.273
D10	mm	0.0792
Uniformity Coefficient		7
Curvature Coefficient		1.7

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH			Borehole/Pit No.	BH01	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	5
Soil Description	Greyish brown slightly gravelly fine to medium SAND.		Depth, m	2.80	
Specimen Reference	3 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus201709121	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	97		
10	93		
6.3	88		
5	86		
3.35	83		
2	79		
1.18	76		
0.6	74		
0.425	72		
0.3	61		
0.212	26][
0.15	5]	
0.063	2		


Dry Mass of sample, g	5121

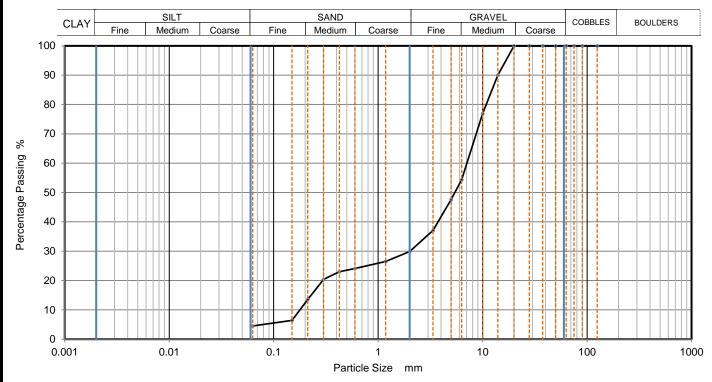
Sample Proportions	% dry mass
Cobbles	0
Gravel	21
Sand	78
Fines < 0.063mm	2

Grading Analysis		
D100	mm	
D60	mm	0.298
D30	mm	0.222
D10	mm	0.164
Uniformity Coefficient		1.8
Curvature Coefficient		1

Stephen.Watson 26/09/2017 11:48 Sheet	Approved	Sheet printed	Fig	1
	Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH			Borehole/Pit No.	BH01	
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	9
Soil Description	Brown slightly sandy clayey SILT.		Depth, m	4.50	
Specimen Reference	3 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201709122	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0604	88
90	100	0.0307	78
75	100	0.0153	68
63	100	0.0080	57
50	100	0.0044	44
37.5	100	0.0020	31
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	99		
3.35	99		
2	99		
1.18	98		
0.6	98	Particle density	(assumed)
0.425	98	3.00	Mg/m3
0.3	97		
0.212	96		
0.15	94		
0.063	88		


Dry Mass of sample, g	1447

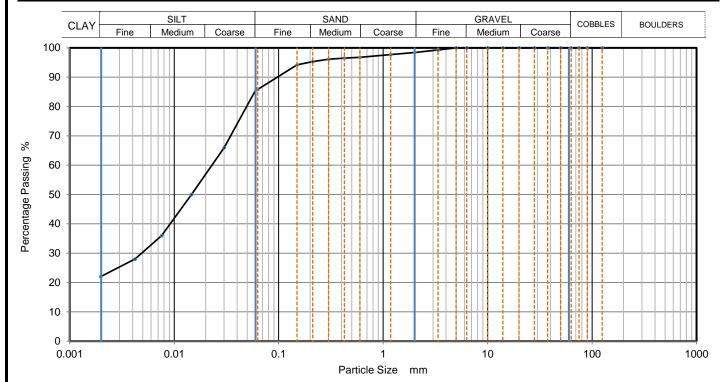
Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	10
Silt	57
Clay	31

Grading Analysis		
D100	mm	
D60	mm	0.00958
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
——GEOTECH			Borehole/Pit No.	BH01	
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	10	
Soil Description	Brown slightly sandy subrounded fine to coarse GRAVEL.		Depth, m	4.80	
Specimen Reference	3 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus201709123

Siev	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	90		
10	77		
6.3	54		
5	48		
3.35	37		
2	30		
1.18	27		
0.6	24		
0.425	23		
0.3	20		
0.212	14]	
0.15	6]	
0.063	5		


Dry Mass of sample, g	10339

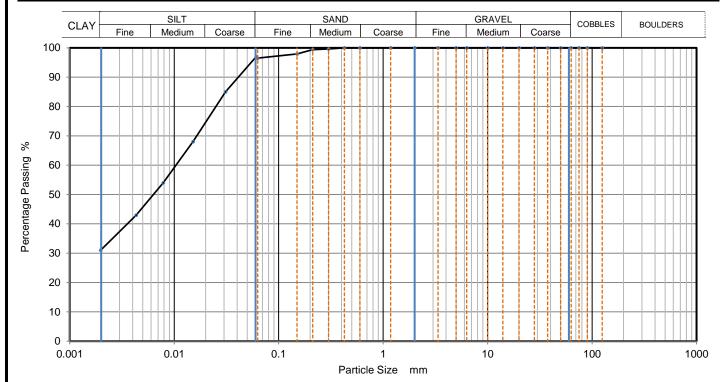
Sample Proportions	% dry mass
Cobbles	0
Gravel	70
Sand	25
Fines < 0.063mm	4

Grading Analysis		
D100	mm	
D60	mm	7.06
D30	mm	2.02
D10	mm	0.179
Uniformity Coefficient		39
Curvature Coefficient		3.2

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY			Job Ref	17-0167
——— GEOTECH			Borehole/Pit No.	BH01
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	11
Soil Description	Brown slightly sandy clayey SILT.		Depth, m	5.80
Specimen Reference	Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201709124

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0609	86
90	100	0.0301	66
75	100	0.0146	50
63	100	0.0076	36
50	100	0.0042	28
37.5	100	0.0020	22
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	98		
1.18	98		
0.6	97	Particle density	(assumed)
0.425	97	3.00	Mg/m3
0.3	96		
0.212	95		
0.15	94		
0.063	86		


Dry Mass of sample, g	1107
-----------------------	------

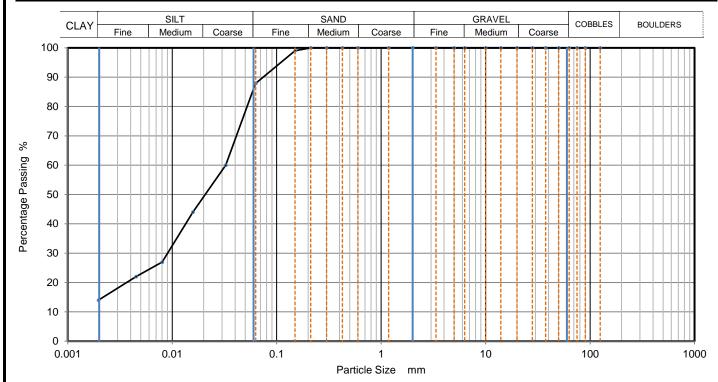
Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	13
Silt	64
Clay	22

Grading Analysis		
D100	mm	
D60	mm	0.0228
D30	mm	0.00497
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH01
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	14
Soil Description	Brownish grey slightly sandy clayey SILT.		Depth, m	7.60
Specimen Reference	Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201709127

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0609	97
90	100	0.0310	85
75	100	0.0151	68
63	100	0.0079	54
50	100	0.0043	43
37.5	100	0.0020	31
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	3.00	Mg/m3
0.3	100		
0.212	99		
0.15	98		
0.063	97		


Dry Mass of sample, g	994
-----------------------	-----

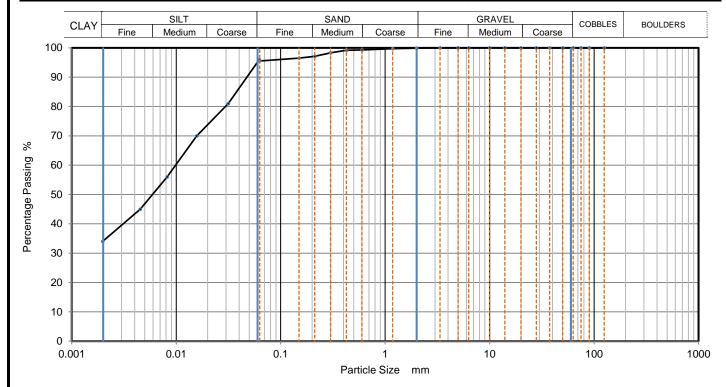
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	4
Silt	65
Clay	31

Grading Analysis		
D100	mm	
D60	mm	0.0104
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH01
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	16
Soil Description	Brownish grey slightly sandy clayey SILT.		Depth, m	8.70
Specimen Reference	Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017091210

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	88
90	100	0.0326	60
75	100	0.0158	44
63	100	0.0080	27
50	100	0.0045	22
37.5	100	0.0020	14
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	3.00	Mg/m3
0.3	100		
0.212	100		
0.15	99		
0.063	88		


Dry Mass of sample, g	1561
-----------------------	------

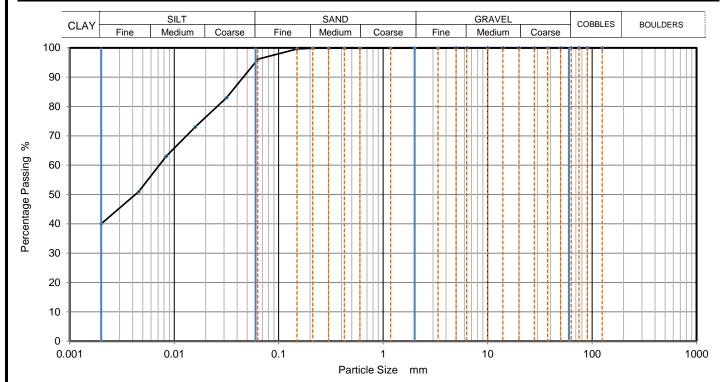
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	12
Silt	74
Clay	14

Grading Analysis		
D100	mm	
D60	mm	0.032
D30	mm	0.0089
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH01
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	18
Soil Description	Brownish grey slightly sandy clayey SILT.		Depth, m	10.10
Specimen Reference	Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017091212

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0624	96
90	100	0.0315	81
75	100	0.0157	70
63	100	0.0082	56
50	100	0.0045	45
37.5	100	0.0020	34
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99	Particle density	(assumed)
0.425	99	3.00	Mg/m3
0.3	98		
0.212	97		
0.15	97		
0.063	96		


Dry Mass of sample, g	989
-----------------------	-----

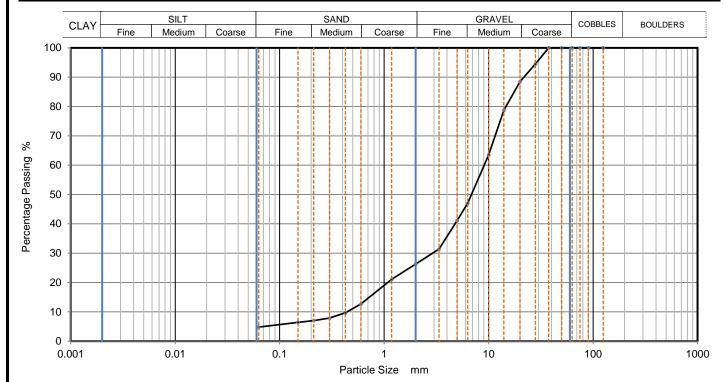
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	4
Silt	62
Clay	34

Grading Analysis		
D100	mm	
D60	mm	0.00978
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH01
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	20
Soil Description	Brownish grey slightly sandy clayey SILT		Depth, m	10.50
Specimen Reference	Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017091214

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0629	96
90	100	0.0318	83
75	100	0.0158	73
63	100	0.0084	63
50	100	0.0046	51
37.5	100	0.0020	40
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	3.00	Mg/m3
0.3	100		
0.212	100		
0.15	100		
0.063	96		


Dry Mass of sample, g	1114
-----------------------	------

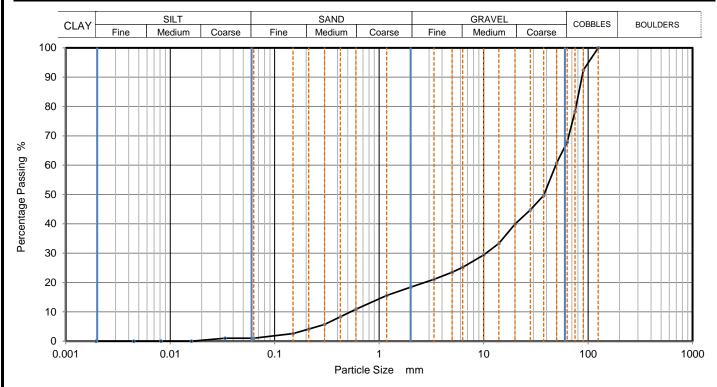
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	4
Silt	56
Clay	41

Grading Analysis		
D100	mm	
D60	mm	0.00717
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY			Job Ref	17-0167	
——GEOTECH			Borehole/Pit No.	BH01	
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	21	
Soil Description	Greyish brown slightly sandy subrounded fine to coarse GRAVEL.		Depth, m	12.70	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus2017091215

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	95		
20	89		
14	79		
10	64		
6.3	47		
5	41		
3.35	31		
2	26		
1.18	21		
0.6	13		
0.425	10		
0.3	8		
0.212	7]	
0.15	6		
0.063	5		


Dry Mass of sample, g	10542
-----------------------	-------

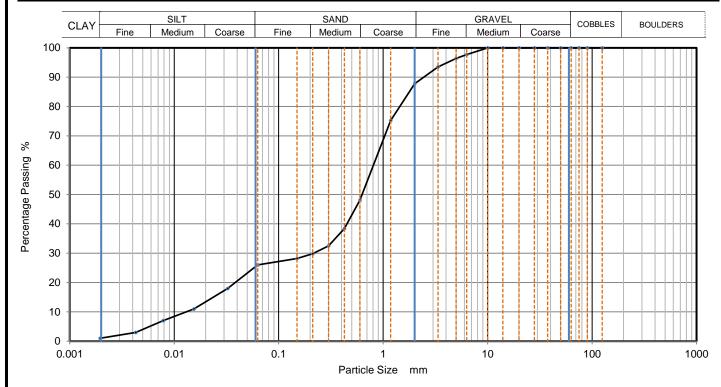
Sample Proportions	% dry mass
Cobbles	0
Gravel	74
Sand	22
Fines < 0.063 mm	5

Grading Analysis		
D100	mm	
D60	mm	9.07
D30	mm	2.91
D10	mm	0.441
Uniformity Coefficient		21
Curvature Coefficient		2.1

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167
——— GEOTECH			Borehole/Pit No.	BH01
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	25
Soil Description	Greyish brown slightly sandy subrounded fine to coarse GRAVEL with medium cobble content.		Depth, m	15.00
Specimen Reference	Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017091216

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	1
90	92	0.0335	1
75	78	0.0160	0
63	68	0.0082	0
50	61	0.0045	0
37.5	50	0.0020	0
28	45		
20	40		
14	33		
10	29		
6.3	25		
5	24		
3.35	21		
2	18		
1.18	16		
0.6	11	Particle density	(assumed)
0.425	8	2.65	Mg/m3
0.3	6		
0.212	4	1	
0.15	3	1	
0.063	1		


Dry Mass of sample, g	18464
-----------------------	-------

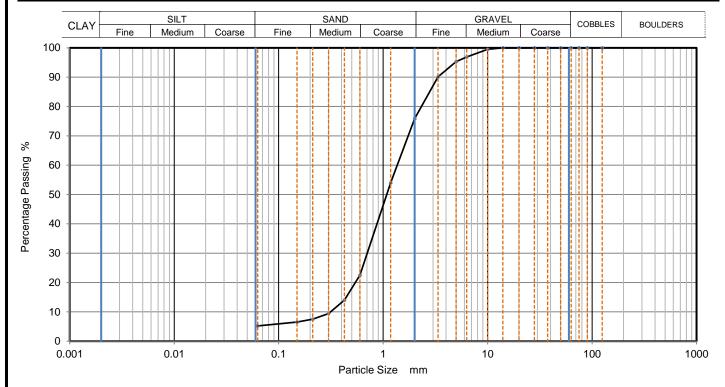
Sample Proportions	% dry mass
Cobbles	32
Gravel	49
Sand	18
Silt	1
Clay	0

Grading Analysis		
D100	mm	125
D60	mm	49.1
D30	mm	10.5
D10	mm	0.533
Uniformity Coefficient		92
Curvature Coefficient		4.2

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167
			Borehole/Pit No.	BH01
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	37
Soil Description	Brownish grey slightly gravelly silty fine to coarse SAND.		Depth, m	17.30
Specimen Reference	3 Specimen m Depth m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017091217

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	26
90	100	0.0325	18
75	100	0.0154	11
63	100	0.0078	7
50	100	0.0043	3
37.5	100	0.0020	1
28	100		
20	100		
14	100		
10	100		
6.3	98		
5	96		
3.35	94		
2	88		
1.18	75		
0.6	48	Particle density	(assumed)
0.425	38	2.65	Mg/m3
0.3	33		
0.212	30		
0.15	28		
0.063	26		


Dry Mass of sample, g	5626
-----------------------	------

Sample Proportions	% dry mass
Cobbles	0
Gravel	12
Sand	62
Silt	25
Clay	1

Grading Analysis		
D100	mm	
D60	mm	0.807
D30	mm	0.217
D10	mm	0.0127
Uniformity Coefficient		63
Curvature Coefficient		4.6

Approved		Fig	1
Stephen. Watson	26/09/2017 11:48	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167
			Borehole/Pit No.	BH01
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	39
Soil Description	Brownish grey slightly gravelly fine to coarse SAND.		Depth, m	18.00
Specimen Reference	Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017091218

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	97		
5	95		
3.35	90		
2	76		
1.18	54		
0.6	23		
0.425	14		
0.3	9		
0.212	8][
0.15	7][
0.063	5		

Dry Mass of sample, g	4248
-----------------------	------

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	24	
Sand	71	
Fines < 0.063mm	5	

Grading Analysis		
D100	mm	
D60	mm	1.36
D30	mm	0.704
D10	mm	0.314
Uniformity Coefficient		4.3
Curvature Coefficient		1.2

Stephen.Watson 26/09/2017 11:49 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	26/09/2017 11:49	Sheet	

	Unconsolid	ated Undra	ained T	riaxial		Job Ref		1	7-0167
CAUSEWAY GEOTECH	Compression Test without measurement						e/Pit No.		BH01
Site Name	1	of pore pressure - single specimen Arklow Sewerage Scheme Marine Outfall GI							34
				וע		Sample	INU.		
Soil Description Specimen	Brown slightly sa	ndy clayey SIL				Depth			6.00
Reference	1	Depth	eri		m	Sample	Туре		UT
Specimen Description	Stiff brown slightl	y sandy clayey	SILT.			KeyLAB	3 ID	Caus	201709260
Test Method	BS1377 : Part 7 :	1990, clause 8	3, single sp	ecimen		Date of	test	22	/09/2017
	Test Number Length Diameter Bulk Density Moisture Content Dry Density					1(2 2	1 10.0 05.2 2.21 0.8 .83	mm mm Mg/m3 % Mg/m3	
							2.0	-	
	Rate of Strain Cell Pressure At failure	Axial Strain Deviator S Undrained Mode of Fa	tress,(σ1 Shear Stre			2	2.0 145 20.0 323 162	%/min kPa % kPa kPa ½(σ	1 - σ3)f
eviator Stress v A	xial Strain								
600									
500									
400									
300				~ ~~~	0000	+			
		يم.	-	,000					
100		- Consorting							
100									
0 2	4 6 8	3 10	12 14	16	18	20 22	24	26 28	3 30 32
Iohr Circles				Axial Strain	%				
300								Deviator str	ress corrected
250								for area cha membrane	
200								Mohr circle	s and their on is not covered
150						+		by BS1377 This is prov	<u>.</u>
								information	
100					egthankowskip				
50					\bot				
0 50	100 150 20	00 250 3	300 350) 400	450	500 55	0 600		
Domorto		Normal	Stresses Appr			Printed			
RAINAIVE			Appr	UVEU		ı ııılı c u		_	
Remarks Testing termina	ated at 20% strain		Ste	ephen.Watso	n	26/09/2	017 11:53		Fig. No.

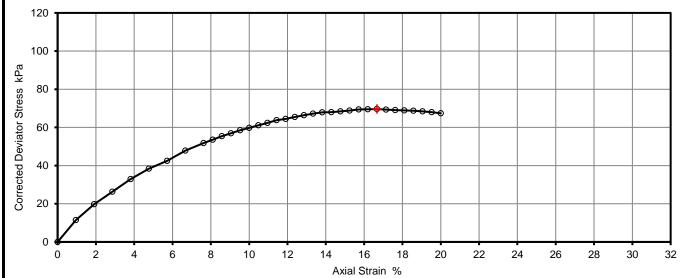
	Unconsolidate	ad Undraina	d Triovial				
CAUSEWAY				Job Ref	1	7-0167	
GEOTECH -	Compression Test without measurement of pore pressure - single specimen				Borehole/Pit No.		BH01
Site Name	Arklow Sewerage So	Arklow Sewerage Scheme Marine Outfall GI					35
Soil Description	Brownish grey slight		SILT.		Depth		8.00
Specimen Reference	3	Specimen Depth		m	Sample Type		UT
Specimen Description	Firm brownish grey s				KeyLAB ID		201709128
Test Method	BS1377 : Part 7 : 19	90, clause 8, sin	gle specimen	ļ	Date of test	22	/09/2017
	Test Number Length Diameter Bulk Density Moisture Content Dry Density				1 210.0 105.2 1.99 19.4 1.67	mm mm Mg/m3 % Mg/m3	
	Rate of Strain			[2.0	%/min	
	Cell Pressure At failure	Axial Strain			160 20.0	kPa %	
	At failure	Deviator Stress	s. (σ1 - σ3)f		97	kPa	
		Undrained Shea	ar Strength, cu		48	kPa ½(σ	1 - σ3)f
		Mode of Failure)				
Deviator Stress v A	Axial Strain						
120							
100			0.4		•		
kPa		20000	, eeeeee				
ttess • 08							
Deviator Stress kPa							
Corrected L							
Ö 20							
0							
0 2	4 6 8	10 12	14 16 Axial Stra	_	20 22 24	26 28	3 30 32
Mohr Circles			Axiai Siia	IIII 70			
125						Deviator st for area ch membrane	0
Shear Strength kPa						Mohr circle interpretati by BS1377 This is prov information	on is not covered vided for
Shear S							
25							
0 25	50 75 100	125 150	175 200	225 2	250 275 300		
		Normal Stre	sses kPa				
Remarks			Approved		Printed		Fig. No.
Testing termina Lab Sheet Reference	ated at 20% strain e :		Stephen.Wa	atson	26/09/2017 11:5	3	1 Sheet
							2

CAUSEWAY	Unconsolidate Compression		Job Ref	17-0167		
——— GEOTECH	of pore pressu		Borehole/Pit No.	BH01		
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	36	
Soil Description	Brownish grey slightly sandy clayey SILT.			Depth	10.00	
Specimen Reference	3 Specimen m		Sample Type	UT		
Specimen Description	Firm brownish grey slightly sandy clayey SILT.			KeyLAB ID	Caus2017091211	
Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen			Date of test	22/09/2017	
	Test Number Length Diameter			1 210.0 105.2 1.92	mm mm Ma/m2	
	Bulk Density Moisture Content			24.4	Mg/m3 %	

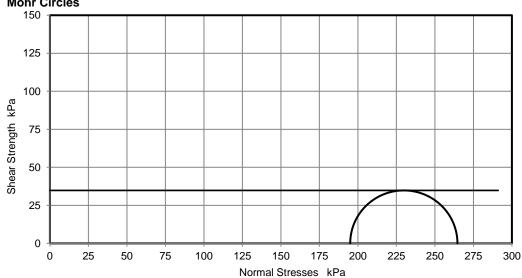
Dry Density

Rate of Strain Cell Pressure At failure

Axial Strain Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu Mode of Failure


1	
210.0	mm
105.2	mm
1.92	Mg/m3
24.4	%
1.54	Mg/m3

2.0	%/min
195	kPa
16.7	%
70	kPa
35	kPa 1


Brittle

½(σ1 - σ3)f

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for

information only.

Remarks

Lab Sheet Reference :

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377 Approved

Stephen.Watson

Printed

26/09/2017 11:53

Arklow	Sewerage	Schama					
AIRIOW	Jewel age	ocheme					
Ref:	17-0167		Size mm		100	Initial wet mass g	708
BH	BH01		Thickness	mm	35.25	Bulk Density mg/m3	2008
Depth m	1.0m						
Our Ref	W			σ' _v kPa			
Soil type	SAND	•					
Rate of sh	nearing mm/m	nin	0.5	30			
>10 mm remo	oved			60			
				120			
Peak		Ultimate					
σ' _n kPa	τ kPa	σ' _n kPa	τ kPa				
30	0	30	30				
60	0	60	50				
120	O	120	97				

Peak angle of internal friction Cohesion kPa Ultimate angle of internal friction

39

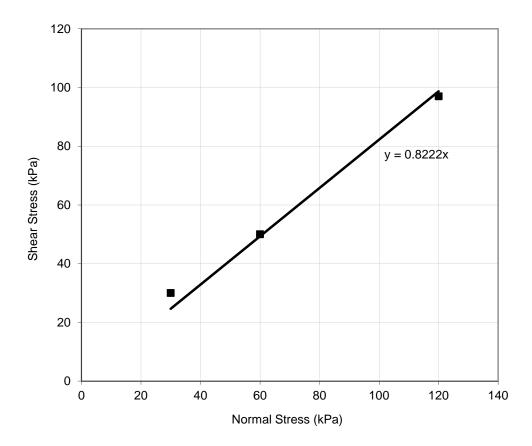


Figure 1 Failure Envelope

Arklow Sewerage Scheme

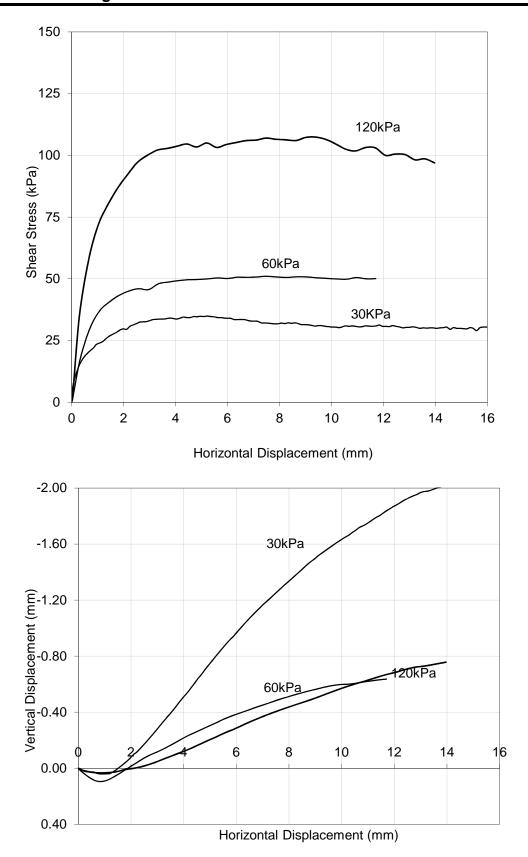
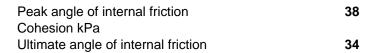



Figure 2 Stress-strain behaviour

QUB	Geotechnical Testing Laboratory

	_						
Arklow	Sewerage :	Scheme					
Ref:	17-0167		Size mm		100	Initial wet mass g	683
ВН	BH01		Thickness r	mm	33.25	Bulk Density mg/m3	2054
Depth m	3.5m			-			
Our Ref	V			σ' _v kPa			
Soil type	SAND						
Rate of sh	earing mm/mi	n	0.5	30			
>10 mm remo	ved			60			
				120			
Peak		Ultimate					
σ' _n kPa	τ kPa	σ' _n kPa	τ kPa				
30	27	30	25				
60	46	60	42				
120	96	120	82				

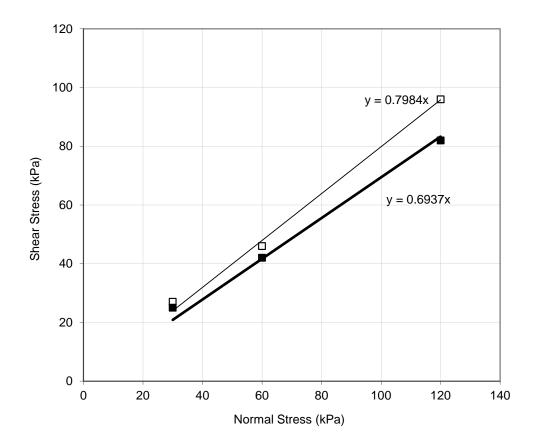


Figure 1 Failure Envelope

Arklow Sewerage Scheme

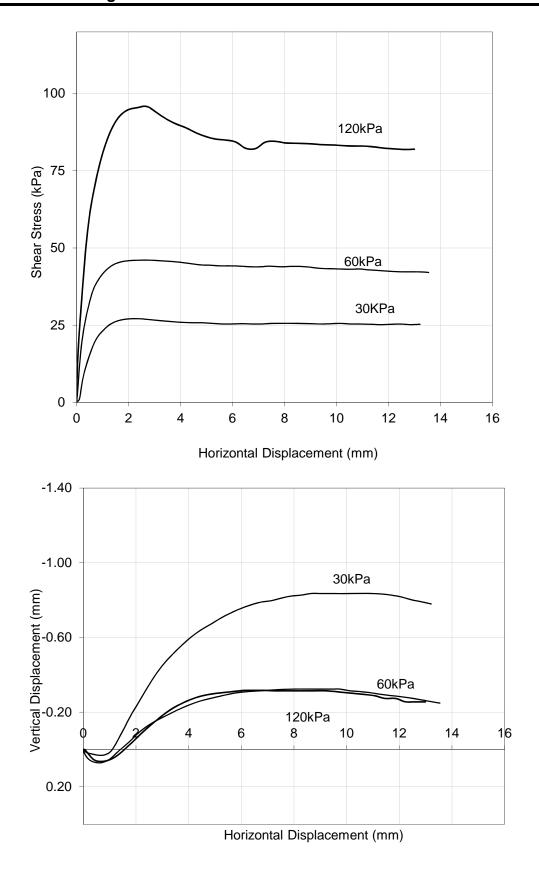


Figure 2 Stress-strain behaviour

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report No.: 17-24692-1

Initial Date of Issue: 25-Sep-2017

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Aisling O'Kane

Colm Hurley

Darren O'Mahony John Cameron John Duggan Matthew Gilbert Neil Haggan Paul Dunlop Paul McNamara Stephen Curtis Stephen Franey Stephen Watson

Project 17-0167 Arklow Sewerage Scheme

Marine Outfall GI

Quotation No.: Date Received: 19-Sep-2017

Order No.: Date Instructed: 19-Sep-2017

No. of Samples: 3

Turnaround (Wkdays): 5 Results Due: 25-Sep-2017

Date Approved: 25-Sep-2017

Approved By:

Details: Keith Jones, Technical Manager

Project: 17-0167 Arklow Sewerage Scheme Marine Outfall GI

Client: Causeway Geotech Ltd		Chemtest Job No.:			17-24692	17-24692	17-24692
Quotation No.:	(Chemte	st Sam	ple ID.:	513162	513163	513164
Order No.:	Client Location ID.:			D2	D4	D8	
		Client Sample Ref.:			BH01	BH01	BH01
	Sample Type:			SOIL	SOIL	SOIL	
	Top Depth (m):			1.00	2.00	4.00	
			Date Sa	ampled:	18-Sep-2017	18-Sep-2017	18-Sep-2017
Determinand	Accred.	SOP	Units	LOD			
Moisture	N	2030	%	0.020	9.4	14	17
рН	U	2010		N/A	8.5	8.4	8.5
Sulphate (2:1 Water Soluble) as SO4	U 2120 g/l 0.010		0.20	0.38	0.34		

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Client:	Irish Water
Engineer:	Byrne Looby ARUP J.V.
From:	Stephen Watson
	Laboratory Manager
	Causeway Geotech Ltd
Tel:	+44(0)2827666640
E-mail:	stephen.watson@causewaygeotech.com
Date:	30/10/17
Ref:	17-0167 - Schedules 4 & 5

Arklow Sewerage Scheme Marine Outfall GI

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the *Contents page(s)*.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 60 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Stephen Watson Laboratory Manager

Project Name Arklow Sewerage Scheme Marine Outfall GI

Report Reference. 17-0167 - Schedules 4 & 5

The table below details the tests carried out, the specifications used, and the number of tests included in this report:

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	Number of test results included in the report
SOIL	Moisture Content of Soil	BS1377: Part 2: Clause 3.2: 1990	26
SOIL	Liquid and Plastic Limits of soil -1-point cone penetrometer method	BS1377: Part 2: Clauses 4.4, 5.3 & 5.4 1990	7
SOIL	Bulk and dry density by Linear Measurement Method	BS1377: Part 2: Clause 7.2	2
SOIL	Particle size distribution - wet sieving	BS1377: Part 2: Clause 9.2: 1990	18
SOIL	Particle size distribution -sedimentation hydrometer method	BS1377: Part 2: Clause 9.5: 1990	7

Summary of Classification Test Results

Project No.

Project Name

17-0167

Arklow Sewerage Scheme Marine Outfall GI

Hole No. Ref	17-0	17-0167 Arkiow Sewerage Scheme Marine Outrali Gi													
Ref Top Base Type Solid Description Majority Majorit			Sar	mple					W	-	LL	PL	ΡI		Casagrande
BH04	Hole No.	Ref	qoT	Base	Type	Soil Description		1						1	
BH04			. ~~		.,,,,		Mg/m	13	%	%	%	%	%	Mg/m3	
BH04 18 3.00 D Common Stability of parently fine to member about over shell frequences. 15.0 16.0	BH04	14	1.00		D				6.7						
BH04 18 3.00 D Common Stability of parently fine to member about over shell frequences. 15.0 16.0						Crow brown eliability and the first									
BH04	BH04	16	2.00		D				15.0						
BH04	BH04	18	3.00		D	medium SAND with shell			16.0						
BH04	BH04	19	4.00		D	medium SAND with shell			20.0						
BH04 23 6.00 D Grey brown sandy slightly gravelly	BH04	20	4.20		В	medium SAND with shell			20.0						
BH04 25 7.00 B Grey brown gravelly fine to coarse SAND.	BH04	22	5.80		В				25.0	96	23 -1pt	13	10		CL
BH04 25 7.00 B SAND. 5.2 12.0 12.0	BH04	23	6.00		D				12.0						
BH04 9 13.50 D Grey brown slightly sandy silty 19.0 99 23 -1pt 12 11 CL	BH04	25	7.00		В				6.2						
BH04 10 14.00 D Grey brown slightly sandy silty CLAY. BH04 3 14.00 B Grey brown slightly sandy silty CLAY. BH04 5 17.00 B Grey brown slightly sandy silty CLAY. CL All tests performed in accordance with BS1377:1990 unless specified otherwise Cey Density test Liquid Limit Particle density Linear measurement unless: 4pt cone unless: sp - small pyknometer wd - water displacement cas - Casagrande method gj - gas jar Density test September S	BH04	26	9.00		В	Grey brown slightly gravelly fine to coarse SAND.			12.0						
BH04 3 14.00 B Grey brown slightly sandy silty BH04 5 17.00 B Grey brown slightly sandy silty CLAY. All tests performed in accordance with BS1377:1990 unless specified otherwise Cey Density test Linear measurement unless: Wd - water displacement cas - Casagrande method gj - gas jar All tests performed Date Printed Approved By Table 1 Sheet	BH04	9	13.50		D				19.0	99	23 -1pt	12	11		CL
BH04 5 17.00 B Grey brown slightly sandy silty 28.0 99 29 -1pt 19 10 CL All tests performed in accordance with BS1377:1990 unless specified otherwise Sey Density test Linear measurement unless: 4pt cone unless: yd - water displacement cas - Casagrande method gj - gas jar Approved By Table 30/10/2017 1 sheet	BH04	10	14.00		D				21.0						
All tests performed in accordance with BS1377:1990 unless specified otherwise Clay	BH04	3	14.00		В				22.0	99	23 -1pt	13	10		CL
Key Density test Liquid Limit Particle density Linear measurement unless: 4pt cone unless: sp - small pyknometer wd - water displacement cas - Casagrande method gj - gas jar Date Printed Approved By 1 1 5heet	BH04	5	17.00		В				28.0	99	29 -1pt	19	10		CL
Density test Liquid Limit Particle density Linear measurement unless: 4pt cone unless: sp - small pyknometer wd - water displacement cas - Casagrande method gj - gas jar 1 Sheet	All tests perfo	ormed	in acco	rdance v	vith BS	61377:1990 unless specified	d otherwi	ise							
Linear measurement unless: 4pt cone unless: sp - small pyknometer 30/10/2017 wd - water displacement cas - Casagrande method gj - gas jar sheet	Key								Date F	rinted		Appr	oved	Ву	Table
wd - water displacement cas - Casagrande method gj - gas jar sheet	-		mant!-	0.				oto-		00/40/00	17				1
				5 .				iet6[ou/ 10/20	17				sheet
I lotophonity atoon						-	<u>, </u>					Step	hen.	Watson	

Summary of Classification Test Results

Project No.

Project Name

17-0167

wd - water displacement

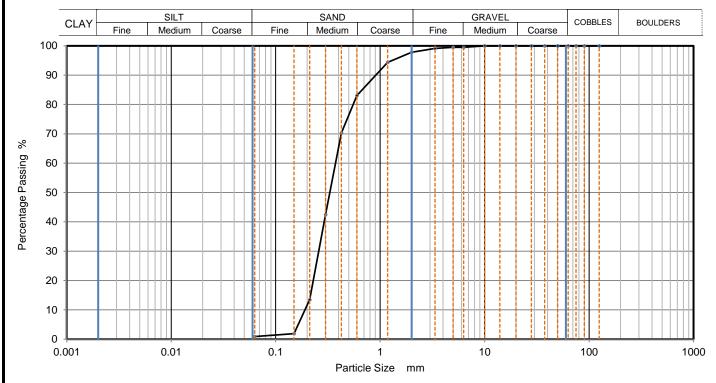
wi - immersion in water

cas - Casagrande method

1pt - single point test

Arklow Sewerage Scheme Marine Outfall GI

17-	0167				Ark	low Sew	erage	Schen	ne iviarin	ie Outrai	GI			
Hole No.	Ref	Sai Top	mple Base	Туре	Soil Description		dry	w	Passing 425µm	LL	PL	PI	Particle density	Casagrande Classification
		·				Mg/m	13	%	%	%	%	%	Mg/m3	
BH04	12	19.00		D	Grey brown slightly sandy silty CLAY.			11.0						
BH04	6	19.60		В	Grey brown sandy slightly gravelly silty CLAY.			21.0	81	29 -1pt	19	10		CL
BH04	34	23.50		В	Brown slightly sandy slightly silty subrounded fine to coarse GRAVEL with high cobble content.			10.0						
BH05	13	1.00		D	Grey brown gravelly fine to coarse SAND.			20.0						
BH05	15	3.00		D	Grey brown gravelly fine to coarse SAND.			31.0						
BH05	16	4.00		D	Grey brown gravelly fine to coarse SAND.			22.0						
BH05	10	5.20		В	Grey brown slightly sandy fine to coarse subangular fine to coarse GRAVEL.			7.7						
BH05	11	7.40		В	Grey brown slightly sandy slightly gravelly silty CLAY.			31.0						
BH05	19	9.00		D	Grey brown slightly sandy subrounded fine to coarse GRAVEL.			12.0						
BH05	23	12.00		В	Brown sandy gravelly silty CLAY.			13.0	53	30 -1pt	17	13		CL
BH05	25	14.00		В	Brown sandy gravelly silty CLAY.			14.0	57	29 -1pt	16	13		CL
BH05	28	17.00		D	Brown slightly sandy subrounded fine to coarse GRAVEL.			10.0						
BH05	31	19.00		D	Brown slightly sandy subrounded fine to coarse GRAVEL.			13.0						
All tests perf	ormed	l in acco	rdance v	vith BS	61377:1990 unless specifie	d otherw	ise	-						
Key								Date F	rinted		Appr	oved	Ву	Table
	neasure	ment unles	ss:	•		e density nall pyknom	eter	3	30/10/20	17				1 shoot


sheet

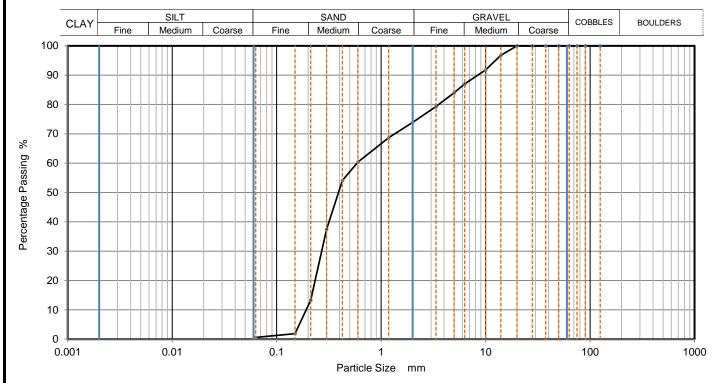
Stephen.Watson

gj - gas jar

CAUSEWAY GEOTECH						Dens	ity Te	ests -	Sum	mary	of R	esult	s		
Project No. 17-0	167		Project	t Nam	ne	Arklo	w Sew	erage	Schem	e Mari	ne Out	fall GI			
		San	nple			Linea	r Measure	ement	Imm	ersion in	water	Wate	r displace	ement	
Hole No.	Ref	Тор	Base	Туре	Soil Description	Bulk density Mg/m3	Dry density Mg/m3	w %	Bulk density Mg/m3	Dry density Mg/m3	w %	Bulk density Mg/m3	Dry density Mg/m3	w %	Remarks
BH04	13	0.00		В	Grey brown fine to coarse SAND with shell fragments.	1.79	1.56	14.6							
BH04	15	1.40		В	Grey brown slightly gravelly fine to coarse SAND with shell fragments.	1.98	1.73	14.1							
Legend w moisture content of the density test specimen															
Notes Tests carried out in accordance with BS1377:Part2:1990 and the following clauses unless annotated otherwise Linear measurement Linear measurement Linear measurement Clause 7.2 30/10/2017 Water displacement Clause 7.4								ved By hen.Wa		Table 1 sheet 1					

CAUSEWAY	DADTI	CLE SIZE DIST	DIDITION	Job Ref	17-0167		
——— GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	BH04		
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	13		
Soil Description	Grey brown fine to coarse	e SAND with shell fr	Depth, m	0.00			
Specimen Reference	4	Specimen Depth	m	Sample Type	В		
Test Method	BS1377:Part 2:1990, clau:	se 9.2		KeyLAB ID	Caus201710039		

Siev	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	98		
1.18	94		
0.6	83		
0.425	70		
0.3	43		
0.212	14]	
0.15	2]	
0.063	1		


Dry Mass of sample, g	2023
-----------------------	------

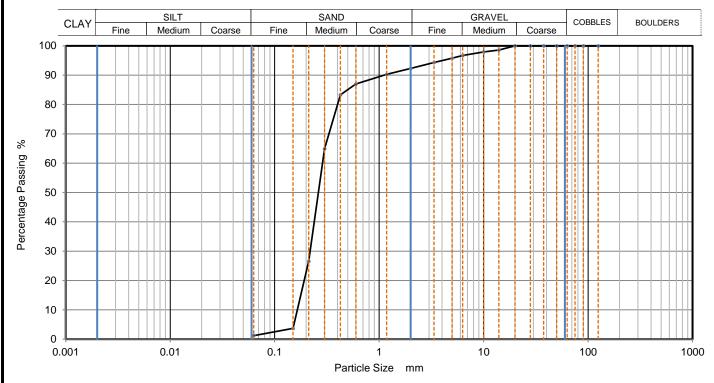
Sample Proportions	% dry mass		
Cobbles	0		
Gravel	2		
Sand	97		
Fines < 0.063mm	1		

Grading Analysis		
D100	mm	
D60	mm	0.373
D30	mm	0.258
D10	mm	0.191
Uniformity Coefficient		2
Curvature Coefficient		0.93

·		Fig	1
Stephen.Watson	30/10/2017 16:27	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
——— GEOTECH			Borehole/Pit No.	вно4	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	15
Soil Description	Grey brown slightly gravelly fine to coarse SAND with shell fragments.		Depth, m	1.40	
Specimen Reference	6 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus2017100311

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	97		
10	92		
6.3	87		
5	84		
3.35	79		
2	74		
1.18	69		
0.6	60		
0.425	54		
0.3	37		
0.212	13]	
0.15	2]	
0.063	1		

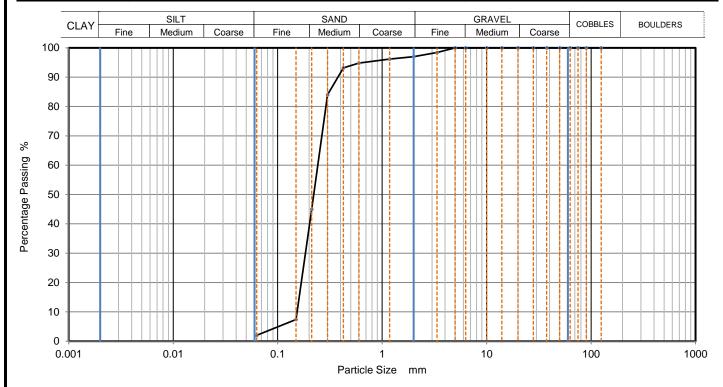

Dry Mass of sample, g	3213
-----------------------	------

Sample Proportions	% dry mass		
Cobbles	0		
Gravel	26		
Sand	73		
Fines < 0.063mm	1		

Grading Analysis		
D100	mm	
D60	mm	0.588
D30	mm	0.27
D10	mm	0.192
Uniformity Coefficient		3.1
Curvature Coefficient		0.64

20/40/2047 45 27	
Stephen.Watson 30/10/2017 16:27 Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167
——— GEOTECH			Borehole/Pit No.	ВН04
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	17
Soil Description	Grey brown slightly gravelly fine to medium SAND with shell fragments.		Depth, m	3.00
Specimen Reference	3 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017100313


Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	98		
6.3	97		
5	96		
3.35	94		
2	92		
1.18	90		
0.6	87		
0.425	83		
0.3	65		
0.212	27		
0.15	4		
0.063	1		

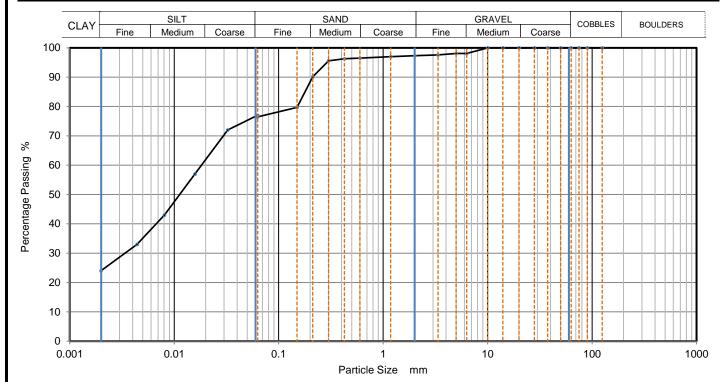
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	8	
Sand	91	
Fines < 0.063mm	1	

Grading Analysis		
D100	mm	
D60	mm	0.287
D30	mm	0.219
D10	mm	0.165
Uniformity Coefficient		1.7
Curvature Coefficient		1

·		Fig	1
Stephen.Watson	30/10/2017 16:27	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167
——— GEOTECH			Borehole/Pit No.	ВН04
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	20
Soil Description	Grey brown slightly gravelly fine to medium SAND with shell fragments.		Depth, m	4.20
Specimen Reference	7 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017100316

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	98		
2	97		
1.18	96		
0.6	95		
0.425	93		
0.3	84		
0.212	45		
0.15	7		
0.063	2		


Dry Mass of sample, g	2339

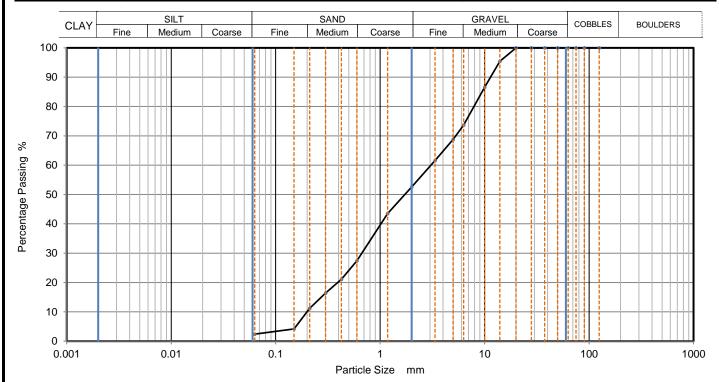
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	3	
Sand	95	
Fines < 0.063mm	2	

Grading Analysis		
D100	mm	
D60	mm	0.242
D30	mm	0.185
D10	mm	0.154
Uniformity Coefficient		1.6
Curvature Coefficient		0.92

·		Fig	1
Stephen.Watson	30/10/2017 16:27	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167
——GEOTECH			Borehole/Pit No.	ВН04
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	22
Soil Description	Grey brown sandy slightly gravelly silty CLAY.		Depth, m	5.80
Specimen Reference	7 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017100317

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	77
90	100	0.0325	72
75	100	0.0158	57
63	100	0.0080	43
50	100	0.0044	33
37.5	100	0.0020	24
28	100		
20	100		
14	100		
10	100		
6.3	98		
5	98		
3.35	98		
2	97		
1.18	97		
0.6	97	Particle density	(assumed)
0.425	96	2.65	Mg/m3
0.3	96		
0.212	90		
0.15	80		
0.063	77		


Dry Mass of sample, g	2132

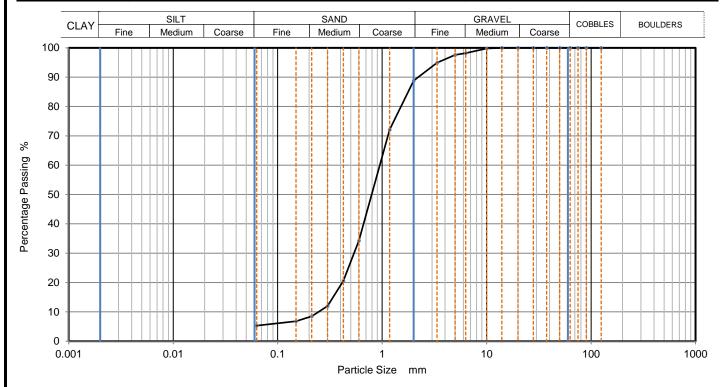
Sample Proportions	% dry mass
Cobbles	0
Gravel	3
Sand	21
Silt	53
Clay	24

Grading Analysis		
D100	mm	
D60	mm	0.018
D30	mm	0.0033
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

·		Fig	1
Stephen.Watson	30/10/2017 16:27		

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
—— GEOTECH			Borehole/Pit No.	ВН04	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI			25
Soil Description	Grey brown gravelly fine to coarse SAND.		Depth, m	7.00	
Specimen Reference	5	Specimen Depth	m	Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus2017100319

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	95		
10	87		
6.3	74		
5	69		
3.35	62		
2	53		
1.18	44		
0.6	27		
0.425	21		
0.3	16		
0.212	11		
0.15	4		
0.063	2		


_	
Dry Mass of sample, g	4446

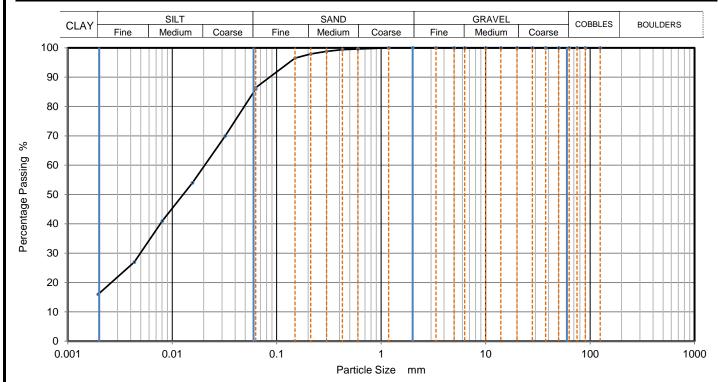
Sample Proportions	% dry mass
Cobbles	0
Gravel	47
Sand	50
Fines < 0.063mm	2

Grading Analysis		
D100	mm	
D60	mm	3.05
D30	mm	0.67
D10	mm	0.2
Uniformity Coefficient		15
Curvature Coefficient		0.74

20/40/2047 45 27	
Stephen.Watson 30/10/2017 16:27 Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH			Borehole/Pit No.	ВН04	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI			26
Soil Description	Grey brown slightly gravelly fine to coarse SAND.		Depth, m	9.00	
Specimen Reference	5	Specimen Depth	m	Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus2017100320

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	98		
5	98		
3.35	95		
2	89		
1.18	72		
0.6	34		
0.425	21		
0.3	12		
0.212	9		
0.15	7		
0.063	5		


Dry Mass of sample, g	2553

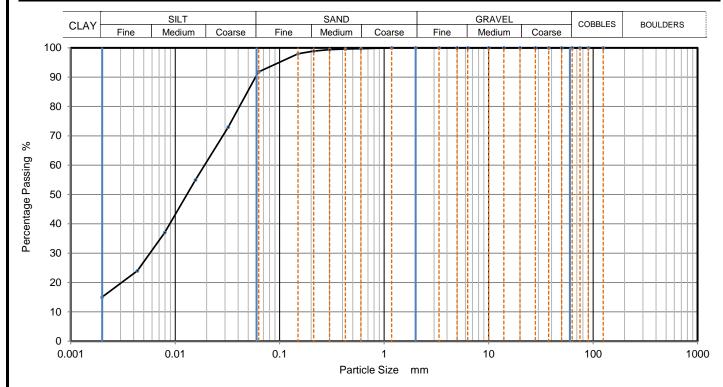
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	11	
Sand	84	
Fines < 0.063mm	5	

Grading Analysis		
D100	mm	
D60	mm	0.95
D30	mm	0.539
D10	mm	0.246
Uniformity Coefficient	·	3.9
Curvature Coefficient		1.2

20/40/2047 45 27	
Stephen.Watson 30/10/2017 16:27 Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
—— GEOTECH			Borehole/Pit No.	ВН04	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	3
Soil Description	Grey brown slightly sandy silty CLAY.		Depth, m	14.00	
Specimen Reference	7 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017100323

Sieving		Sedimo	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	86
90	100	0.0322	70
75	100	0.0156	54
63	100	0.0080	41
50	100	0.0043	27
37.5	100	0.0020	16
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	99	2.65	Mg/m3
0.3	99		
0.212	98	1	
0.15	97		
0.063	86		


Dry Mass of sample, g	1656
-----------------------	------

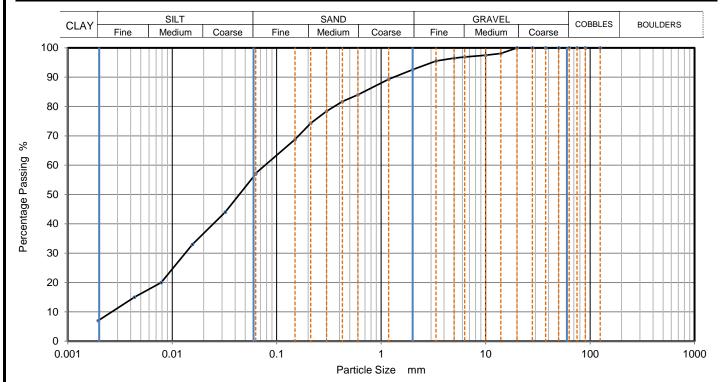
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	14
Silt	70
Clay	17

Grading Analysis		
D100	mm	
D60	mm	0.0204
D30	mm	0.00498
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

·		Fig	1
Stephen.Watson	30/10/2017 16:27	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
——— GEOTECH			Borehole/Pit No.	ВН04	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	5
Soil Description	Grey brown slightly sandy silty CLAY.		Depth, m	17.00	
Specimen Reference	7 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017100324

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	92
90	100	0.0322	73
75	100	0.0156	55
63	100	0.0079	37
50	100	0.0043	24
37.5	100	0.0020	15
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.65	Mg/m3
0.3	99		
0.212	99		
0.15	98		
0.063	92		


Dry Mass of sample, g	2564
, , , , ,	

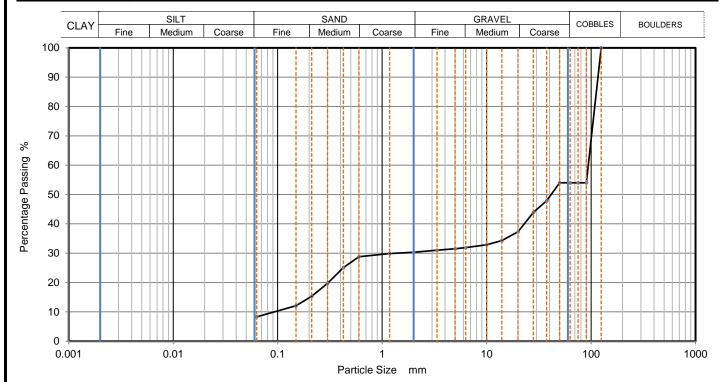
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	8
Silt	76
Clay	15

Grading Analysis		
D100	mm	
D60	mm	0.0189
D30	mm	0.0057
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

20/40/2047 45 27	
Stephen.Watson 30/10/2017 16:27 Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——GEOTECH			Borehole/Pit No.	ВН04	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	6
Soil Description	Grey brown sandy slightly gravelly silty CLAY.		Depth, m	19.60	
Specimen Reference	7 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017100326

Sieving		Sedimo	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	57
90	100	0.0322	44
75	100	0.0156	33
63	100	0.0078	20
50	100	0.0043	15
37.5	100	0.0020	7
28	100		
20	100		
14	98		
10	98		
6.3	97		
5	97		
3.35	96		
2	93		
1.18	89		
0.6	84	Particle density	(assumed)
0.425	82	2.65	Mg/m3
0.3	78		
0.212	74		
0.15	69		
0.063	57		


Dry Mass of sample, g	2397
-----------------------	------

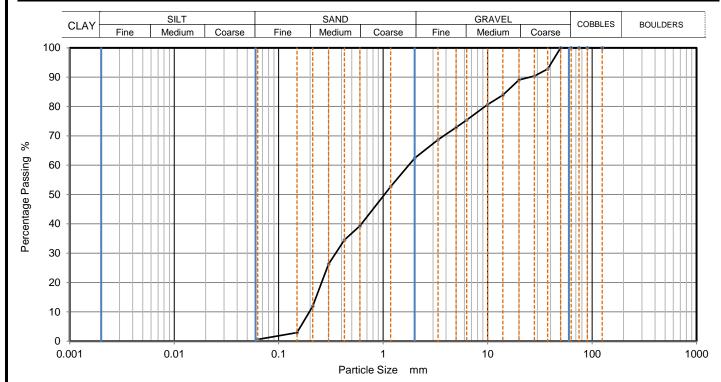
Sample Proportions	% dry mass
Cobbles	0
Gravel	7
Sand	35
Silt	50
Clay	8

Grading Analysis		
D100	mm	
D60	mm	0.0775
D30	mm	0.0131
D10	mm	0.0026
Uniformity Coefficient		30
Curvature Coefficient		0.86

Stephen. Watson 30/10/2017 16:27 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	30/10/2017 16:27	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
——— GEOTECH			Borehole/Pit No.	ВН04	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	34
Soil Description	Brown slightly sandy slightly silty subrounded fine to coarse GRAVEL with high cobble content.		Depth, m	23.50	
Specimen Reference	5 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017100327	

Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	54		
75	54		
63	54		
50	54		
37.5	48		
28	44		
20	37		
14	34		
10	33		
6.3	32		
5	32		
3.35	31		
2	30		
1.18	30		
0.6	29		
0.425	25		
0.3	20		
0.212	15]	
0.15	12		
0.063	8		


Dry Mass of sample, g	9970
-----------------------	------

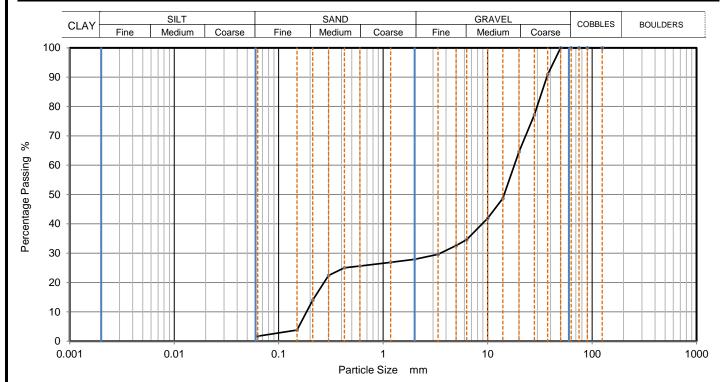
Sample Proportions	% dry mass	
Cobbles	46	
Gravel	24	
Sand	22	
Fines < 0.063mm	8	

Grading Analysis		
D100	mm	125
D60	mm	93.9
D30	mm	1.38
D10	mm	0.0925
Uniformity Coefficient		1000
Curvature Coefficient		0.22

·		Fig	1
Stephen.Watson	30/10/2017 16:27	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH			Borehole/Pit No.	ВН05	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	7
Soil Description	Grey brown gravelly fine to coarse SAND.		Depth, m	0.00	
Specimen Reference	3	Specimen Depth	m	Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus2017100328

Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	93		
28	90		
20	89		
14	84		
10	81		
6.3	75		
5	73		
3.35	69		
2	62		
1.18	53		
0.6	39		
0.425	35		
0.3	26		
0.212	12		
0.15	3		
0.063	1		


Dry Mass of sample, g	3475

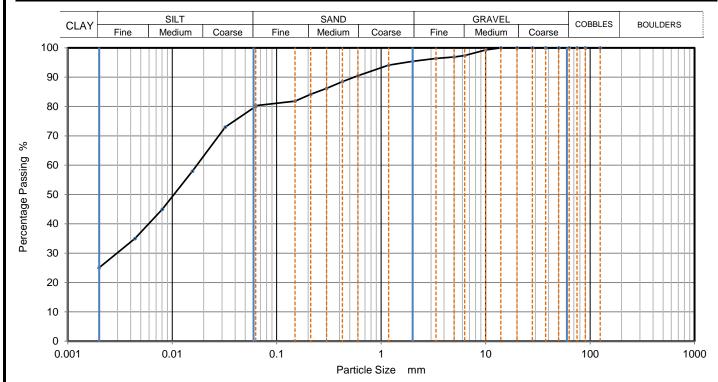
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	38	
Sand	62	
Fines < 0.063mm	1	

Grading Analysis		
D100	mm	
D60	mm	1.75
D30	mm	0.351
D10	mm	0.197
Uniformity Coefficient		8.9
Curvature Coefficient		0.36

20/40/2047 45 27	
Stephen.Watson 30/10/2017 16:27 Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167
——— GEOTECH			Borehole/Pit No.	вн05
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	10
Soil Description	Grey brown slightly sandy fine to coarse subangular fine to coarse GRAVEL.		Depth, m	5.20
Specimen Reference	5 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017100332

Siev	/ing	Sedimer	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	91		
28	77		
20	65		
14	49		
10	42		
6.3	35		
5	33		
3.35	30		
2	28		
1.18	27		
0.6	26		
0.425	25		
0.3	22		
0.212	14		
0.15	4		
0.063	2		


Dry Mass of sample, g	6508
-----------------------	------

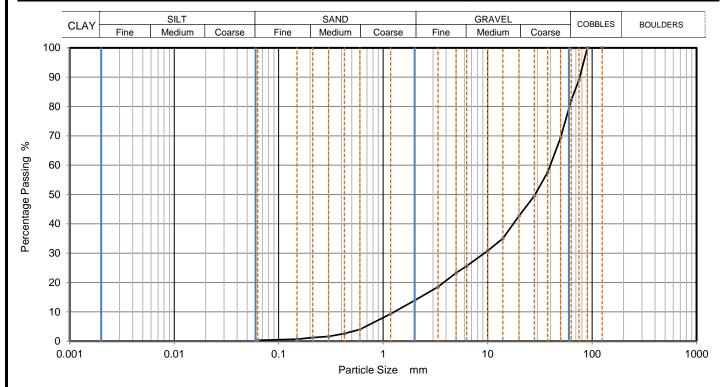
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	72	
Sand	26	
Fines < 0.063mm	2	

Grading Analysis		
D100	mm	
D60	mm	18
D30	mm	3.55
D10	mm	0.185
Uniformity Coefficient		97
Curvature Coefficient		3.8

·		Fig	1
Stephen.Watson	30/10/2017 16:27	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вн05
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	11
Soil Description	Grey brown slightly sandy slightly gravelly silty CLAY.		Depth, m	7.40
Specimen Reference	5 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017100333

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	80
90	100	0.0322	73
75	100	0.0156	58
63	100	0.0080	45
50	100	0.0044	35
37.5	100	0.0020	25
28	100		
20	100		
14	100		
10	99		
6.3	97		
5	97		
3.35	96		
2	95		
1.18	94		
0.6	91	Particle density	(assumed)
0.425	89	2.65	Mg/m3
0.3	86		
0.212	84		
0.15	82		
0.063	80		


Dry Mass of sample, g	1400
-----------------------	------

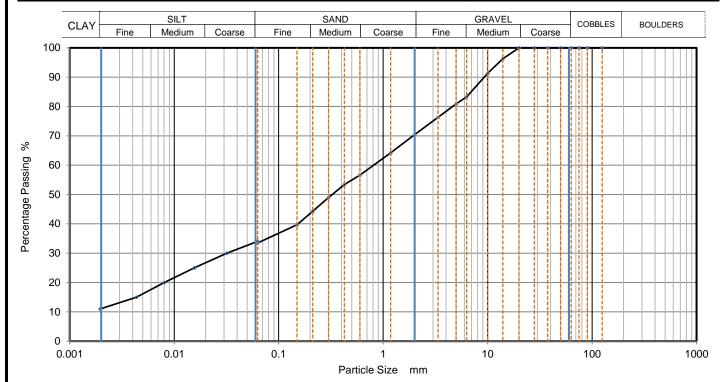
Sample Proportions	% dry mass
Cobbles	0
Gravel	5
Sand	15
Silt	55
Clay	25

Grading Analysis		
D100	mm	
D60	mm	0.0174
D30	mm	0.00293
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

·		Fig	1
Stephen.Watson	30/10/2017 16:27	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вн05
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	20
Soil Description	Grey brown slightly sandy subrounded fine to coarse GRAVEL with low cobble content.		Depth, m	9.00
Specimen Reference	Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017100335

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	89		
63	82		
50	69		
37.5	58		
28	50		
20	43		
14	35		
10	31		
6.3	26		
5	23		
3.35	19		
2	14		
1.18	9		
0.6	4		
0.425	3		
0.3	2		
0.212	1		
0.15	1		
0.063	0		


Dry Mass of sample, g	11671

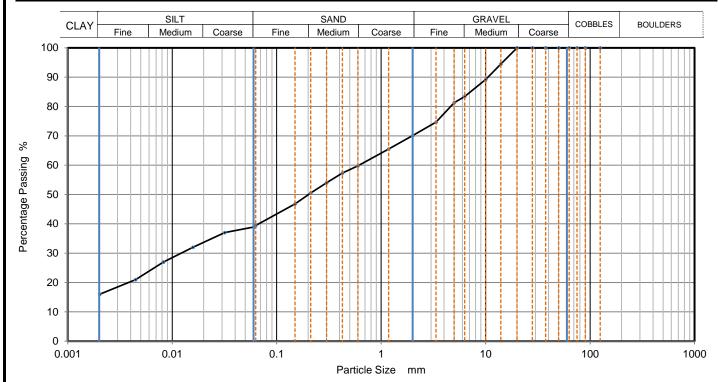
Sample Proportions	% dry mass	
Cobbles	18	
Gravel	68	
Sand	14	
Fines < 0.063mm	0	

Grading Analysis		
D100	mm	
D60	mm	39.8
D30	mm	9.29
D10	mm	1.28
Uniformity Coefficient	·	31
Curvature Coefficient		1.7

·		Fig	1
Stephen.Watson	30/10/2017 16:27	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167
——— GEOTECH			Borehole/Pit No.	вн05
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	23
Soil Description	Brown sandy gravelly silty CLAY.		Depth, m	12.00
Specimen Reference	7 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017100336

Siev	ving	Sedimo	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	34
90	100	0.0319	30
75	100	0.0156	25
63	100	0.0080	20
50	100	0.0043	15
37.5	100	0.0020	11
28	100		
20	100		
14	96		
10	91		
6.3	83		
5	81		
3.35	76		
2	70		
1.18	64		
0.6	57	Particle density	(assumed)
0.425	53	2.65	Mg/m3
0.3	49		
0.212	44		
0.15	40		
0.063	34		


Dry Mass of sample, g	3292
-----------------------	------

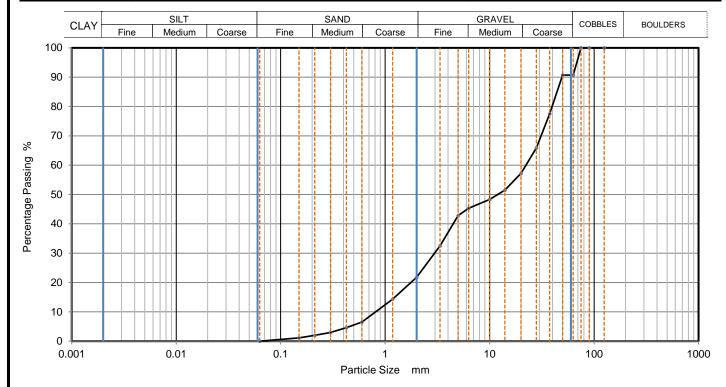
Sample Proportions	% dry mass
Cobbles	0
Gravel	30
Sand	37
Silt	23
Clay	11

Grading Analysis		
D100	mm	
D60	mm	0.81
D30	mm	0.0344
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

·		Fig	1
Stephen.Watson	30/10/2017 16:27	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167
—— GEOTECH			Borehole/Pit No.	вн05
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	25
Soil Description	Brown sandy gravelly silty CLAY.		Depth, m	14.00
Specimen Reference	7 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017100337

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0619	39
90	100	0.0319	37
75	100	0.0158	32
63	100	0.0083	27
50	100	0.0045	21
37.5	100	0.0020	16
28	100		
20	100		
14	95		
10	89		
6.3	83		
5	81		
3.35	75		
2	70		
1.18	66		
0.6	60	Particle density	(assumed)
0.425	57	2.65	Mg/m3
0.3	54		
0.212	51		
0.15	47		
0.063	39		


Dry Mass of sample, g	3474

Sample Proportions	% dry mass
Cobbles	0
Gravel	30
Sand	31
Fines < 0.063mm	39

Grading Analysis		
D100	mm	
D60	mm	0.613
D30	mm	0.0121
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

20/40/2047 45 27	
Stephen.Watson 30/10/2017 16:27 Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -			Job Ref	17-0167
——— GEOTECH				Borehole/Pit No.	ВН05
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	27
Soil Description	Brown slightly sandy subrounded fine to coarse GRAVEL with low cobble content.			Depth, m	17.00
Specimen Reference	Specimen m Depth			Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus2017100338

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	91		
50	91		
37.5	78		
28	66		
20	57		
14	52		
10	48		
6.3	45		
5	43		
3.35	33		
2	22		
1.18	14		
0.6	7		
0.425	5		
0.3	3		
0.212	2		
0.15	1		
0.063	0		

Dry Mass of sample, g	9857

Sample Proportions	% dry mass
Cobbles	9
Gravel	69
Sand	22
Fines <0.063mm	0

Grading Analysis		
D100	mm	
D60	mm	22.3
D30	mm	2.97
D10	mm	0.81
Uniformity Coefficient		28
Curvature Coefficient		0.49

	Fig 1	
Stephen. Watson 30/10/2017 16:28	Sheet	

LABORATORY RESTRICTION REPORT

Project Reference	17-0167	То	Neil Haggan
Project Name	Arklow Sewerage Scheme Marine Outfall GI	Position	Project Manager
,		From	Stephen Watson
TR reference	17-0167 / 4 & 5	Position	Laboratory Manager

The following sample(s) and test(s) are restricted as detailed below.

Hole	1 5	Sample		Test		
Number	Number	Depth	Туре	Туре	Reason for Restriction	Required Action
		(m)				
BH04	20	4.20- 5.00	В	Atterberg Limits	SAND - Scheduled testing not suitable.	Cancelled

For electronic reporting a form of electronic signature or printed name is acceptable

Laboratory Signature Stephen Watson	Project Manager Signature Neil Haggan
Date	Date
30 October 2017	30 January 2017

TEST RESTRICTION FORM

Issue No. 1 Page 1 of 1 Date 30/10/2017

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Client:	Irish Water
Engineer:	Byrne Looby ARUP J.V.
From:	Stephen Watson
	Laboratory Manager
	Causeway Geotech Ltd
Tel:	+44(0)2827666640
E-mail:	stephen.watson@causewaygeotech.com
Date:	09/11/17
Ref:	17-0167 - Schedule 6

Arklow Sewerage Scheme Marine Outfall GI

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the *Contents page(s)*.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 60 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Stephen Watson Laboratory Manager

Project Name Arklow Sewerage Scheme Marine Outfall GI

Report Reference. 17-0167 - Schedule 6

The table below details the tests carried out, the specifications used, and the number of tests included in this report:

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	Number of test results included in the report
SOIL	Moisture Content of Soil	BS1377: Part 2: Clause 3.2: 1990	10
SOIL	Liquid and Plastic Limits of soil -1-point cone penetrometer method	BS1377: Part 2: Clauses 4.4, 5.3 & 5.4 1990	2
SOIL	Particle size distribution - wet sieving	BS1377: Part 2: Clause 9.2: 1990	10
SOIL	Particle size distribution -sedimentation hydrometer method	BS1377: Part 2: Clause 9.5: 1990	2

Summary of Classification Test Results

Project No.

Project Name

Liquid Limit

4pt cone unless:

cas - Casagrande method

1pt - single point test

Linear measurement unless:

wd - water displacement

wi - immersion in water

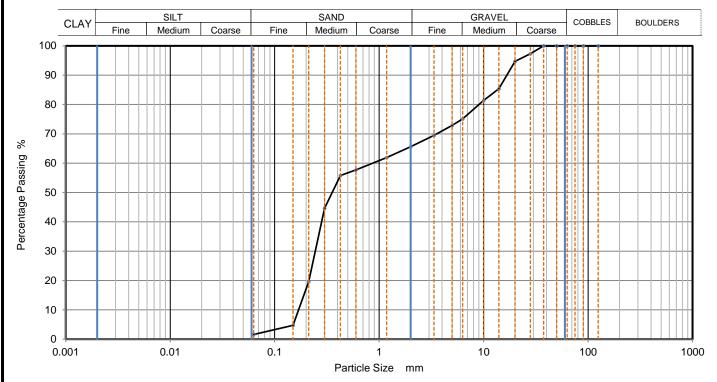
17-0167

Arklow Sewerage Scheme Marine Outfall GI

17-	0167				Ark	low Sew	erage	Schen	ne Marir	ne Outfal	I GI			
Hole No.	Ref	Sai Top	mple Base	Туре	Soil Description	Dens bulk	dry	W	Passing 425µm	LL	PL	PI	Particle density	Casagrande Classification
BH06	1	0.00		В	Dark grey gravelly fine to medium SAND.	Mg/m	13	14.0	%	%	%	%	Mg/m3	
BH06	3	1.30		В	Dark grey slightly gravelly fine medium SAND.			20.0						
BH06	7	3.00		В	Dark grey slightly gravelly fine to medium SAND.			19.0						
BH06	9	4.40		В	Dark grey gravelly fine to medium SAND.			14.0						
BH06	11	5.00		В	Brownish grey slightly sandy subrounded fine to coarse GRAVEL.			6.2						
BH06	13	6.20		В	Brown slightly sandy slightly gravelly silty CLAY.			16.0	68	34 -1pt	16	18		CL
BH06	20	9.00		В	Brown slightly sandy slightly gravelly silty CLAY.			18.0	67	34 -1pt	17	17		CL
BH06	15	12.60		В	Brown sandy subangular to subrounded fine to coarse GRAVEL.			8.6						
BH06	26	14.00		В	Brown slightly sandy subangular to subrounded fine to coarse GRAVEL.			5.1						
BH06	22	16.00		В	Brown slightly sandy subangular to subrounded fine to coarse GRAVEL with low cobble content.			3.8						
II tests perf	ormed	I in acco	rdance v	vith BS	S1377:1990 unless specifie	d otherw	ise							
ey	40.04			Liquid	Limit	o donait:		Date F	rinted		Appr	oved	Ву	Table

Particle density

gj - gas jar


sp - small pyknometer

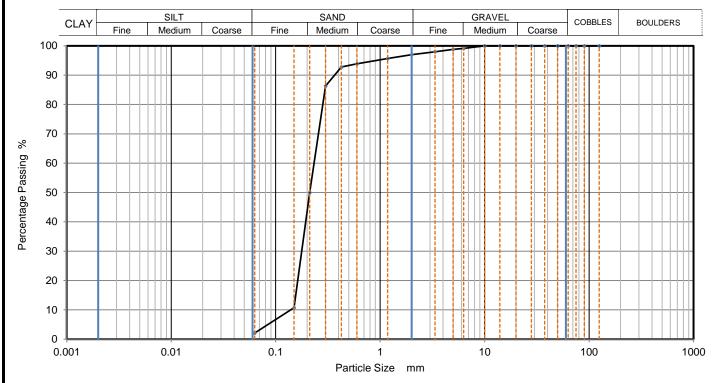
11/09/2017 00:00

sheet

Stephen.Watson

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
—— GEOTECH				Borehole/Pit No.	вно6
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	1
Soil Description	Dark grey gravelly fine to medium SAND.			Depth, m	0.00
Specimen Reference	6 Specimen m			Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus201710090

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	97		
20	95		
14	85		
10	81		
6.3	75		
5	73		
3.35	70		
2	66		
1.18	62		
0.6	58		
0.425	56		
0.3	45		
0.212	20		
0.15	5		
0.063	2		


Dry Mass of sample, g	5255

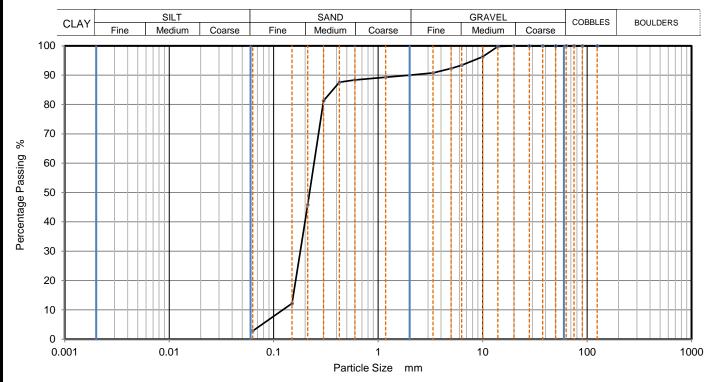
Sample Proportions	% dry mass
Cobbles	0
Gravel	34
Sand	64
Fines < 0.063mm	2

Grading Analysis		
D100	mm	
D60	mm	0.868
D30	mm	0.245
D10	mm	0.17
Uniformity Coefficient	·	5.1
Curvature Coefficient		0.41

Approved	Sheet printed	Fig	1
Stephen.Watson	09/11/2017 08:13	Sheet	

CAUSEWAY	DADTI	CLE SIZE DIST	Job Ref	17-0167	
——GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	вно6
Site Name	Arklow Sewerage Sche	me Marine Outfa	Sample No.	3	
Soil Description	Dark grey slightly gravelly fine medium SAND.			Depth, m	1.30
Specimen Reference	6 Specimen m			Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus201710091

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	99		
3.35	98		
2	97		
1.18	96		
0.6	94		
0.425	93		
0.3	86		
0.212	50		
0.15	11		
0.063	2		


Dry Mass of sample, g	3067

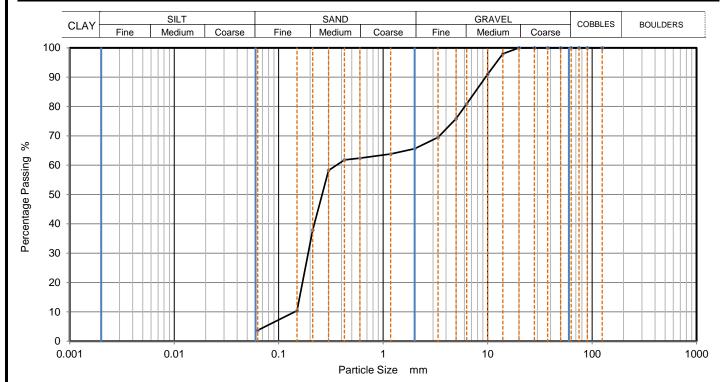
Sample Proportions	% dry mass
Cobbles	0
Gravel	3
Sand	95
Fines < 0.063mm	2

Grading Analysis		
D100	mm	
D60	mm	0.233
D30	mm	0.178
D10	mm	0.139
Uniformity Coefficient		1.7
Curvature Coefficient		0.97

Approved	Sheet printed	Fig	1
Stephen.Watson	09/11/2017 08:13	Sheet	

CAUSEWAY	DADTI	PARTICLE SIZE DISTRIBUTION			17-0167
——GEOTECH			Borehole/Pit No.	вно6	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	7
Soil Description	Dark grey slightly gravelly fine to medium SAND.		Depth, m	3.00	
Specimen Reference	6 Specimen m Depth			Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus201710092	

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	96		
6.3	93		
5	92		
3.35	91		
2	90		
1.18	89		
0.6	88		
0.425	88		
0.3	81		
0.212	46]	
0.15	12]	
0.063	3		


Dry Mass of sample, g	3440
-----------------------	------

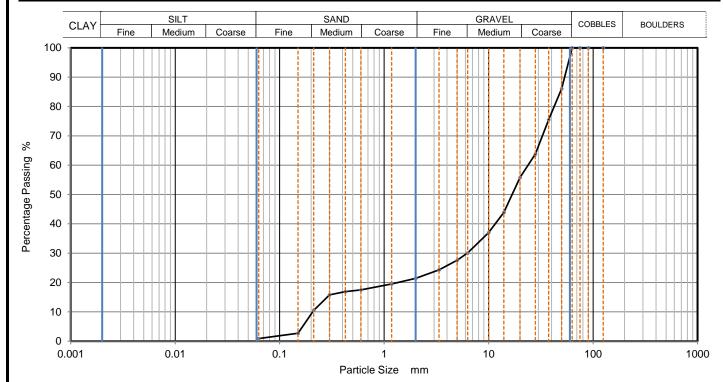
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	10	
Sand	87	
Fines < 0.063mm	3	

Grading Analysis		
D100	mm	
D60	mm	0.244
D30	mm	0.18
D10	mm	0.123
Uniformity Coefficient		2
Curvature Coefficient		1.1

Approved	Sheet printed	Fig	1
Stephen.Watson	09/11/2017 08:13	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
GEOTECH PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно6		
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	9	
Soil Description	Dark grey gravelly fine to medium SAND.		Depth, m	4.40	
Specimen Reference	6 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus201710093	

Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	98		
10	91		
6.3	81		
5	76		
3.35	70		
2	66		
1.18	64		
0.6	62		
0.425	62		
0.3	58		
0.212	38		
0.15	10		
0.063	4		


Dry Mass of sample, g	3860
-----------------------	------

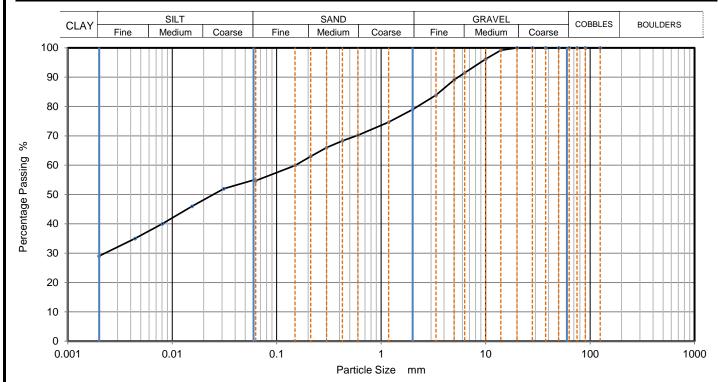
Sample Proportions	% dry mass
Cobbles	0
Gravel	34
Sand	62
Fines < 0.063mm	4

Grading Analysis		
D100	mm	
D60	mm	0.356
D30	mm	0.192
D10	mm	0.143
Uniformity Coefficient		2.5
Curvature Coefficient		0.72

Approved	Sheet printed	Fig	1
Stephen.Watson	09/11/2017 08:13	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
GEOTECH PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно6		
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	11
Soil Description	Brownish grey slightly sandy subrounded fine to coarse GRAVEL.		Depth, m	5.00	
Specimen Reference	6 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus201710094	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	86		
37.5	76		
28	64		
20	56		
14	44		
10	37		
6.3	30		
5	28		
3.35	24		
2	21		
1.18	20		
0.6	18		
0.425	17		
0.3	16		
0.212	11]	
0.15	3		
0.063	1		


Dry Mass of sample, g	7942
-----------------------	------

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	79	
Sand	21	
Fines < 0.063mm	1	

Grading Analysis		
D100	mm	
D60	mm	23.9
D30	mm	6.23
D10	mm	0.207
Uniformity Coefficient		120
Curvature Coefficient		7.8

Approved	Sheet printed	Fig	1
Stephen.Watson	09/11/2017 08:13	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
GEOTECH PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно6		
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	13
Soil Description	Brown slightly sandy slightly gravelly silty CLAY.		Depth, m	6.20	
Specimen Reference	8 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201710095	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0606	55	
90	100	0.0312	52	
75	100	0.0154	46	
63	100	0.0080	40	
50	100	0.0044	35	
37.5	100	0.0020	29	
28	100			
20	100			
14	99			
10	96			
6.3	92			
5	89			
3.35	84			
2	79			
1.18	75			
0.6	70	Particle density	(assumed)	
0.425	68	2.65	Mg/m3	
0.3	66			
0.212	63			
0.15	60			
0.063	55			

Dry Mass of sample, g	2639

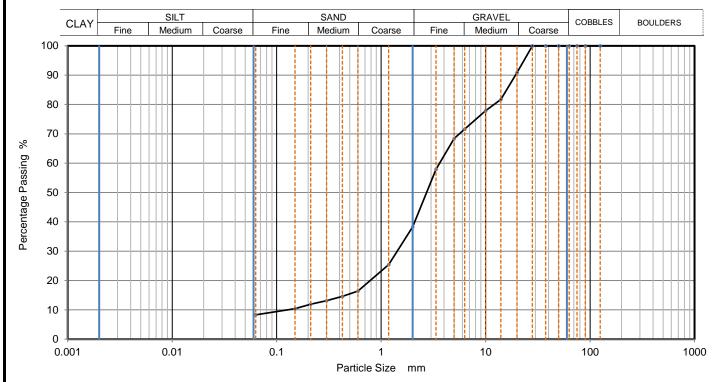
Sample Proportions	% dry mass
Cobbles	0
Gravel	21
Sand	24
Silt	26
Clay	29

Grading Analysis		
D100	mm	
D60	mm	0.152
D30	mm	0.00235
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen.Watson	09/11/2017 08:13	Sheet	

CAUSEWAY	CAUSEWAY PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
——— GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	вно6
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI			20
Soil Description	Brown slightly sandy slightly gravelly silty CLAY.			Depth, m	9.00
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	SS1377:Part 2:1990, clauses 9.2 and 9.5			Caus201710096

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0619	53	
90	100	0.0312	47	
75	100	0.0154	41	
63	100	0.0079	33	
50	100	0.0043	27	
37.5	100	0.0020	22	
28	100			
20	100			
14	99			
10	98			
6.3	94			
5	92			
3.35	87			
2	81			
1.18	76			
0.6	70	Particle density	(assumed)	
0.425	67	2.65	Mg/m3	
0.3	65			
0.212	62			
0.15	59			
0.063	53			


Dry Mass of sample, g	2465

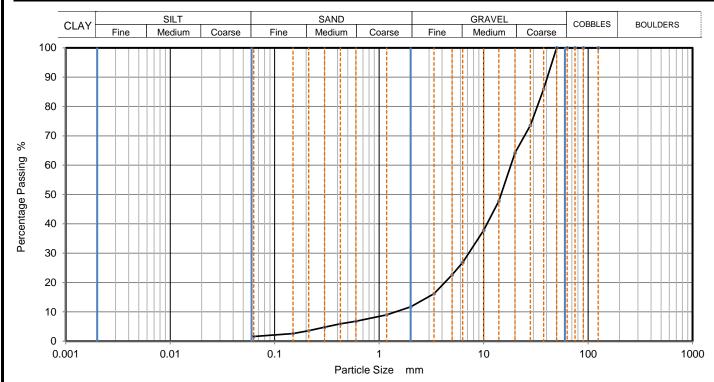
Sample Proportions	% dry mass
Cobbles	0
Gravel	19
Sand	28
Silt	31
Clay	22

Grading Analysis		
D100	mm	
D60	mm	0.165
D30	mm	0.00603
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen.Watson	09/11/2017 08:13	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——— GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	вно6
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI			15
Soil Description	Brown sandy subangular to subrounded fine to coarse GRAVEL.			Depth, m	12.60
Specimen Reference	6 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, claus	3S1377:Part 2:1990, clause 9.2			Caus201710097

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	91		
14	82		
10	78		
6.3	72		
5	68		
3.35	58		
2	38		
1.18	25		
0.6	16		
0.425	15		
0.3	13		
0.212	12		
0.15	10		
0.063	8		


Dry Mass of sample, g	4140

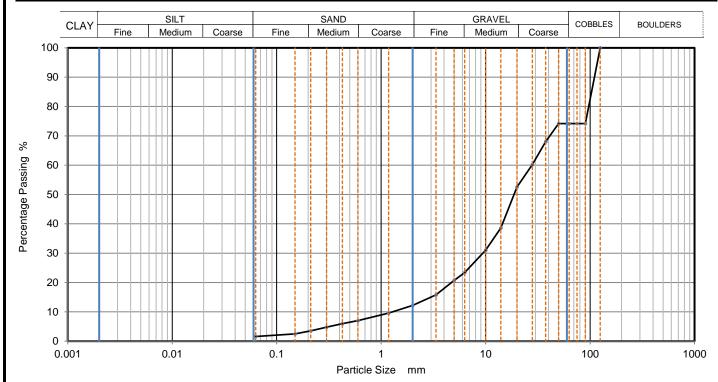
Sample Proportions	% dry mass
Cobbles	0
Gravel	62
Sand	30
Fines < 0.063mm	8

Grading Analysis		
D100	mm	
D60	mm	3.64
D30	mm	1.42
D10	mm	0.126
Uniformity Coefficient		29
Curvature Coefficient		4.4

09/11/2017 08:13	Approved	Sheet printed	Fig	1
Sheet Sheet	Stephen.Watson	09/11/2017 08:13	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
GEOTECH PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно6		
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	26
Soil Description	Brown slightly sandy subangular to subrounded fine to coarse GRAVEL.		Depth, m	14.00	
Specimen Reference	6 Specimen m			Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus201710098	

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	86		
28	74		
20	64		
14	48		
10	38		
6.3	27		
5	23		
3.35	16		
2	12		
1.18	9		
0.6	7		
0.425	6		
0.3	5		
0.212	4		
0.15	3		
0.063	2		


Dry Mass of sample, g	10040

Sample Proportions	% dry mass
Cobbles	0
Gravel	88
Sand	10
Fines < 0.063mm	2

Grading Analysis		
D100	mm	
D60	mm	18.3
D30	mm	7.2
D10	mm	1.43
Uniformity Coefficient		13
Curvature Coefficient		2

Approved	Sheet printed	Fig	1
Stephen.Watson	09/11/2017 08:13	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
GEOTECH PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно6		
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	22	
Soil Description	Brown slightly sandy subangular to subrounded fine to coarse GRAVEL with low cobble content.		Depth, m	16.00	
Specimen Reference	6 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus201710099	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	74		
75	74		
63	74		
50	74		
37.5	68		
28	60		
20	53		
14	39		
10	31		
6.3	23		
5	21		
3.35	16		
2	12		
1.18	10		
0.6	7		
0.425	6		
0.3	5		
0.212	4]	
0.15	3		
0.063	2		

Dry Mass of sample, g	10735

Sample Proportions	% dry mass	
Cobbles	26	
Gravel	62	
Sand	11	
Fines < 0.063mm	2	

Grading Analysis		
D100	mm	125
D60	mm	27.8
D30	mm	9.43
D10	mm	1.29
Uniformity Coefficient		22
Curvature Coefficient		2.5

Approved	Sheet printed	Fig	1
Stephen.Watson	09/11/2017 08:13	Sheet	

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Client:	Irish Water
Engineer:	Byrne Looby ARUP J.V.
From:	Stephen Watson
	Laboratory Manager
	Causeway Geotech Ltd
Tel:	+44(0)2827666640
E-mail:	stephen.watson@causewaygeotech.com
Date:	04/12/17
Ref:	17-0167 - Schedule 7

Arklow Sewerage Scheme Marine Outfall GI

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the *Contents page(s)*.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 60 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Stephen Watson Laboratory Manager

Project Name Arklow Sewerage Scheme Marine Outfall GI

Report Reference. 17-0167 - Schedule 7

The table below details the tests carried out, the specifications used, and the number of tests included in this report:

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	Number of test results included in the report
SOIL	Moisture Content of Soil	BS1377: Part 2: Clause 3.2: 1990	15
SOIL	Liquid and Plastic Limits of soil -1-point cone penetrometer method	BS1377: Part 2: Clauses 4.4, 5.3 & 5.4 1990	6
SOIL	Particle size distribution - wet sieving	BS1377: Part 2: Clause 9.2: 1990	13
SOIL	Particle size distribution -sedimentation hydrometer method	BS1377: Part 2: Clause 9.5: 1990	6
SOIL – Subcontracted to Pro Soils Ltd	Direct Shear Strength using 60mm Small Shear box (up to 4 days)	BS1377: Part 7: Clause 4: 1990	6

Summary of Classification Test Results

Project No.

Project Name

17-0167

1pt - single point test

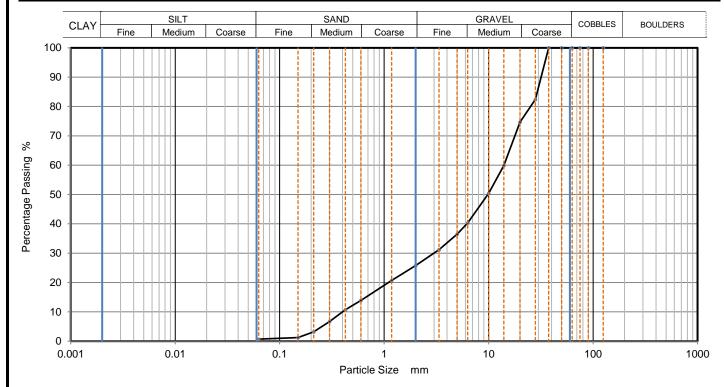
Arklow Sewerage Scheme Marine Outfall GI

	107	Sar	mple		,	Dens		W	Passing	LL	PL	PI	Particle	
Hole No.	Ref	Тор	Base	Туре	Soil Description		dry	%	425µm	%	%	%	density Mg/m3	Casagrande Classification
BH07	1	0.00		В	Dark grey slightly sandy subrounded fine to coarse GRAVEL with shell fragments.	Wight		4.7	70	70	70	70	Wg/IIIO	
BH07	2	1.00		В	Grey sandy subangular fine to coarse GRAVEL with shell fragments.			13.0						
BH07	3	2.50		В	Grey slightly sandy gravelly silty CLAY.			24.0						
BH07	5	3.50		В	Grey sandy subrounded fine to coarse GRAVEL with low cobble content.			4.1						
BH07	7	5.30		В	Brownish grey gravelly fine to coarse SAND.			16.0						
BH07	8	6.20		В	Greyish brown silty fine to medium SAND.			21.0	100	29 -1pt	NP			
BH07	9	6.60		В	Greyish brown slightly sandy slightly clayey SILT.			26.0						
BH07	17	7.00		D	Greyish brown slightly sandy silty CLAY.			23.0	98	30 -1pt	19	11		CL
BH07	18	8.00		D	Brown slightly sandy gravelly silty CLAY.			23.0	98	36 -1pt	20	16		CI
BH07	10	9.00		В	Brown slightly sandy silty CLAY.			25.0	97	30 -1pt	19	11		CL
BH08	1	0.00		В	Dark grey sandy subangular fine to coarse GRAVEL.			11.0						
BH08	2	1.50		В	Dark grey slightly gravelly fine to medium SAND with shell fragments.			17.0						
BH08	3	2.30		В	Dark grey slightly gravelly fine to medium SAND.			20.0						
Il tests perfe	ormed	l in acco	rdance v	with BS	\$1377:1990 unless specifie	d otherwi	se							
	neasurei ter displa	ment unles	s:	cas - C		e density nall pyknom s jar	eter	Date F	Printed 01/2017			oved	By Watson	Table 1 sheet 1

Stephen.Watson

Summary of Classification Test Results

Project No.


Project Name

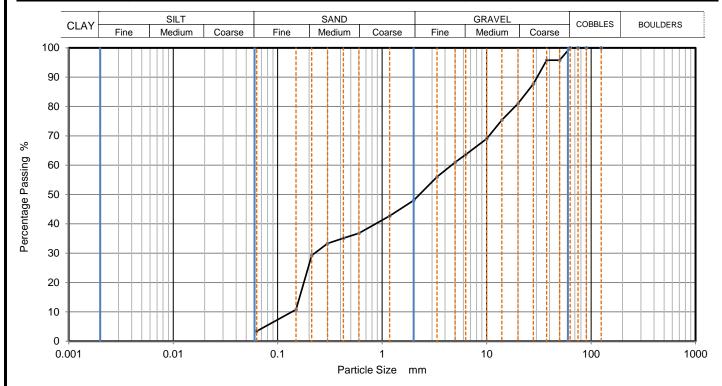
17-0167

Arklow Sewerage Scheme Marine Outfall GI

17-0	17-0167 Arklow Sewerage Scheme Marine Outfall Gi														
	L.,	Sar	mple			Dens		w	Passing	LL	PL	PI	Particle	Casagra	nde
Hole No.	Ref	Тор	Base	Туре	Soil Description	bulk	dry		425µm				density	Classifica	ation
		·				Mg/m	n3	%	%	%	%	%	Mg/m3		
					Brown sandy slightly gravelly										
BH08	5	4.50		В	CLAY.			15.0	45	46 -1pt	22	24		CI	
BH08	8	7.00			Brown sandy slightly gravelly silty CLAY.			16.0	66	38 -1pt	22	16		CI	
								 							
					<u> </u>]	<u> </u>	!					ļ		
All tests perfo	ormed	l in acco	rdance v	vith BS	S1377:1990 unless specifie	d otherwi	ise								
Key								Date F	Printad		Appr	nyed	By	Table	
Density	test			Liquid l	Limit Particl	e density		Daile F	teu		ZPPI	oveu	Jy		1
		ment unles	s:			nall pyknom	eter	12/0)1/2017	00:00					
wd - wat wi - imn					asagrande method gj - ga ngle point test	s jar					Sten	hen	Watson	sheet	2
**1 = 111111	.5.51011			اان بام.	-3 Po 1001						οισμ	. 1011.	413011		_

CAUSEWAY	DARTI	CLE SIZE DIST	DIDITION	Job Ref	17-0167
——— GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	вно7
Site Name	Arklow Sewerage Sche	me Marine Outfa	Sample No.	1	
Soil Description	Dark grey slightly sandy si fragments.	ubrounded fine to c	Depth, m	0.00	
Specimen Reference	6	6 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, claus	se 9.2		KeyLAB ID	Caus2017101848

Siev	/ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	100					
50	100					
37.5	100					
28	82					
20	75					
14	60					
10	50					
6.3	40					
5	37					
3.35	31					
2	26					
1.18	21					
0.6	14					
0.425	11					
0.3	7					
0.212	3					
0.15	1					
0.063	1					


Dry Mass of sample, g	5606
, , , , ,	

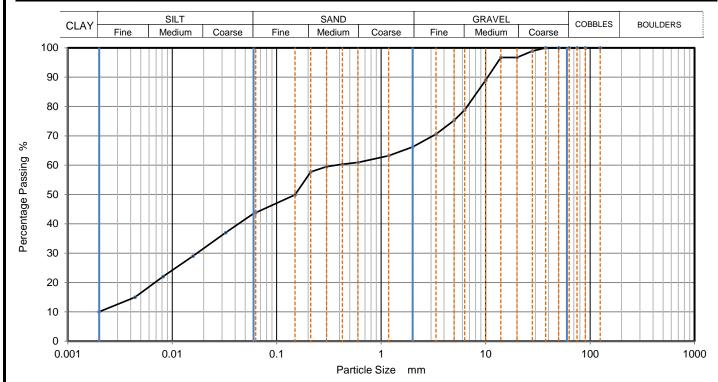
Sample Proportions	% dry mass		
Cobbles	0		
Gravel	74		
Sand	25		
Fines < 0.063mm	1		

Grading Analysis		
D100	mm	
D60	mm	14
D30	mm	2.99
D10	mm	0.399
Uniformity Coefficient		35
Curvature Coefficient		1.6

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

CAUSEWAY	DADTI	CLE SIZE DIST	DIDITION	Job Ref	17-0167
——— GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	вно7
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	2
Soil Description	Grey sandy subangular fir	ne to coarse GRAVE	Depth, m	1.00	
Specimen Reference	6 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, claus	se 9.2		KeyLAB ID	Caus2017101849

Siev	ving	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	100					
50	96					
37.5	96					
28	88					
20	81					
14	75					
10	69					
6.3	64					
5	61					
3.35	56					
2	48					
1.18	43					
0.6	37					
0.425	35					
0.3	33					
0.212	29					
0.15	11					
0.063	3					


Dry Mass of sample, g	4590

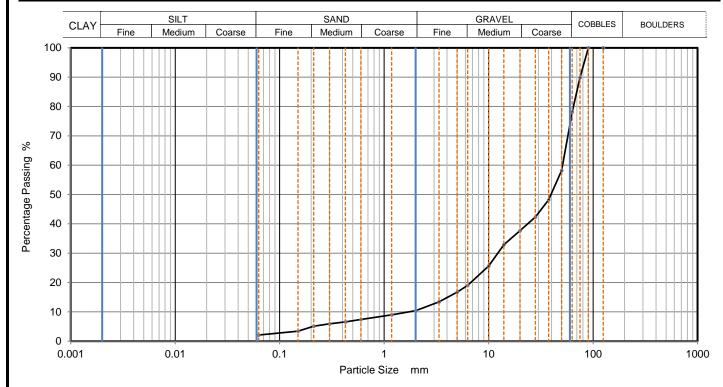
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	52	
Sand	45	
Fines < 0.063mm	3	

Grading Analysis		
D100	mm	
D60	mm	4.6
D30	mm	0.227
D10	mm	0.137
Uniformity Coefficient		34
Curvature Coefficient		0.082

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно7
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	3
Soil Description	Grey slightly sandy gravelly silty CLAY.		Depth, m	2.50
Specimen Reference	6 Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017101850

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	44	
90	100	0.0325	37	
75	100	0.0158	29	
63	100	0.0082	22	
50	100	0.0044	15	
37.5	100	0.0020	10	
28	99			
20	97			
14	97			
10	89			
6.3	79			
5	75			
3.35	71			
2	66			
1.18	63			
0.6	61	Particle density	(assumed)	
0.425	60	2.65	Mg/m3	
0.3	60			
0.212	58			
0.15	50			
0.063	44			

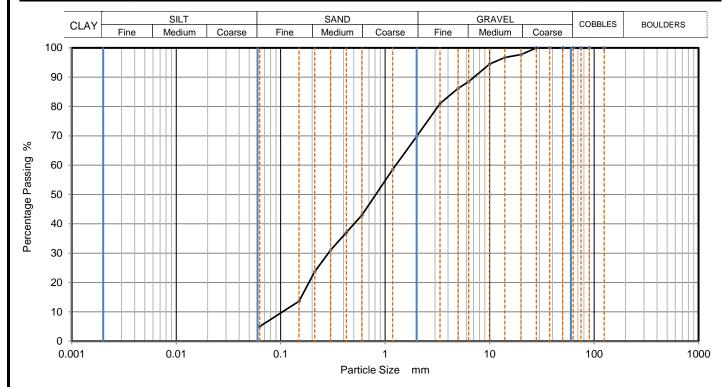

Dry Mass of sample, g	2748

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	34	
Sand	22	
Silt	34	
Clay	10	

Grading Analysis		
D100	mm	
D60	mm	0.372
D30	mm	0.0176
D10	mm	0.00212
Uniformity Coefficient		180
Curvature Coefficient		0.4

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно7
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	5
Soil Description	Grey sandy subrounded fine to coarse GRAVEL with low cobble content.		Depth, m	3.50
Specimen Reference	6 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017101851


Siev	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	90		
63	78		
50	58		
37.5	48		
28	42		
20	38		
14	33		
10	26		
6.3	19		
5	17		
3.35	13		
2	10		
1.18	9		
0.6	7		
0.425	7		
0.3	6		
0.212	5		
0.15	3		
0.063	2		

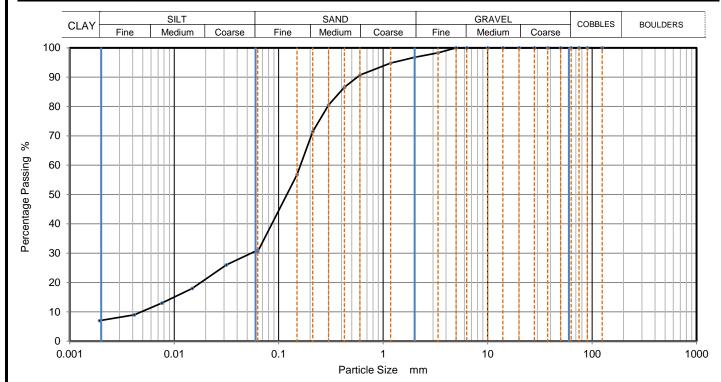
Sample Proportions	% dry mass	
Cobbles	22	
Gravel	68	
Sand	8	
Fines < 0.063mm	2	

Grading Analysis		
D100	mm	
D60	mm	51
D30	mm	12.3
D10	mm	1.74
Uniformity Coefficient		29
Curvature Coefficient		1.7

01/12/2017 10:32	Sheet printed Fig 1	Approved
Stephen.Watson Sheet	01/12/2017 10:32 Sheet	Stephen.Watson

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно7	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	7
Soil Description	Brownish grey gravelly fine to coarse SAND.		Depth, m	5.30	
Specimen Reference	6 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus2017101852

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	98		
14	97		
10	95		
6.3	89		
5	86		
3.35	81		
2	70		
1.18	59		
0.6	43		
0.425	37		
0.3	31		
0.212	24]	
0.15	14		
0.063	5		


Dry Mass of sample, g	3075
-----------------------	------

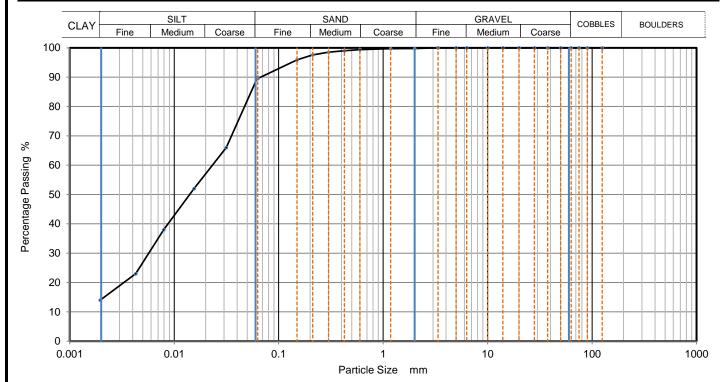
Sample Proportions	% dry mass		
Cobbles	0		
Gravel	30		
Sand	65		
Fines < 0.063mm	5		

Grading Analysis		
D100	mm	
D60	mm	1.27
D30	mm	0.286
D10	mm	0.104
Uniformity Coefficient		12
Curvature Coefficient		0.62

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно7	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	8
Soil Description	Greyish brown silty fine to medium SAND.		Depth, m	6.20	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017101853

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	31
90	100	0.0316	26
75	100	0.0149	18
63	100	0.0076	13
50	100	0.0041	9
37.5	100	0.0019	7
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	98		
2	97		
1.18	95		
0.6	91	Particle density	(assumed)
0.425	87	2.65	Mg/m3
0.3	81		
0.212	71		
0.15	57		
0.063	31		


Dur Mass of samula a	2231
Dry Mass of sample, g	2231

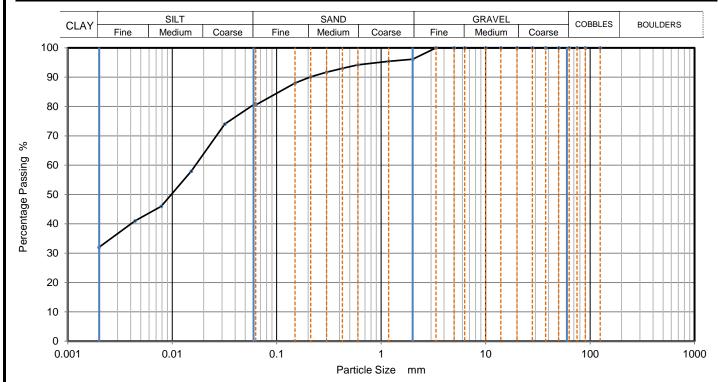
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	3	
Sand	66	
Silt	24	
Clay	7	

Grading Analysis		
D100	mm	
D60	mm	0.162
D30	mm	0.0587
D10	mm	0.00495
Uniformity Coefficient		33
Curvature Coefficient		4.3

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно7	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	9
Soil Description	Greyish brown slightly sandy slightly clayey SILT.		Depth, m	6.60	
Specimen Reference	6 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017101854

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	90	
90	100	0.0316	66	
75	100	0.0154	52	
63	100	0.0079	38	
50	100	0.0043	23	
37.5	100	0.0020	14	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	99	Particle density	(assumed)	
0.425	99	2.65	Mg/m3	
0.3	99			
0.212	98			
0.15	96			
0.063	90			


Dry Mass of sample, g	1617
-----------------------	------

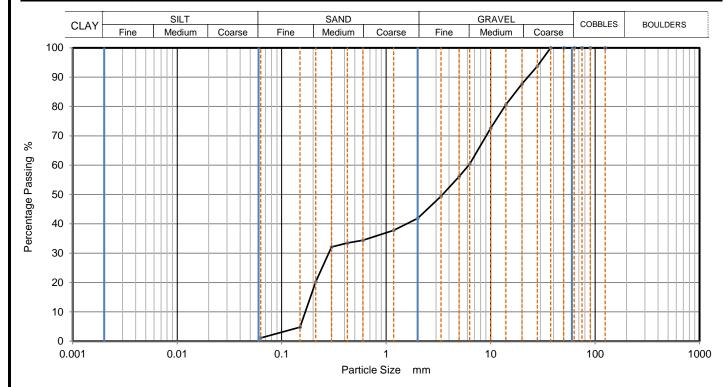
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	10	
Silt	75	
Clay	15	

Grading Analysis		
D100	mm	
D60	mm	0.023
D30	mm	0.00575
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	вно7	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	10
Soil Description	Brown slightly sandy silty CLAY.		Depth, m	9.00	
Specimen Reference	8 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017101857

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0625	81	
90	100	0.0319	74	
75	100	0.0152	58	
63	100	0.0078	46	
50	100	0.0044	41	
37.5	100	0.0020	32	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	96			
1.18	95			
0.6	94	Particle density	(assumed)	
0.425	93	2.65	Mg/m3	
0.3	92		_	
0.212	90			
0.15	88			
0.063	81			


Dry Mass of sample, g	1181
-----------------------	------

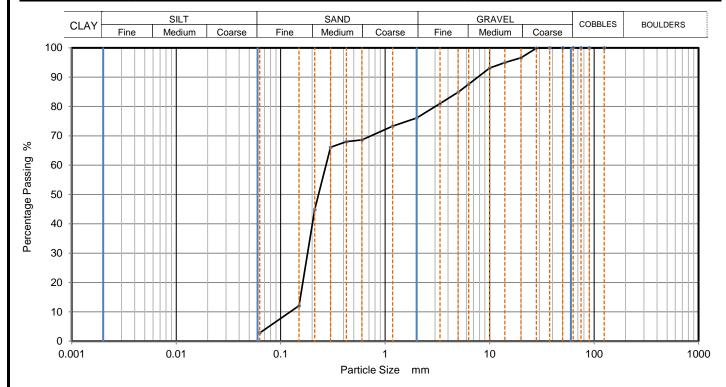
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	4	
Sand	16	
Silt	48	
Clay	32	

Grading Analysis		
D100	mm	
D60	mm	0.0171
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	внов
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	1
Soil Description	Dark grey sandy subangular fine to coarse GRAVEL.		Depth, m	0.00
Specimen Reference	Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017101858

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	94		
20	88		
14	81		
10	73		
6.3	60		
5	56		
3.35	49		
2	42		
1.18	38		
0.6	34		
0.425	34		
0.3	32		_
0.212	20		
0.15	5		
0.063	1		


Dry Mass of sample, g	4864

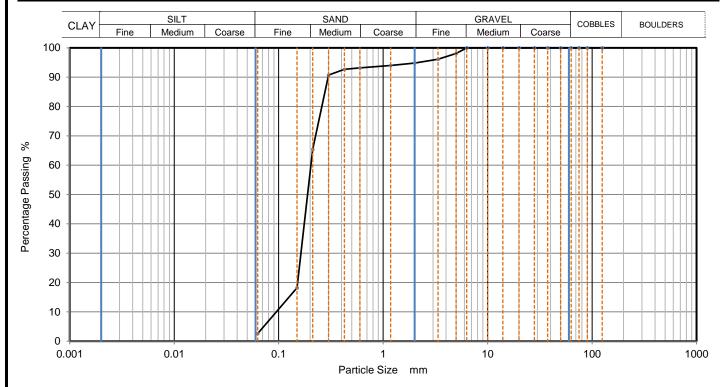
Sample Proportions	% dry mass		
Cobbles	0		
Gravel	58		
Sand	41		
Fines < 0.063mm	1		

Grading Analysis		
D100	mm	
D60	mm	6.16
D30	mm	0.282
D10	mm	0.169
Uniformity Coefficient		37
Curvature Coefficient		0.077

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	внов
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	2
Soil Description	Dark grey slightly gravelly fine to medium SAND with shell fragments.		Depth, m	1.50
Specimen Reference	6 Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017101859

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	97		
14	95		
10	93		
6.3	88		
5	85		
3.35	81		
2	76		
1.18	73		
0.6	69		
0.425	68		
0.3	66		
0.212	45]	
0.15	12		
0.063	3		


Dry Mass of sample, g	3871
-----------------------	------

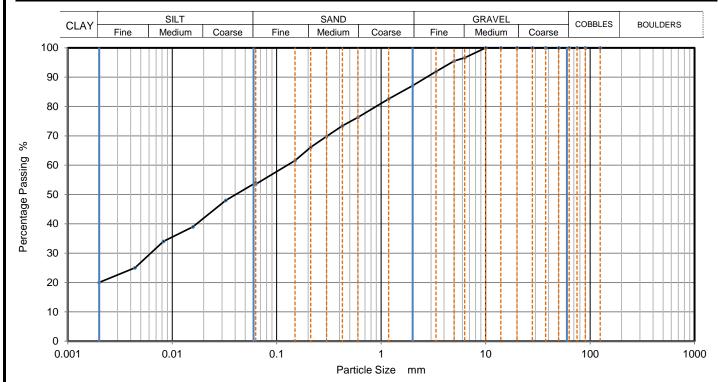
Sample Proportions	% dry mass		
Cobbles	0		
Gravel	24		
Sand	73		
Fines < 0.063mm	3		

Grading Analysis		
D100	mm	
D60	mm	0.272
D30	mm	0.181
D10	mm	0.124
Uniformity Coefficient		2.2
Curvature Coefficient		0.98

01/12/2017 10:32	Sheet printed Fig 1	Approved
Stephen.Watson Sheet	01/12/2017 10:32 Sheet	Stephen.Watson

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH			Borehole/Pit No.	внов	
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	3	
Soil Description	Dark grey slightly gravelly fine to medium SAND.		Depth, m	2.30	
Specimen Reference	6 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus2017101860

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	98		
3.35	96		
2	95		
1.18	94		
0.6	93		
0.425	93		
0.3	91		
0.212	65]	
0.15	18		
0.063	3		


Dry Mass of sample, g	3086

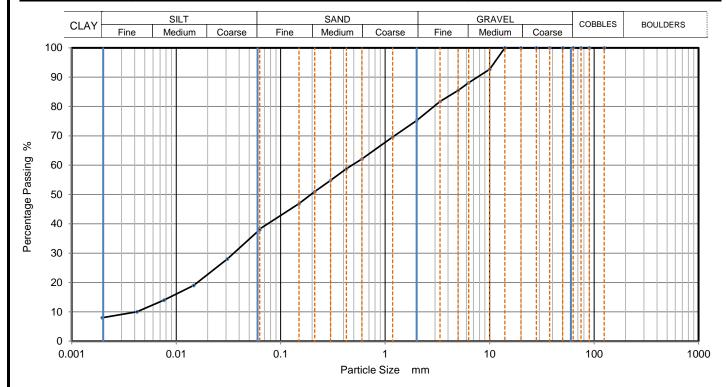
Sample Proportions	% dry mass		
Cobbles	0		
Gravel	5		
Sand	92		
Fines < 0.063mm	3		

Grading Analysis		
D100	mm	
D60	mm	0.204
D30	mm	0.164
D10	mm	0.0949
Uniformity Coefficient		2.1
Curvature Coefficient		1.4

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——— GEOTECH			Borehole/Pit No.	внов	
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	5	
Soil Description	Brown sandy slightly gravelly CLAY.		Depth, m	4.50	
Specimen Reference	Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017101861

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	54	
90	100	0.0325	48	
75	100	0.0158	39	
63	100	0.0083	34	
50	100	0.0044	25	
37.5	100	0.0020	20	
28	100			
20	100			
14	100			
10	100			
6.3	97			
5	96			
3.35	92			
2	87			
1.18	83			
0.6	76	Particle density	(assumed)	
0.425	73	2.65	Mg/m3	
0.3	70			
0.212	66			
0.15	62			
0.063	54			


Dry Mass of sample, g	2342
-----------------------	------

Sample Proportions	% dry mass		
Cobbles	0		
Gravel	13		
Sand	34		
Silt	34		
Clay	20		

Grading Analysis		
D100	mm	
D60	mm	0.126
D30	mm	0.00622
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——— GEOTECH	PANII	TICLE SIZE DISTRIBUTION		Borehole/Pit No.	вн08
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI			8
Soil Description	Brown sandy slightly gravelly silty CLAY.			Depth, m	7.00
Specimen Reference	8 Specimen m Depth			Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017101862

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	38
90	100	0.0309	28
75	100	0.0147	19
63	100	0.0076	14
50	100	0.0042	10
37.5	100	0.0020	8
28	100		
20	100		
14	100		
10	93		
6.3	88		
5	86		
3.35	82		
2	75		
1.18	70		
0.6	62	Particle density	(assumed)
0.425	59	2.65	Mg/m3
0.3	55		
0.212	51		
0.15	47		
0.063	38		

Dry Mass of sample, g	1859
-----------------------	------

Sample Proportions	% dry mass
Cobbles	0
Gravel	25
Sand	37
Silt	31
Clay	8

Grading Analysis		
D100	mm	
D60	mm	0.482
D30	mm	0.0355
D10	mm	0.00398
Uniformity Coefficient		120
Curvature Coefficient		0.66

Approved	Sheet printed	Fig	1
Stephen.Watson	01/12/2017 10:32	Sheet	

LABORATORY REPORT

4043

Contract Number: PSL17/5711

Report Date: 01 December 2017

Client's Reference: 17-0167

Client Name: Causeway Geotech

8 Drumahiskey Road

Ballymoney Co.Antrim BT53 7QL

For the attention of: Neil Haggan

Contract Title: Arklow Sewerage Scheme Marine Outfall GI

Date Received: 23/11/2017
Date Commenced: 23/11/2017
Date Completed: 01/12/2017

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

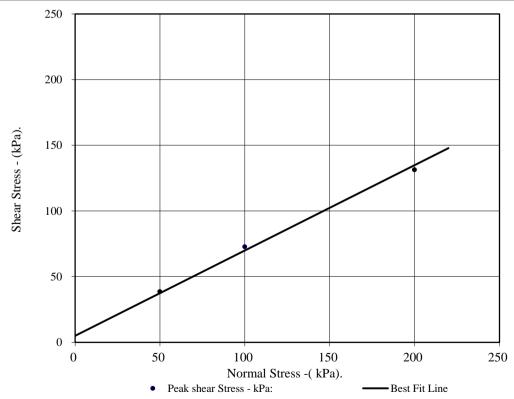
R Gunson A Watkins R Berriman (Director) (Director) (Quality Manager)

L Knight S Eyre A Fry

(Senior Technician) (Senior Technician) (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

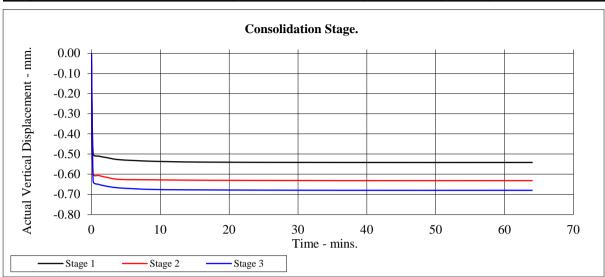

tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

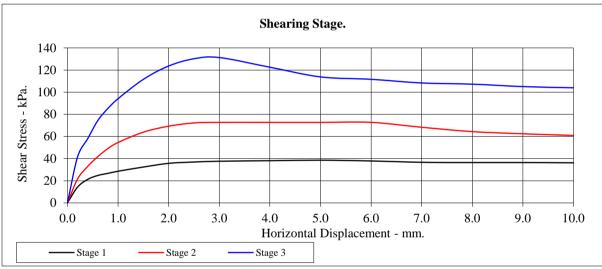
e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

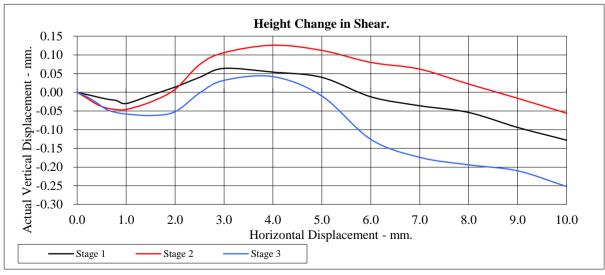
Page 1 of

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:		BH04	Top Depth:		4.2	20
Sample Number:	20 Base Depth		e Depth: 5.00		00	
Sample Conditions:		Submerged	Sample Type B		3	
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort				
		ed passing 2mm sieve				
Sample Description:	Brown sligh	tly gravelly silty SAND				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				19.98	19.98	19.98
Length - mm:				60.01	60.01	60.01
Moisture Content - %:				17	17	17
Bulk Density - Mg/m3:				1.86	1.87	1.88
Dry Density - Mg/m3:				1.60	1.60	1.61
Voids Ratio:				0.661	0.652	0.646
Normal Pressure- kPa				50	100	200
		Consolidation Stage	!			
Consolidated Height - mm:				19.44	19.35	19.30
		Shearing Stage				
Rate of Strain (mm/min)				0.800	0.800	0.800
Displacement at peak shear s	tress (mm)			5.00	3.00	3.00
Peak shear Stress - kPa:				39	73	131
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				24	24	23
Bulk Density - Mg/m3:				1.91	1.93	1.94
Dry Density - Mg/m3:				1.54	1.56	1.58
		Peak				
Angle of Shearing Resistance	:(0)	<u> </u>			33	
Effective Cohesion - kPa:					5	

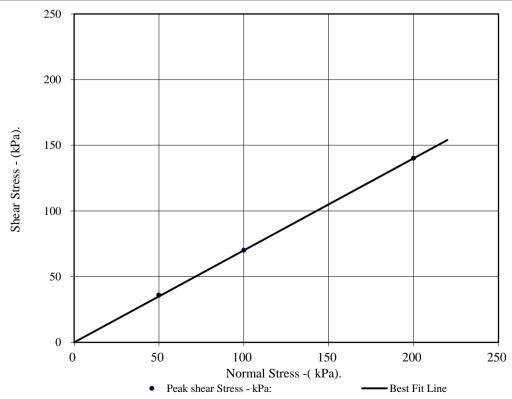





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

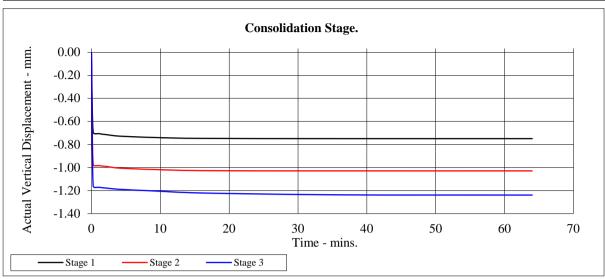
Hole Number:	BH04	Top Depth:	4.20
Sample Number:	20	Base Depth:	5.00

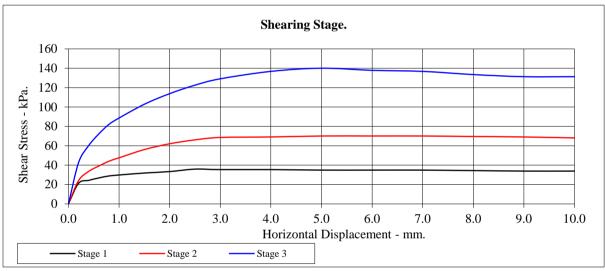


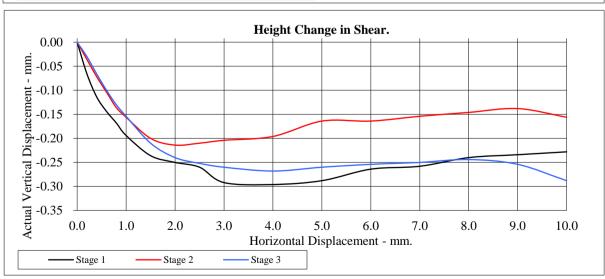
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH04 To		Top Depth:		6.10	
Sample Number:	24 Base I		Base Depth	Base Depth:		00
Sample Conditions:		Submerged	Sample Type		В	
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded 1	using hand tamped effort				
		ed passing 2mm sieve				
Sample Description:	Brown grav	elly SAND.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				19.98	19.98	19.98
Length - mm:				60.01	60.01	60.01
Moisture Content - %:				5.9	5.9	5.9
Bulk Density - Mg/m3:				1.85	1.85	1.85
Dry Density - Mg/m3:				1.75	1.75	1.75
Voids Ratio:				0.517	0.517	0.517
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				19.23	18.95	18.74
		Shearing Stage				
Rate of Strain (mm/min)				0.800	0.800	0.800
Displacement at peak shear st	tress (mm)			2.50	5.00	5.00
Peak shear Stress - kPa:				36	70	140
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				18	18	16
Bulk Density - Mg/m3:			`	1.92	1.95	1.97
Dry Density - Mg/m3:	·	<u> </u>		1.63	1.65	1.70
		Peak				
Angle of Shearing Resistance	:(0)				35	
Effective Cohesion - kPa:					0	

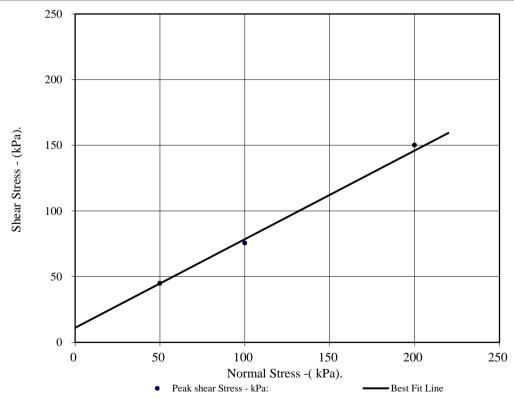





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

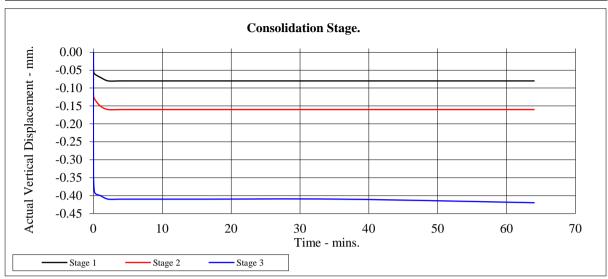
Hole Number:	BH04	Top Depth:	6.10
Sample Number:	24	Base Depth:	7.00

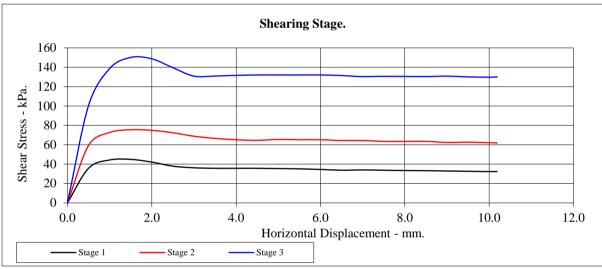


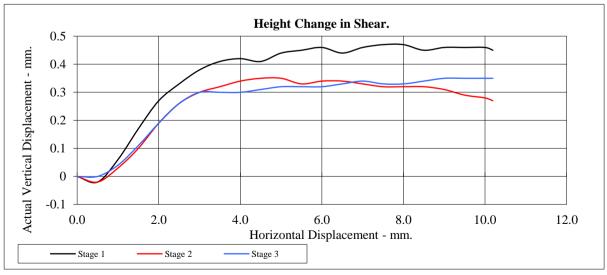
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH05 Top		Top Depth:	Top Depth:		2.20	
Sample Number:	9 Base		Base Depth:		3.50		
Sample Conditions:		Submerged Sample Type		pe	В		
Particle Density - Mg/m3:	2.65	Assumed	Remarks:				
Sample Preparation:	Remoulded	using hand tamped effort					
		ed passing 2mm sieve					
Sample Description:	Brown sligh	tly gravelly silty SAND					
STAGE				1	2	3	
		Initial Conditions					
Height - mm:				24.51	24.51	24.51	
Length - mm:				60.00	60.00	60.00	
Moisture Content - %:				17	17	17	
Bulk Density - Mg/m3:				1.90	1.90	1.90	
Dry Density - Mg/m3:				1.62	1.62	1.62	
Voids Ratio:				0.640	0.638	0.637	
Normal Pressure- kPa				50	100	200	
		Consolidation Stage					
Consolidated Height - mm:				24.43	24.35	24.10	
		Shearing Stage					
Rate of Strain - mm/min				0.80	0.80	0.80	
Displacement at peak shear st	tress - mm			1.50	1.50	1.50	
Peak shear Stress - kPa:				45	76	150	
	Fi	nal Consolidated Condi	itions				
Moisture Content - %:				22	22	22	
Bulk Density - Mg/m3:				1.90	1.91	1.93	
Dry Density - Mg/m3:				1.56	1.57	1.59	
		Peak					
Angle of Shearing Resistance	::(0)				34		
Effective Cohesion - kPa:					11		

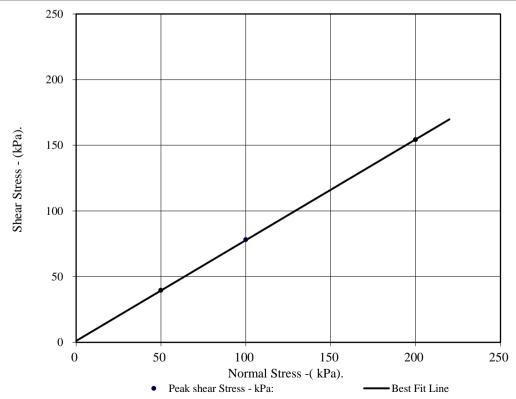





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH05	Top Depth:	2.20
Sample Number:	9	Base Depth:	3.50

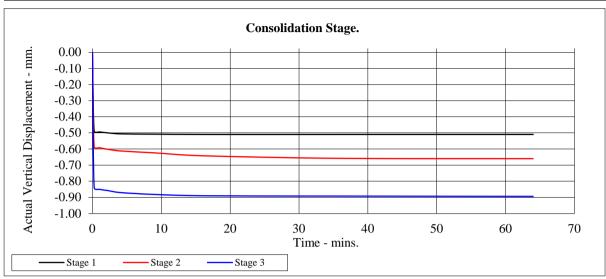


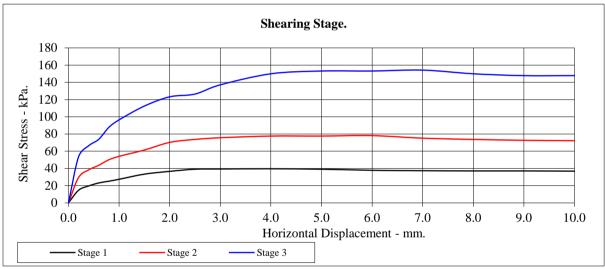
Professional Soils Laboratory

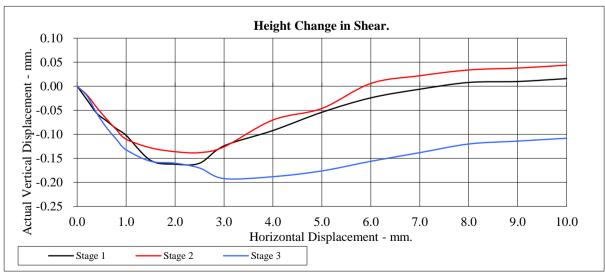
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:		BH05	Top Depth:		7.9	00
Sample Number:		12 Base Dept		pth: 9.00		00
Sample Conditions:		Submerged	Sample Typ	oe .	H	3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort				
· ·		ed passing 2mm sieve				
Sample Description:	Brown grav	elly SAND.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				19.98	19.98	19.98
Length - mm:				60.01	60.01	60.01
Moisture Content - %:				6.4	6.4	6.4
Bulk Density - Mg/m3:				1.70	1.71	1.71
Dry Density - Mg/m3:				1.60	1.61	1.61
Voids Ratio:				0.655	0.649	0.645
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				19.47	19.32	19.09
		Shearing Stage				
Rate of Strain (mm/min)				0.800	0.800	0.800
Displacement at peak shear	stress (mm)			4.00	6.00	7.00
Peak shear Stress - kPa:				40	78	154
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				21	21	21
Bulk Density - Mg/m3:				1.75	1.77	1.79
Dry Density - Mg/m3:				1.45	1.46	1.49
		Peak				
Angle of Shearing Resistance	ce:(0)	<u> </u>			38	<u> </u>
Effective Cohesion - kPa:					1	

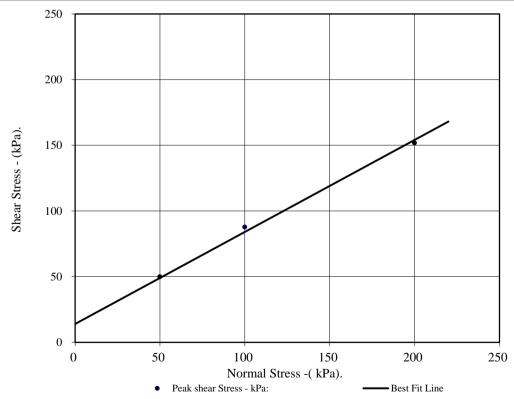





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

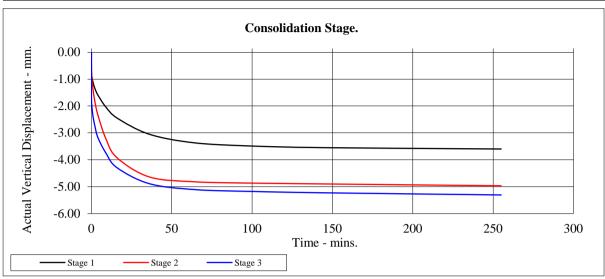
Hole Number:	BH05	Top Depth:	7.90
Sample Number:	12	Base Depth:	9.00

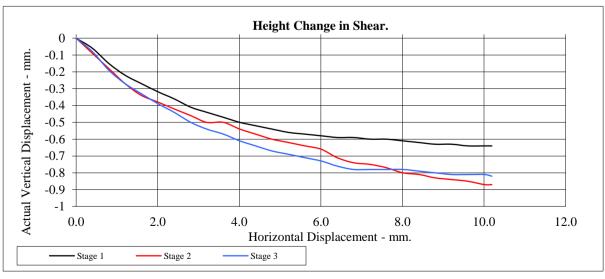


Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

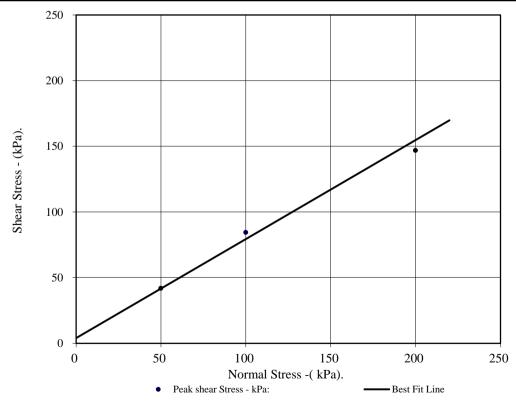
Hole Number:		BH07	Top Dept	h:	3.0	00
Sample Number:	4 Base Dept		th:	3.50		
Sample Conditions:	Submerged Sample Type		ype	pe B		
Particle Density - Mg/m3:	2.65	Assumed	Remarks	•		
Sample Preparation:	Remoulded	using 2.5kg effort.				
		ed passing 2mm sieve				
Sample Description:	Grey very g	ravelly sandy organic	c CLAY.			
STAGE				1	2	3
		Initial Condition	IS			
Height - mm:				24.51	24.51	24.51
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				35	35	35
Bulk Density - Mg/m3:				1.90	1.90	1.90
Dry Density - Mg/m3:				1.40	1.41	1.41
Voids Ratio:				0.888	0.885	0.884
Normal Pressure- kPa				50	100	200
		Consolidation Sta	ge			
Consolidated Height - mm:			21.46	19.87	19.62	
		Shearing Stage				
Rate of Strain - mm/min				0.04	0.04	0.04
Displacement at peak shear s	tress - mm			8.41	10.01	6.80
Peak shear Stress - kPa:				50	88	152
	Fi	nal Consolidated Cor	nditions			
Moisture Content - %:				37	33	28
Bulk Density - Mg/m3:				2.16	2.34	2.37
Dry Density - Mg/m3:	·	<u> </u>	·	1.58	1.76	1.85
		Peak				
Angle of Shearing Resistance	::(0)				35	
Effective Cohesion - kPa:					14	




Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH07	Top Depth:	3.00
Sample Number:	4	Base Depth:	3.50

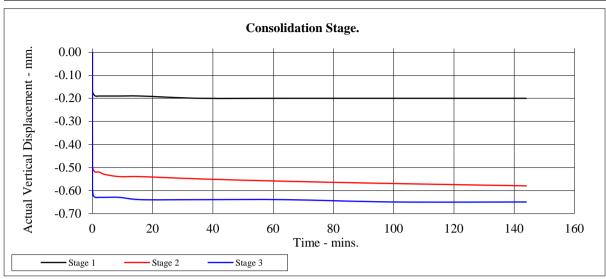


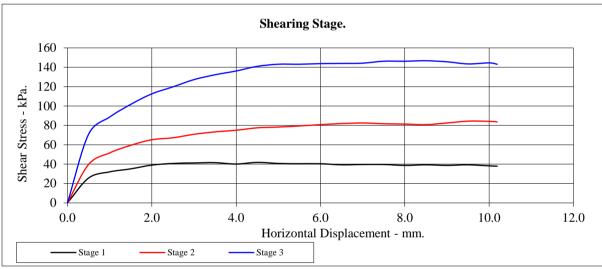
Professional Soils Laboratory

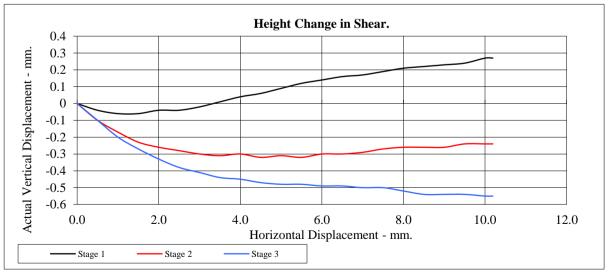
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:		BH07	Top Depth:		4.00	
Sample Number:		6	Base Depth	:	5.0	00
Sample Conditions:		Submerged	Sample Type B			
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort.	rt.			
Sample Freparation.	Material test	ed passing 2mm sieve				
Sample Description:	Grey sandy	GRAVEL				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				24.51	24.51	24.51
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				17	17	17
Bulk Density - Mg/m3:				1.79	1.80	1.81
Dry Density - Mg/m3:				1.54	1.54	1.55
Voids Ratio:				0.725	0.722	0.712
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				24.31	23.96	23.87
		Shearing Stage				
Rate of Strain - mm/min				0.80	0.80	0.80
Displacement at peak shear s	stress - mm			4.50	9.50	8.50
Peak shear Stress - kPa:				42	84	147
	Fi	nal Consolidated Condi	tions			
Moisture Content - %:				20	19	18
Bulk Density - Mg/m3:				1.81	1.84	1.85
Dry Density - Mg/m3:				1.51	1.55	1.58
		Peak				
Angle of Shearing Resistance	e:(0)				37	
Effective Cohesion - kPa:					4	






Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH07	Top Depth:	4.00
Sample Number:	6	Base Depth:	5.00

Professional Soils Laboratory

Arklow Sewerage Scheme Marine Outfall GI

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Client:	Irish Water
Engineer:	Byrne Looby ARUP J.V.
From:	Stephen Watson
	Laboratory Manager
	Causeway Geotech Ltd
Tel:	+44(0)2827666640
E-mail:	stephen.watson@causewaygeotech.com
Date:	04/12/17
Ref:	17-0167 - Schedule 8

Arklow Sewerage Scheme Marine Outfall GI


We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the *Contents page(s)*.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 60 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Stephen Watson Laboratory Manager

Project Name Arklow Sewerage Scheme Marine Outfall GI

Report Reference. 17-0167 - Schedule 8

The table below details the tests carried out, the specifications used, and the number of tests included in this report:

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	Number of test results included in the report
SOIL	Moisture Content of Soil	BS1377: Part 2: Clause 3.2: 1990	10
SOIL	Liquid and Plastic Limits of soil -1-point cone penetrometer method	BS1377: Part 2: Clauses 4.4, 5.3 & 5.4 1990	4
SOIL	Particle size distribution - wet sieving	BS1377: Part 2: Clause 9.2: 1990	10
SOIL	Particle size distribution -sedimentation hydrometer method	BS1377: Part 2: Clause 9.5: 1990	5
SOIL – Subcontracted to Pro Soils Ltd	Direct Shear Strength using 60mm Small Shear box (up to 4 days)	BS1377: Part 7: Clause 4: 1990	2

Summary of Classification Test Results

Project No.

Project Name

17-0167

Linear measurement unless:

wd - water displacement

wi - immersion in water

4pt cone unless:

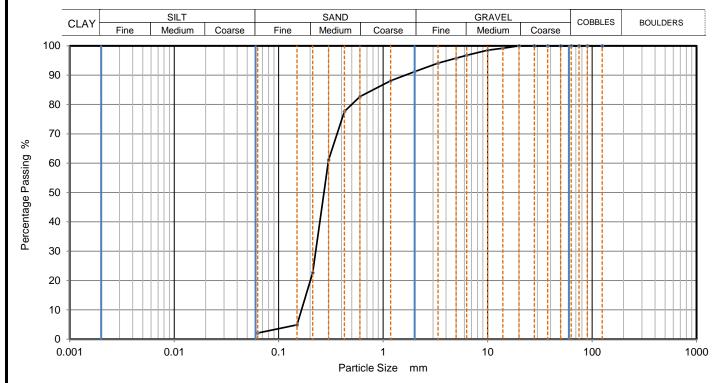
cas - Casagrande method

1pt - single point test

Arklow Sewerage Scheme Marine Outfall GI

17	T	0			I	I							I	
Hole No.	Ref	Top	mple Base	Туре	Soil Description	Dens bulk Mg/n	dry	W %	Passing 425µm %	LL %	PL %	PI %	Particle density Mg/m3	Casagrande Classification
BH09	2	1.00		В	Grey slightly gravelly fine to medium SAND.	ing.		7.8						
BH09	4	3.00		В	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL.			3.5						
ВН09	6	5.00		В	Grey sandy gravelly silty CLAY.			14.0	61	33 -1pt	17	16		CL
BH09	8	7.00		В	Light brown sandy gravelly silty CLAY.			15.0	65	37 -1pt	17	20		CI
BH10	2	1.30		В	Grey sandy slightly gravelly silty CLAY.			68.0						
BH10	3	2.00		В	Dark brown sandy slightly silty subangular fine to coarse GRAVEL.			12.0						
BH10	4	3.00		В	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL.			5.1						
BH10	5	4.00		В	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL with low cobble content.			4.1						
BH10	7	5.50		В	Grey sandy gravelly silty CLAY.			12.0	48	26 -1pt	15	11		CL
BH10	9	7.50		В	Light brown sandy gravelly silty CLAY.			12.0	48	33 -1pt	17	16		CL
Il tests perf	ormed	in acco	rdance v	with BS	S1377:1990 unless specifie	d otherw	ise							
ey Density	test			Liquid I	Limit Particl	le density		Date F	Printed		Appr	oved	Ву	Table 1
l inear r	naselira	mant unlac	· c ·	Ant con	a unlace : en - er	mall nyknom	notor	12/0	12/2017	00.00	I			ı

sp - small pyknometer


gj - gas jar

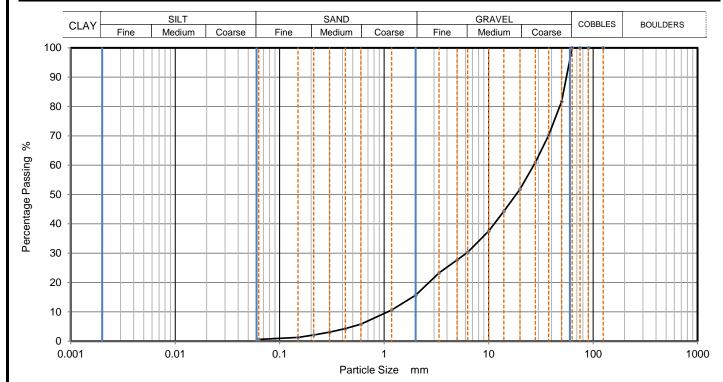
12/02/2017 00:00

sheet

Stephen.Watson

CAUSEWAY	DARTI	CLE SIZE DIST	Job Ref	17-0167	
PARTICLE SIZE DISTRIBUTION				Borehole/Pit No.	вн09
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	2
Soil Description	Grey slightly gravelly fine to medium SAND.			Depth, m	1.00
Specimen Reference	4	Specimen Depth	m	Sample Type	В
Test Method	3S1377:Part 2:1990, clause 9.2			KeyLAB ID	Caus201711090

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	99			
10	99			
6.3	97			
5	96			
3.35	94			
2	91			
1.18	88			
0.6	83			
0.425	78			
0.3	61			
0.212	23]		
0.15	5]		
0.063	2			


Dry Mass of sample, g	671

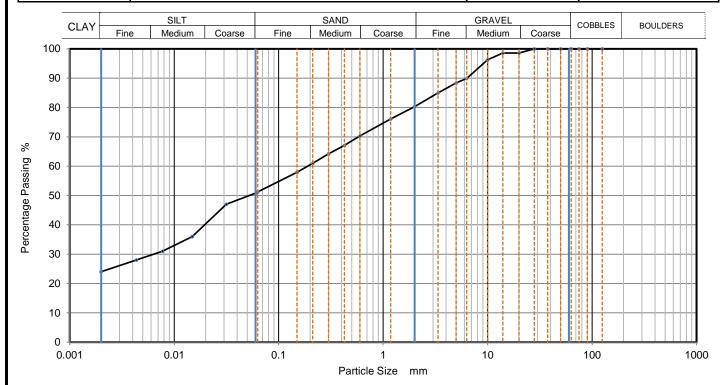
Sample Proportions	% dry mass
Cobbles	0
Gravel	9
Sand	89
Fines < 0.063mm	2

Grading Analysis		
D100	mm	
D60	mm	0.297
D30	mm	0.226
D10	mm	0.166
Uniformity Coefficient		1.8
Curvature Coefficient		1

Approved		Fig	1
Stephen. Watson	02/12/2017 10:01		

CAUSEWAY	PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167
——— GEOTECH	GEOTECH PARTICLE SIZE DISTRIBUTION				вн09
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI			4
Soil Description	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL.			Depth, m	3.00
Specimen Reference	4 Specimen m			Sample Type	В
Test Method	BS1377:Part 2:1990, clau	S1377:Part 2:1990, clause 9.2			Caus201711091

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	82		
37.5	70		
28	61		
20	52		
14	44		
10	38		
6.3	30		
5	28		
3.35	23		
2	16		
1.18	11		
0.6	6		
0.425	4		
0.3	3		
0.212	2		
0.15	1		
0.063	1		


Dry Mass of sample, g	10377
-----------------------	-------

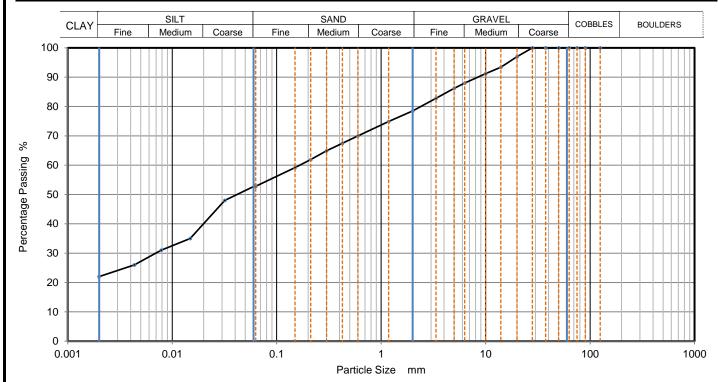
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	84	
Sand	15	
Fines < 0.063mm	1	

Grading Analysis		
D100	mm	
D60	mm	27
D30	mm	6.15
D10	mm	1.08
Uniformity Coefficient		25
Curvature Coefficient		1.3

Approved		Fig	1
Stephen. Watson	02/12/2017 10:01	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——GEOTECH			Borehole/Pit No.	вн09	
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	6	
Soil Description	Grey sandy gravelly silty CLAY.		Depth, m	5.00	
Specimen Reference	5 Specimen m Depth			Sample Type	В
Test Method	od BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201711092	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0619	51	
90	100	0.0316	47	
75	100	0.0149	36	
63	100	0.0077	31	
50	100	0.0043	28	
37.5	100	0.0020	24	
28	100			
20	99			
14	99			
10	96			
6.3	90			
5	88			
3.35	85			
2	80			
1.18	76			
0.6	70	Particle density	(assumed)	
0.425	67	2.65	Mg/m3	
0.3	64			
0.212	61			
0.15	58			
0.063	51			


Dry Mass of sample, g	1623
-----------------------	------

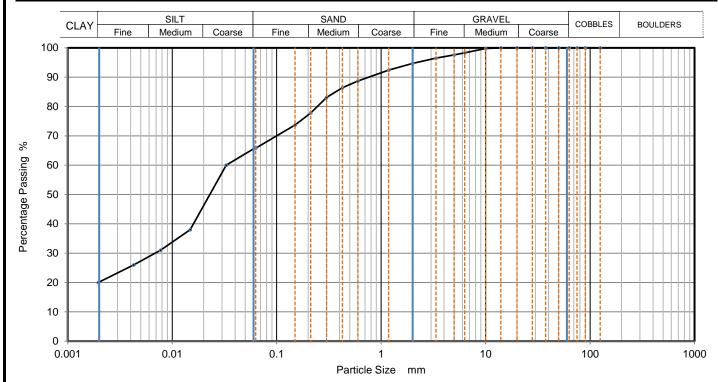
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	20	
Sand	29	
Silt	27	
Clay	24	

Grading Analysis		
D100	mm	
D60	mm	0.191
D30	mm	0.00625
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen. Watson	02/12/2017 10:01	Sheet	

PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
		Borehole/Pit No.	вн09		
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	8	
Soil Description	Light brown sandy gravelly silty CLAY.		Depth, m	7.00	
Specimen Reference	5 Specimen m Depth			Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201711093	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0625	53	
90	100	0.0319	48	
75	100	0.0149	35	
63	100	0.0078	31	
50	100	0.0043	26	
37.5	100	0.0020	22	
28	100			
20	97			
14	93			
10	91			
6.3	88			
5	86			
3.35	83			
2	79			
1.18	75			
0.6	70	Particle density	(assumed)	
0.425	68	2.65	Mg/m3	
0.3	65			
0.212	62			
0.15	59			
0.063	53			


Dry Mass of sample, g	2017

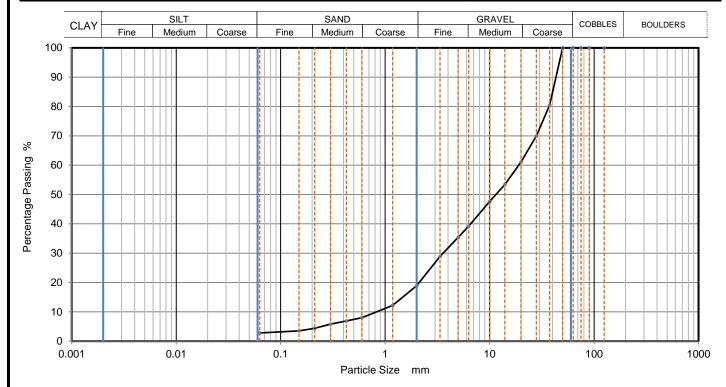
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	22	
Sand	26	
Silt	31	
Clay	22	

Grading Analysis		
D100	mm	
D60	mm	0.166
D30	mm	0.00704
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

02/12/2017 10:01 Sheet	Approved	Sheet printed	Fig	1
Sheet		02/12/2017 10:01		
			Sheet	

CAUSEWAY	EWAY PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167
GEOTECH PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH10	
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	2
Soil Description	Grey sandy slightly gravelly silty CLAY.		Depth, m	1.30
Specimen Reference	4 Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201711094

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	66	
90	100	0.0328	60	
75	100	0.0149	38	
63	100	0.0077	31	
50	100	0.0043	26	
37.5	100	0.0020	20	
28	100			
20	100			
14	100			
10	100			
6.3	98			
5	98			
3.35	97			
2	95			
1.18	92			
0.6	89	Particle density	(assumed)	
0.425	86	2.65	Mg/m3	
0.3	83			
0.212	78			
0.15	74			
0.063	66			


Dry Mass of sample, g	661
-----------------------	-----

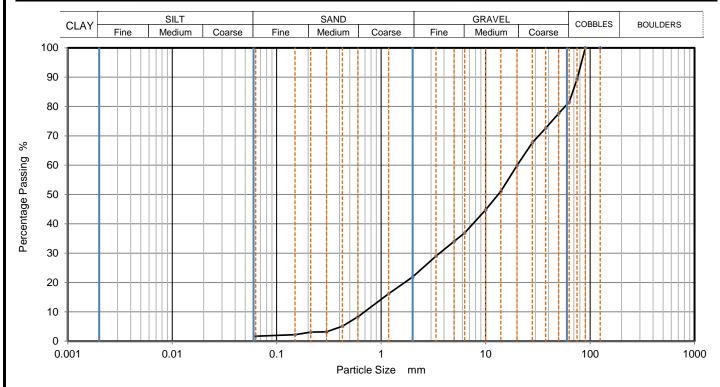
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	5	
Sand	29	
Silt	46	
Clay	20	

Grading Analysis		
D100	mm	
D60	mm	0.0325
D30	mm	0.00689
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen. Watson	02/12/2017 10:01	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
			Borehole/Pit No.	BH10	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	4
Soil Description	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL.		Depth, m	3.00	
Specimen Reference	4 Specimen m Depth		Sample Type	В	
Test Method	od BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus201711096	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	81			
28	70			
20	61			
14	53			
10	48			
6.3	39			
5	35			
3.35	29			
2	19			
1.18	12			
0.6	8			
0.425	7			
0.3	6			
0.212	4			
0.15	4			
0.063	3			


Dry Mass of sample, g	13416

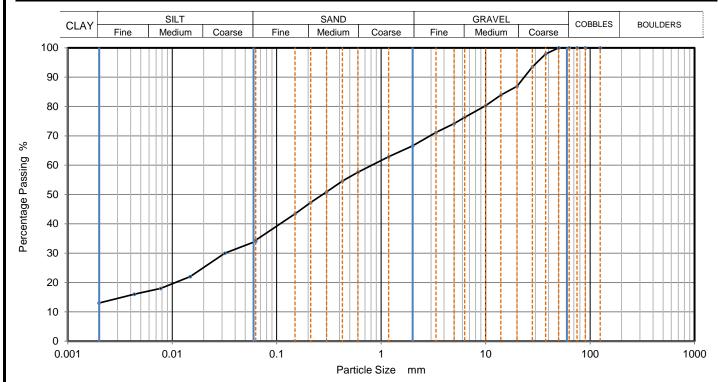
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	81	
Sand	16	
Fines < 0.063 mm	3	

Grading Analysis		
D100	mm	
D60	mm	19
D30	mm	3.58
D10	mm	0.826
Uniformity Coefficient		23
Curvature Coefficient		0.82

Stephen.Watson 02/12/2017 10:02 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	02/12/2017 10:02	Sheet	

PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167		
		Borehole/Pit No.	BH10		
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	5
Soil Description	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL with low cobble content.		Depth, m	4.00	
Specimen Reference	4 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus201711097	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	89		
63	82		
50	78		
37.5	73		
28	68		
20	60		
14	51		
10	45		
6.3	37		
5	34		
3.35	29		
2	22		
1.18	16		
0.6	8		
0.425	5		
0.3	3		
0.212	3		
0.15	2		
0.063	2		


Dry Mass of sample, g	8315

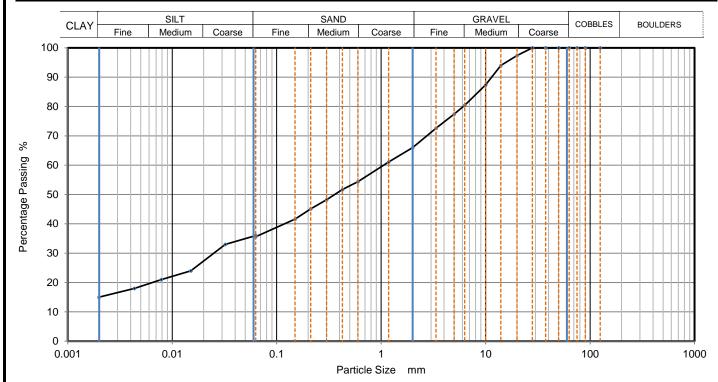
Sample Proportions	% dry mass	
Cobbles	19	
Gravel	60	
Sand	20	
Fines < 0.063mm	2	

Grading Analysis		
D100	mm	
D60	mm	20.1
D30	mm	3.63
D10	mm	0.693
Uniformity Coefficient		29
Curvature Coefficient		0.95

Approved		Fig	1
Stephen.Watson	02/12/2017 10:02	Sheet	

PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167		
		Borehole/Pit No.	BH10		
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	7
Soil Description	Grey sandy gravelly silty CLAY.		Depth, m	5.50	
Specimen Reference	5 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201711098	

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	34	
90	100	0.0319	30	
75	100	0.0149	22	
63	100	0.0077	18	
50	100	0.0043	16	
37.5	98	0.0020	13	
28	94			
20	87			
14	84			
10	80			
6.3	76			
5	74			
3.35	71			
2	67			
1.18	63			
0.6	58	Particle density	(assumed)	
0.425	55	2.65	Mg/m3	
0.3	51		_	
0.212	47			
0.15	43			
0.063	34			


Dry Mass of sample, g	3400
-----------------------	------

Sample Proportions	% dry mass
Cobbles	0
Gravel	33
Sand	32
Silt	22
Clay	13

Grading Analysis		
D100	mm	
D60	mm	0.812
D30	mm	0.0306
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen.Watson	02/12/2017 10:02	Sheet	

PARTICLE SIZE DISTRIBUTION			Job Ref	17-0167	
			Borehole/Pit No.	BH10	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI			9
Soil Description	Light brown sandy gravelly silty CLAY.			Depth, m	7.50
Specimen Reference	5 Specimen m Depth			Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus201711099

Siev	/ing	Sedime	entation
Particle Size mm		Particle Size mm	% Passing
125	100	0.0630	36
90	100	0.0322	33
75	100	0.0151	24
63	100	0.0078	21
50	100	0.0043	18
37.5	100	0.0020	15
28	100		
20	97		
14	94		
10	87		
6.3	80		
5	77		
3.35	73		
2	66		
1.18	61		
0.6	54	Particle density	(assumed)
0.425	52	2.65	Mg/m3
0.3	48		
0.212	45		
0.15	42		
0.063	36		

Dry Mass of sample, g	2170
Dry Mass of sample, g	2170

Sample Proportions	% dry mass
Cobbles	0
Gravel	34
Sand	30
Silt	21
Clay	15

Grading Analysis		
D100	mm	
D60	mm	1.06
D30	mm	0.025
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen.Watson	02/12/2017 10:02	Sheet	

LABORATORY REPORT

4043

Contract Number: PSL17/5477

Report Date: 16 November 2017

Client's Reference: 17-0167

Client Name: Causeway Geotech

8 Drumahiskey Road

Ballymoney Co.Antrim BT53 7QL

For the attention of: Stephen Watson

Contract Title: Arklow sewerage scheme marine outfall GI

Date Received: 10/11/2017 Date Commenced: 10/11/2017 Date Completed: 16/11/2017

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins R Berriman (Director) (Director) (Quality Manager)

L Knight S Eyre A Fry

(Senior Technician) (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

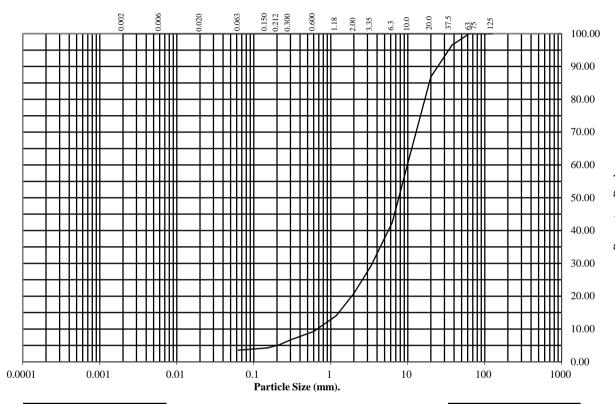
SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH09	3	В	2.00	3.00	Grey gravelly SAND.
BH10	3	В	2.00	3.00	Dark brown sandy slightly silty GRAVEL.

Arklow Sewerage Scheme Marine Outfall GI

Contract No:
PSL17/5477
Client Ref:
17-0167

PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH10 Top Depth (m): 2.00

Sample Number: 3 Base Depth(m): 3.00

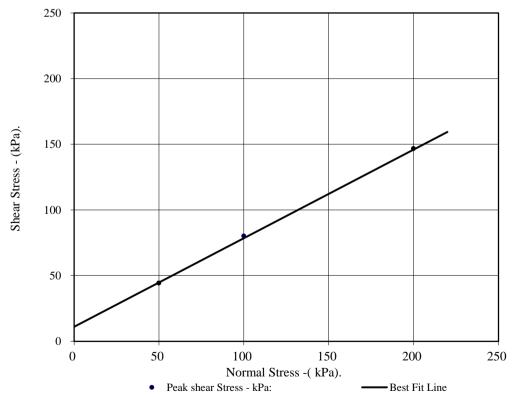
Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	97
20	87
10	61
6.3	43
3.35	29
2	21
1.18	14
0.6	9
0.3	7
0.212	5
0.15	4
0.063	4

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 79 17 4

Remarks:

See Summary of Soil Descriptions

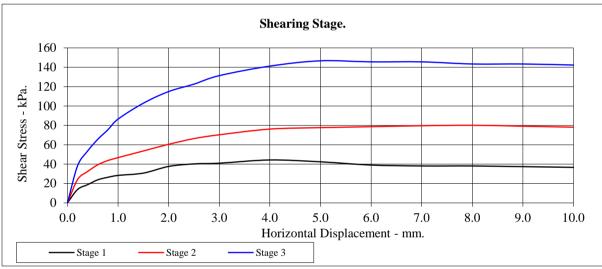

Arklow Sewerage Scheme Marine Outfall GI

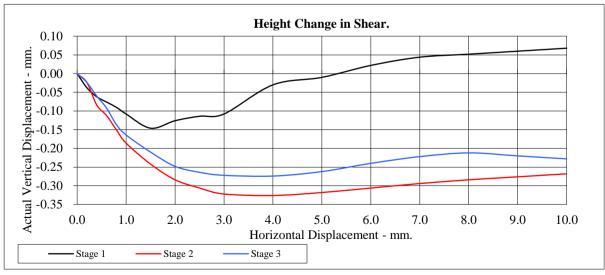
Contract No: PSL17/5477 Client Ref: 17-0167

PSL005 Nov 15 Page of

BS1377:Part 7:1990 Clause 4.5.4

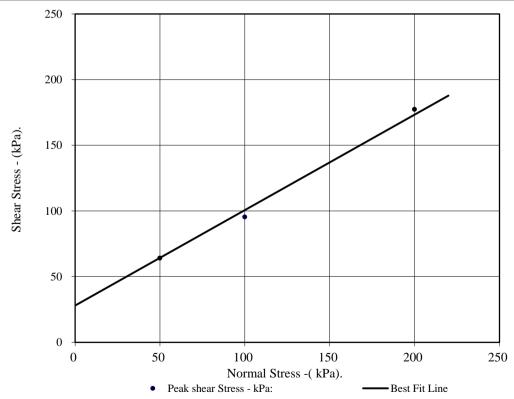
Hole Number:		BH09	Top Depth:		2.00	
Sample Number:		3	Base Depth	:	3.0	00
Sample Conditions:		Submerged.	Sample Type B			
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort	rt.			
		ed passing 2mm sieve				
Sample Description:	See summar	ry of soil descriptions				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				19.98	19.98	19.98
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				6.7	6.7	6.7
Bulk Density - Mg/m3:				1.82	1.83	1.83
Dry Density - Mg/m3:				1.71	1.71	1.71
Voids Ratio:				0.553	0.549	0.549
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				19.51	19.39	19.02
		Shearing Stage				
Rate of Strain - mm/min				0.600	0.600	0.600
Displacement at peak shear s	tress - mm			4.00	8.00	5.00
Peak shear Stress - kPa:				44	80	147
	Fi	nal Consolidated Condi	tions			
Moisture Content - %:				18	18	17
Bulk Density - Mg/m3:				1.86	1.88	1.92
Dry Density - Mg/m3:				1.57	1.59	1.63
Peak						
Angle of Shearing Resistance:(0)						
Effective Cohesion - kPa:					11	




Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

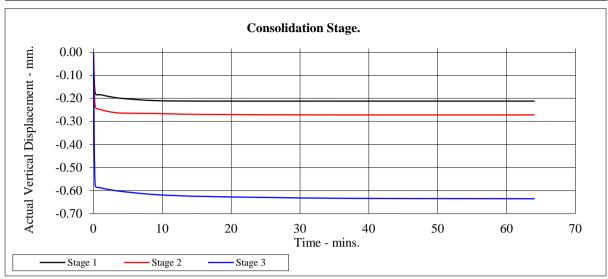
Hole Number:	BH09	Top Depth:	2.00
Sample Number:	3	Base Depth:	3.00

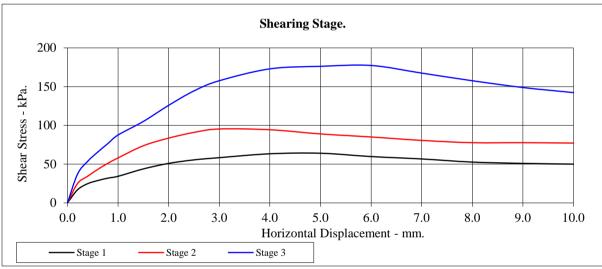


Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:		BH10	Top Depth:		2.00	
Sample Number:	Base Depth:			:	3.0	00
Sample Conditions:		Submerged.	Sample Typ	pe	F	3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort	ort.			
		ed passing 2mm sieve				
Sample Description:	See summar	ry of soil descriptions				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				19.98	19.98	19.98
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				12	12	12
Bulk Density - Mg/m3:				2.10	2.11	2.12
Dry Density - Mg/m3:				1.88	1.89	1.89
Voids Ratio:				0.413	0.405	0.405
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				19.77	19.71	19.34
		Shearing Stage				
Rate of Strain - mm/min				0.600	0.600	0.600
Displacement at peak shear s	tress - mm			5.00	3.00	6.00
Peak shear Stress - kPa:				64	95	177
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				17 2.13	17	16
Bulk Density - Mg/m3:					2.14	2.19
Dry Density - Mg/m3:			`	1.82	1.84	1.88
Peak						
Angle of Shearing Resistance:(0)						
Effective Cohesion - kPa:					28	





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH10	Top Depth:	2.00
Sample Number:	3	Base Depth:	3.00

Arklow Sewerage Scheme Marine Outfall GI

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Client:	Irish Water
Engineer:	Byrne Looby ARUP J.V.
From:	Stephen Watson
	Laboratory Manager
	Causeway Geotech Ltd
Tel:	+44(0)2827666640
E-mail:	stephen.watson@causewaygeotech.com
Date:	14/12/17
Ref:	17-0167 - Schedule 9

Arklow Sewerage Scheme Marine Outfall GI

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the *Contents page(s)*.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 60 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Stephen Watson Laboratory Manager

Project Name Arklow Sewerage Scheme Marine Outfall GI

Report Reference. 17-0167 – Schedule 9

The table below details the tests carried out, the specifications used, and the number of tests included in this report:

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	Number of test results included in the report		
SOIL	Moisture Content of Soil	BS1377: Part 2: Clause 3.2: 1990	13		
SOIL	Liquid and Plastic Limits of soil -1-point cone penetrometer method	BS1377: Part 2: Clauses 4.4, 5.3 & 5.4 1990	10		
SOIL	Particle size distribution - wet sieving	BS1377: Part 2: Clause 9.2: 1990	36		
SOIL	Particle size distribution -sedimentation hydrometer method	BS1377: Part 2: Clause 9.5: 1990	18		
SOIL	Undrained shear strength – triaxial compression without measurement of pore pressure (loads from 0.12 to 24 kN)	BS1377: Part 7: Clause 8: 1990	9		
SOIL – Subcontracted to Pro Soils Ltd	Direct Shear Strength using 60mm Small Shear box (up to 4 days)	BS1377: Part 7: Clause 4: 1990	12		
SOIL – Subcontracted to Chemtest Ltd	pH Value of Soil		14		
SOIL - Subcontracted to Chemtest Ltd	Sulphate Content water extract		14		

Summary of Classification Test Results

Project No.

Project Name

Linear measurement unless :

wd - water displacement

wi - immersion in water

4pt cone unless :

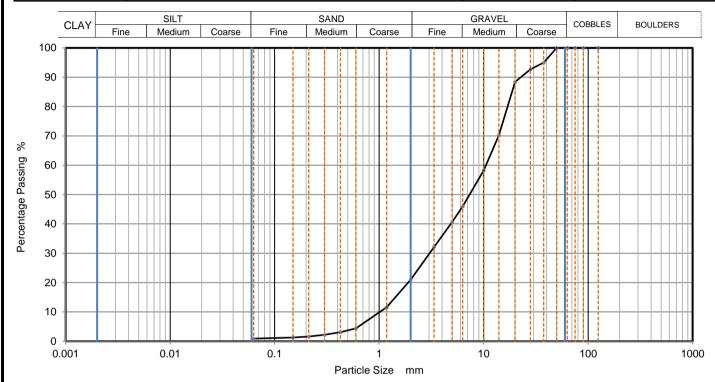
1pt - single point test

cas - Casagrande method

Arklow Sewerage Scheme Marine Outfall GI

17-	17-0167 Arklow Sewerage Scheme Marine Outfall GI								ne Marir	ne Outfal	l GI			
Hole No.	Ref	Sar Top	mple Base	Туре	Soil Description	Dens bulk	ity dry	w	Passing 425µm	LL	PL	PI	Particle density	Casagrande Classification
	1.01	100	Buoo	. , po		Mg/m	13	%	%	%	%	%	Mg/m3	
BH11	6	5.50		D	Grey slightly sandy silty CLAY.			22.0	99	39 -1pt	17	22		CI
BH11	8	7.50		D	Grey brown sandy subangular fine to coarse GRAVEL.			30.0						
BH11	10	9.50		D	Grey sandy CLAY,			7.5						
BH16	21	1.50		D	Grey sandy slightly gravelly silty CLAY.			52.0	99	63 -1pt	29	34		СН
BH16	24	4.50		D	Grey sandy slightly clayey organic SILT.			167.0	100	190 -1pt	101	89		ME
BH17	9	7.50		D	Grey sandy slightly clayey organic SILT.			146.0	100	184 -1pt	107	77		ME
BH17	11	9.50		D	Grey sandy slightly clayey organic SILT.			123.0	100	148 -1pt	123	25		ME
BH17	14	12.50		D	Grey slightly sandy silty CLAY.			32.0	98	44 -1pt	18	26		CI
BH18	2	2.80		В	Grey slightly sandy subangular to subrounded GRAVEL with low cobble content.			3.5						
BH18	23	5.50		D	Grey sandy silty organic CLAY.			134.0	96	151 -1pt	36	115		CE
BH18	25	7.50		D	Grey sandy slightly organic clayey SILT.			70.0	99	80 -1pt	59	21		MV
BH19	18	3.50		D	Greyish brown sandy organic clayey SILT.			125.0	95	184 -1pt	99	85		ME
BH19	19	4.50		D	Greyish brown sandy organic clayey SILT.			211.0	96	183 -1pt	96	87		ME
All tests performed in accordance with BS1377:1990 unless specified otherwise														
Key								Date F	rinted		Appr	oved	Ву	Table
Density		mont unlos	c ·	Liquid I		e density	otor		4/12/20	117				1

sp - small pyknometer


gj - gas jar

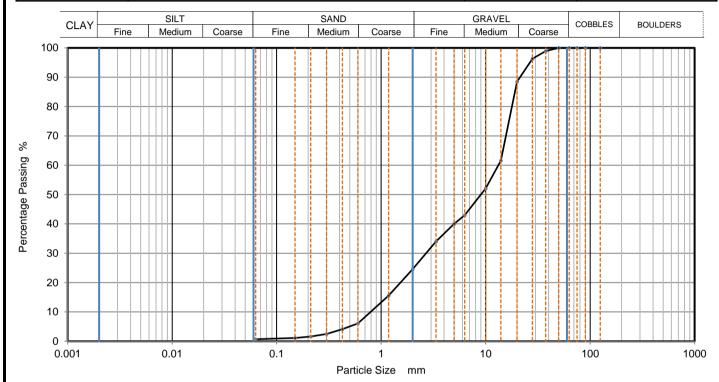
14/12/2017

sheet

Stephen.Watson

CAUSEWAY	DARTI	CLE SIZE DIST	Job Ref	17-0167	
———GEOTECH	PANII	CLE SIZE DIST	Borehole/Pit No.	BH11	
Site Name	Arklow Sewerage Sche	eme Marine Outfa	ll GI	Sample No.	19
Soil Description	Grey slightly sandy subar	gular to subrounde	Depth, m	0.80	
Specimen Reference	2	Specimen Depth	Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	se 9.2	KeyLAB ID	Caus201711200	

Siev	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	95		
28	93		
20	88		
14	70		
10	58		
6.3	46		
5	41		
3.35	32		
2	21		
1.18	12		
0.6	4		
0.425	3	1	
0.3	2		
0.212	2]	
0.15	1]	
0.063	1		


Dry Mass of sample, g	11015

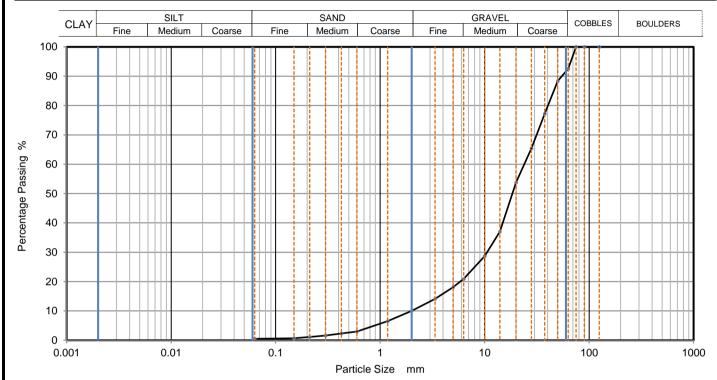
Sample Proportions	% dry mass
Cobbles	0
Gravel	79
Sand	20
Fines <0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	10.5
D30	mm	3.04
D10	mm	1.02
Uniformity Coefficient		10
Curvature Coefficient		0.86

Stephen.Watson 14/12/2017 17:56	Approved	Sheet printed	Fig	1
S. C. C. C. C. C. C. C. C. C. C. C. C. C.	Stephen. Watson	14/12/2017 17:56	Sheet	

PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
		Borehole/Pit No.	BH11	
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	21
Soil Description	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL.		Depth, m	2.80
Specimen Reference	2 Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus201711201

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	99		
28	96		
20	89		
14	62		
10	52		
6.3	43		
5	40		
3.35	34		
2	25		
1.18	16		
0.6	6		
0.425	4	1	
0.3	3		
0.212	2]	
0.15	1]	
0.063	1		


Dry Mass of sample, g	12130

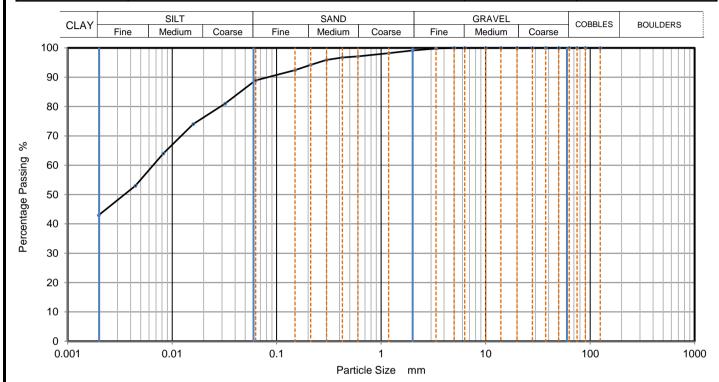
Sample Proportions	% dry mass
Cobbles	0
Gravel	75
Sand	24
Fines < 0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	13.2
D30	mm	2.69
D10	mm	0.79
Uniformity Coefficient		17
Curvature Coefficient		0.69

Approved	Sheet printed	Fig	1
Stephen.Watson	14/12/2017 17:56	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——— GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH11	
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	23
Soil Description	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL with low cobble content.		Depth, m	4.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus201711202	

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	93		
50	88		
37.5	77		
28	65		
20	54		
14	37		
10	29		
6.3	21		
5	18		
3.35	14		
2	10		
1.18	7		
0.6	3		
0.425	2	1	
0.3	2		
0.212	1	1	
0.15	1	1	
0.063	1]	


Dry Mass of sample, g	12619
-----------------------	-------

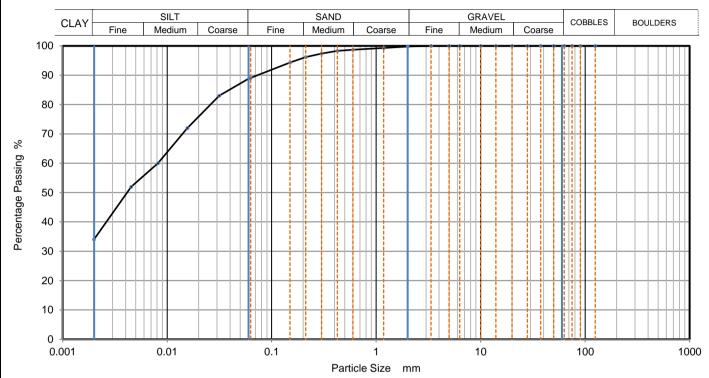
Sample Proportions	% dry mass
Cobbles	7
Gravel	83
Sand	10
Fines < 0.063mm	0

Grading Analysis		
D100	mm	
D60	mm	24
D30	mm	10.6
D10	mm	2.01
Uniformity Coefficient		12
Curvature Coefficient		2.3

Stephen.Watson 14/12/2017 17:56 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	14/12/2017 17:56	Sheet	

PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
		Borehole/Pit No.	BH11	
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	24
Soil Description	Grey slightly sandy silty CLAY,		Depth, m	5.80
Specimen Reference	2 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus201711204

Sievi	ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	89	
90	100	0.0321	81	
75	100	0.0159	74	
63	100	0.0082	64	
50	100	0.0045	53	
37.5	100	0.0020	43	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	99			
1.18	98			
0.6	97	Particle density	(assumed)	
0.425	97	2.65	Mg/m3	
0.3	96			
0.212	94	1		
0.15	92	1		
0.063	89	1		


126

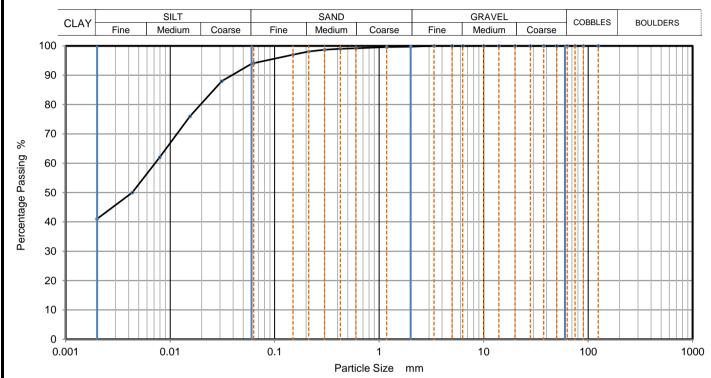
Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	10
Silt	46
Clay	43

Grading Analysis		
D100	mm	
D60	mm	0.00666
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen.Watson	14/12/2017 17:56	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——GEOTECH			Borehole/Pit No.	BH11	
Site Name	Arklow Sewerage Sche	arklow Sewerage Scheme Marine Outfall GI			25
Soil Description	Grey slightly sandy silty CLAY,		Depth, m	6.80	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus201711206

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0613	89	
90	100	0.0316	83	
75	100	0.0156	72	
63	100	0.0082	60	
50	100	0.0045	52	
37.5	100	0.0020	34	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	99			
0.6	99	Particle density	(assumed)	
0.425	98	2.65	Mg/m3	
0.3	97			
0.212	96			
0.15	94			
0.063	89			


133	
	133

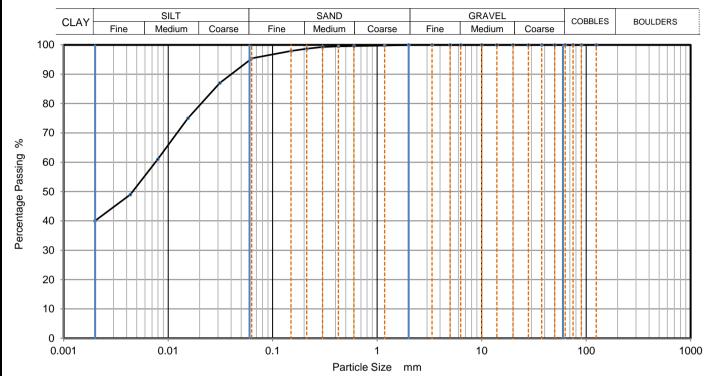
Sample Proportions % dry mass		
Cobbles	0	
Gravel	0	
Sand	11	
Silt	55	
Clay	35	

Grading Analysis		
D100	mm	
D60	mm	0.00795
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved		Fig	1
Stephen.Watson	14/12/2017 17:56	Sheet	

CAUSEWAY	DADTI	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167
——GEOTECH	PANII			Borehole/Pit No.	BH11
Site Name	Arklow Sewerage Sche	Arklow Sewerage Scheme Marine Outfall GI			26
Soil Description	Grey slightly sandy silty CLAY,			Depth, m	7.80
Specimen Reference	2 Specimen m Depth			Sample Type	В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus201711208

Sievi	ng	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0606	94
90	100	0.0312	88
75	100	0.0154	76
63	100	0.0079	62
50	100	0.0043	50
37.5	100	0.0020	41
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99	Particle density	(assumed)
0.425	99	2.65	Mg/m3
0.3	99		
0.212	98	7	
0.15	97	7	
0.063	94	7	


Dry Mass of sample, g	113

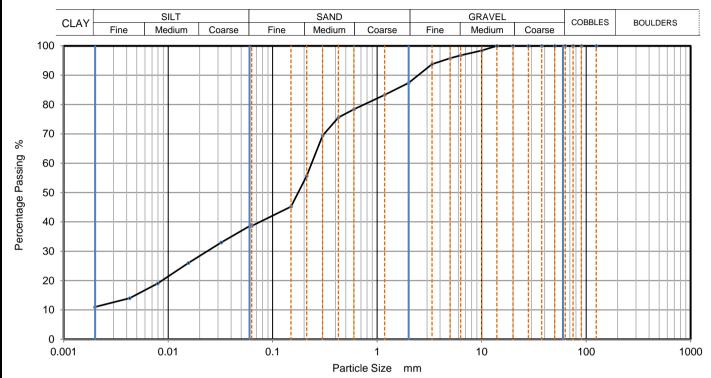
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	6
Silt	53
Clay	41

Grading Analysis		
D100	mm	
D60	mm	0.00726
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen.Watson	14/12/2017 17:56	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
——GEOTECH	PANI	TICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH11
Site Name	Arklow Sewerage Sch	Arklow Sewerage Scheme Marine Outfall GI			27
Soil Description	Grey sandy CLAY,			Depth, m	8.80
Specimen Reference	2 Specimen m			Sample Type	В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017112010

Sievi	ng	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0613	95
90	100	0.0312	87
75	100	0.0154	75
63	100	0.0079	61
50	100	0.0043	49
37.5	100	0.0020	40
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.65	Mg/m3
0.3	99		
0.212	99	1	
0.15	98	1	
0.063	95	1	


Dry Mass of sample, g	109
-----------------------	-----

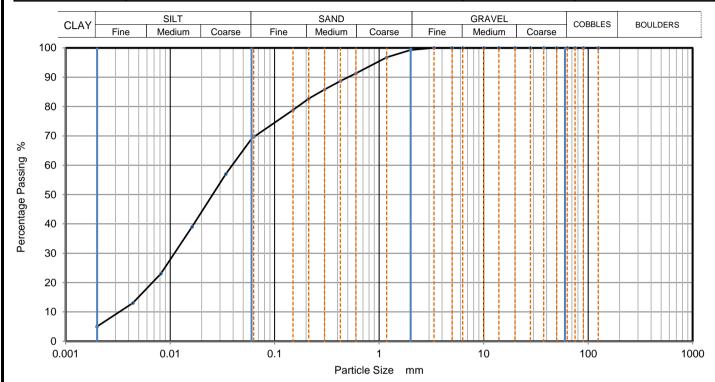
Sample Proportions	% dry mass		
Cobbles	0		
Gravel	0		
Sand	5		
Silt	55		
Clay	41		

Grading Analysis		
D100	mm	
D60	mm	0.00766
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen.Watson	14/12/2017 17:56	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
——GEOTECH			Borehole/Pit No.	BH16	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	7
Soil Description	Grey sandy slightly gravelly silty CLAY.		Depth, m	0.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017112013

Sie	ving	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	39	
90	100	0.0322	33	
75	100	0.0156	26	
63	100	0.0079	19	
50	100	0.0043	14	
37.5	100	0.0020	11	
28	100			
20	100			
14	100			
10	98			
6.3	97			
5	96			
3.35	94			
2	87			
1.18	83			
0.6	78	Particle density	(assumed)	
0.425	76	2.65	Mg/m3	
0.3	69			
0.212	56			
0.15	45			
0.063	39			


109

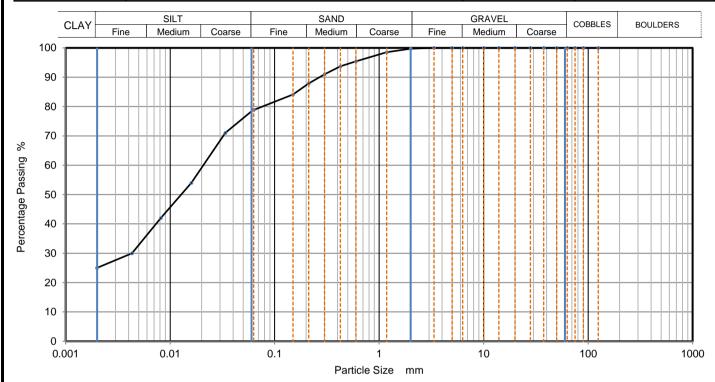
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	13	
Sand	49	
Silt	27	
Clay	11	

Grading Analysis		
D100	mm	
D60	mm	0.237
D30	mm	0.0236
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
———GEOTECH			Borehole/Pit No.	ВН16	
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	8
Soil Description	Grey sandy slightly clayey SILT.			Depth, m	1.80
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017112015

Sievi	ng	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	70	
90	100	0.0341	57	
75	100	0.0162	39	
63	100	0.0081	23	
50	100	0.0044	13	
37.5	100	0.0020	5	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	99			
1.18	97			
0.6	91	Particle density	(assumed)	
0.425	89	2.65	Mg/m3	
0.3	86			
0.212	83	1		
0.15	79	1		
0.063	70			


Dry Mass of sample, g	70
Dry Wass or sumple, g	, 0

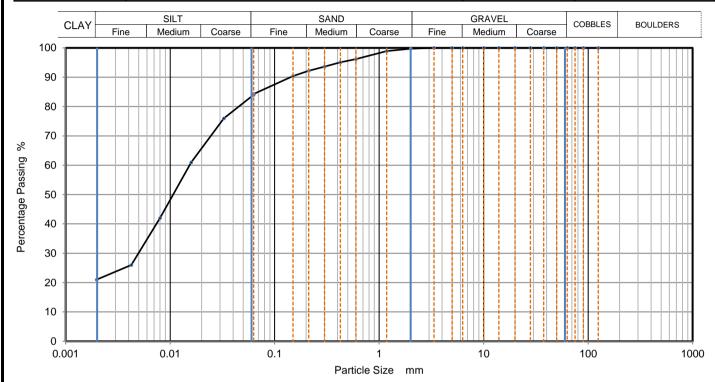
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	1	
Sand	30	
Silt	64	
Clay	5	

Grading Analysis		
D100	mm	
D60	mm	0.0399
D30	mm	0.011
D10	mm	0.00327
Uniformity Coefficient		12
Curvature Coefficient		0.93

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
GEOTECH PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	ВН16	
Site Name	rklow Sewerage Scheme Marine Outfall GI			Sample No.	9
Soil Description	Grey sandy slightly clayey SILT.		Depth, m	2.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017112017

Sieving		Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	79
90	100	0.0337	71
75	100	0.0160	54
63	100	0.0081	42
50	100	0.0043	30
37.5	100	0.0020	25
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	95	Particle density	(assumed)
0.425	94	2.65	Mg/m3
0.3	91		
0.212	88	1	
0.15	84	1	
0.063	79		


Dry Mass of sample, g	65

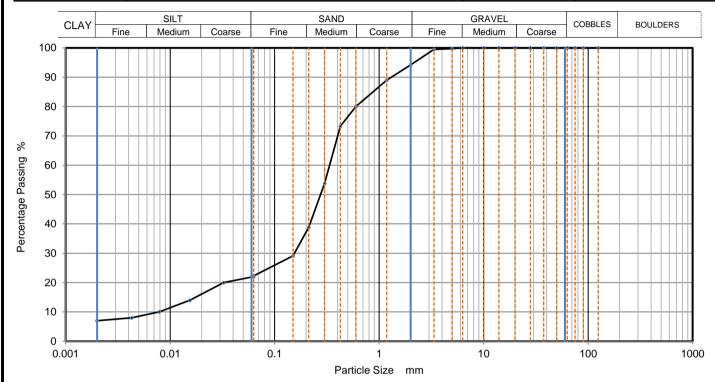
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	0	
Sand	21	
Silt	54	
Clay	25	

Grading Analysis		
D100	mm	
D60	mm	0.0205
D30	mm	0.00441
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	·	Fig	1
Stephen.Watson	14/12/2017 17:57		

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
GEOTECH PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	ВН16	
Site Name	rklow Sewerage Scheme Marine Outfall GI			Sample No.	10
Soil Description	Grey sandy slightly clayey SILT.		Depth, m	3.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	Caus2017112018

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	84
90	100	0.0327	76
75	100	0.0159	61
63	100	0.0080	42
50	100	0.0042	26
37.5	100	0.0020	21
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	96	Particle density	(assumed)
0.425	95	2.65	Mg/m3
0.3	94		
0.212	92		
0.15	90		
0.063	84		


Dry Mass of sample, g	66
-----------------------	----

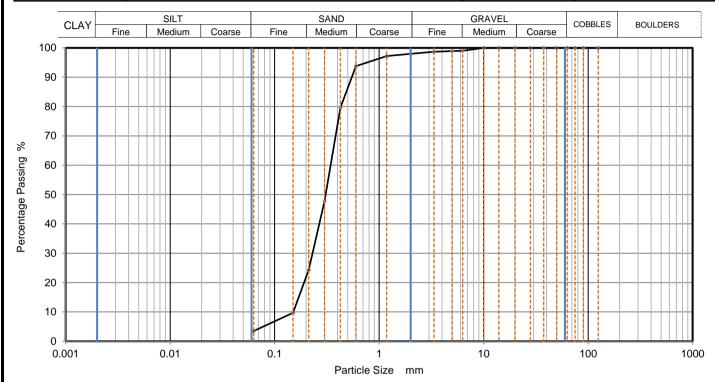
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	15
Silt	63
Clay	21

Grading Analysis		
D100	mm	
D60	mm	0.0155
D30	mm	0.00491
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Stephen.Watson 14/12/2017 17:57 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DARTI	CI E SIZE DIST	DIDI ITION	Job Ref	17-0167
——GEOTECH	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH16	
Site Name	Arklow Sewerage Sche	eme Marine Outfa	ll GI	Sample No.	11
Soil Description	Grey slightly gravelly slightly silty fine to coarse SAND.		Depth, m	4.80	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112021	

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	22
90	100	0.0325	20
75	100	0.0154	14
63	100	0.0078	10
50	100	0.0043	8
37.5	100	0.0020	7
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	94		
1.18	89		
0.6	80	Particle density	(assumed)
0.425	73	2.65	Mg/m3
0.3	54		
0.212	39		
0.15	29		
0.063	22		


Dry Mass of sample, g	134
-----------------------	-----

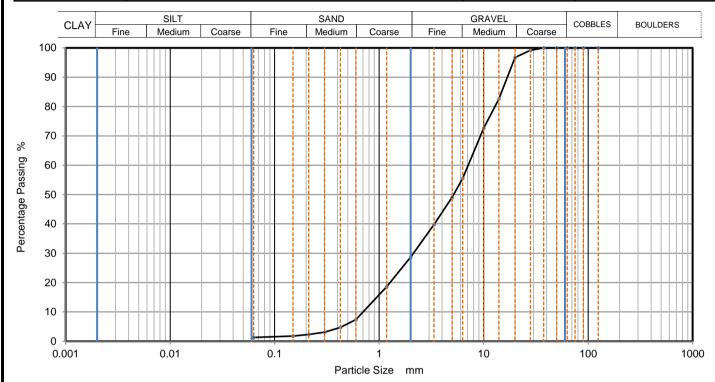
Sample Proportions	% dry mass
Cobbles	0
Gravel	6
Sand	72
Silt	16
Clay	7

Grading Analysis		
D100	mm	
D60	mm	0.335
D30	mm	0.155
D10	mm	0.00699
Uniformity Coefficient		48
Curvature Coefficient		10

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DARTI	CLE SIZE DIST	DIDI ITION	Job Ref	17-0167
——GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	ВН16
Site Name	Arklow Sewerage Sche	eme Marine Outfa	ll GI	Sample No.	15
Soil Description	Grey fine to medium SAN	Grey fine to medium SAND.			9.80
Specimen Reference	2 Specimen m Depth			Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017112024	

Siev	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	99		
3.35	99		
2	98		
1.18	97		
0.6	94		
0.425	80		
0.3	48	_	
0.212	24		
0.15	10		
0.063	4		


Dry Mass of sample, g	131

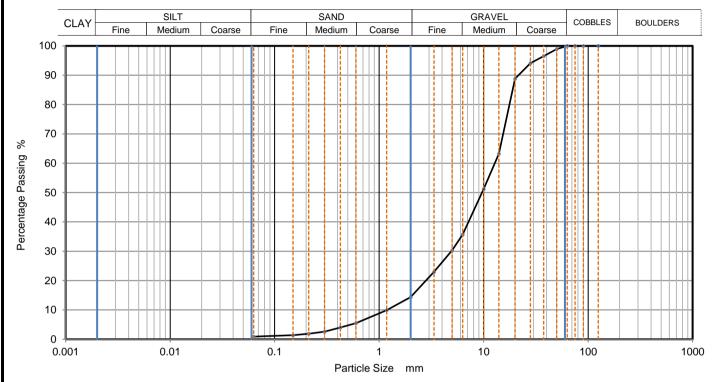
Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	95
Fines < 0.063mm	4

Grading Analysis		
D100	mm	
D60	mm	0.343
D30	mm	0.231
D10	mm	0.151
Uniformity Coefficient		2.3
Curvature Coefficient		1

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DARTI	CLE SIZE DIST	DIBLITION	Job Ref	17-0167
———GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	BH17
Site Name	Arklow Sewerage Sche	eme Marine Outfa	ll GI	Sample No.	15
Soil Description	Grey slightly sandy suban	Grey slightly sandy subangular to subrounded medium to coarse GRAVEL.			0.80
Specimen Reference	2 Specimen m Depth			Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017112025	

Sie	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	99		
20	97		
14	83		
10	73		
6.3	56		
5	49		
3.35	40		
2	29		
1.18	19		
0.6	7		
0.425	5		
0.3	3		
0.212	2		
0.15	2		
0.063	1		


Dry Mass of sample, g	5261

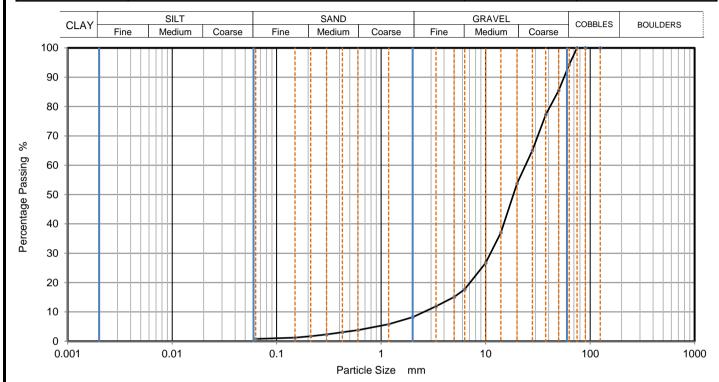
Sample Proportions	% dry mass
Cobbles	0
Gravel	71
Sand	27
Fines < 0.063 mm	1

Grading Analysis		
D100	mm	
D60	mm	7.11
D30	mm	2.12
D10	mm	0.702
Uniformity Coefficient		10
Curvature Coefficient		0.9

Stephen.Watson 14/12/2017 17:57 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DADTI	CLE SIZE DIST	DIBLITION	Job Ref	17-0167
——GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	BH17
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	17
Soil Description	Grey slightly sandy suban	Grey slightly sandy subangular to subrounded medium to coarse GRAVEL.		Depth, m	2.80
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017112026	

Siev	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	99		
37.5	97		
28	94		
20	89		
14	63		
10	51		
6.3	36		
5	30		
3.35	23		
2	14		
1.18	10		
0.6	6		
0.425	4	1	
0.3	3		
0.212	2]	
0.15	1]	
0.063	1		


Dry Mass of sample, g	8589
Dry Wass of sample, g	0303

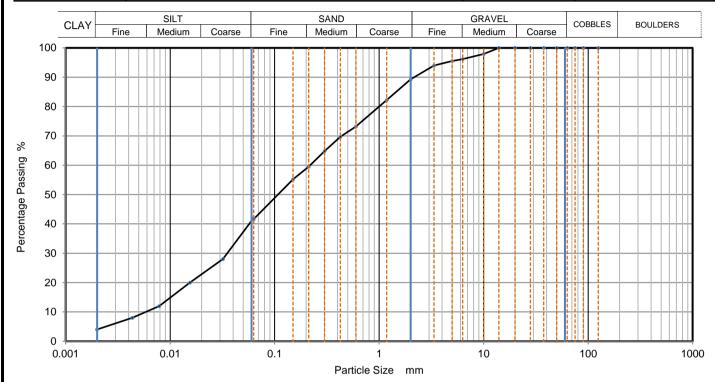
Sample Proportions	% dry mass
Cobbles	0
Gravel	86
Sand	14
Fines < 0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	12.8
D30	mm	4.93
D10	mm	1.2
Uniformity Coefficient		11
Curvature Coefficient		1.6

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DADTI	CLE SIZE DIST	DIBLITION	Job Ref	17-0167
——GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	BH17
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	19
Soil Description	Grey slightly sandy suban with low cobble content.			Depth, m	4.80
Specimen Reference	2	2 Specimen m Depth m		Sample Type	В
Test Method	BS1377:Part 2:1990, clau	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017112027

Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	94		
50	86		
37.5	77		
28	65		
20	54		
14	37		
10	27		
6.3	18		
5	15		
3.35	12		
2	8		
1.18	6		
0.6	4		
0.425	3		
0.3	2		
0.212	2		
0.15	1		
0.063	1		


Dry Mass of sample, g	13623
-----------------------	-------

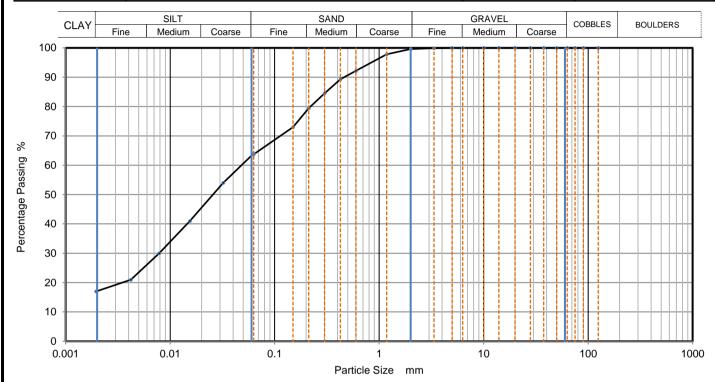
Sample Proportions	% dry mass
Cobbles	6
Gravel	86
Sand	7
Fines < 0.063 mm	1

Grading Analysis		
D100	mm	
D60	mm	24.1
D30	mm	11.2
D10	mm	2.57
Uniformity Coefficient		9.4
Curvature Coefficient		2

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
GEOTECH		CLE SIZE DISTRIBUTION		Borehole/Pit No.	BH17
Site Name	Arklow Sewerage Sche	rklow Sewerage Scheme Marine Outfall GI		Sample No.	20
Soil Description	Grey sandy slightly gravelly clayey SILT.		Depth, m	5.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112028	

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	42
90	100	0.0319	28
75	100	0.0154	20
63	100	0.0078	12
50	100	0.0043	8
37.5	100	0.0020	4
28	100		
20	100		
14	100		
10	98		
6.3	96		
5	96		
3.35	94		
2	89		
1.18	82		
0.6	73	Particle density	(assumed)
0.425	70	2.65	Mg/m3
0.3	65		
0.212	60		
0.15	55		
0.063	42		


Dry Mass of sample, g	109
-----------------------	-----

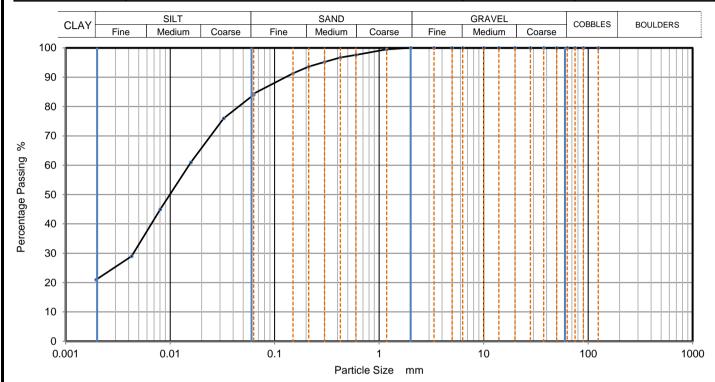
Sample Proportions	% dry mass	
Cobbles	0	
Gravel	11	
Sand	48	
Silt	38	
Clay	4	

Grading Analysis		
D100	mm	
D60	mm	0.219
D30	mm	0.0357
D10	mm	0.00592
Uniformity Coefficient		37
Curvature Coefficient		0.98

Stephen.Watson 14/12/2017 17:57 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167	
GEOTECH PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH17		
Site Name	Arklow Sewerage Sche	rklow Sewerage Scheme Marine Outfall GI		Sample No.	21
Soil Description	Grey sandy slightly clayey organic SILT.		Depth, m	6.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112030	

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	64
90	100	0.0322	54
75	100	0.0154	41
63	100	0.0078	30
50	100	0.0042	21
37.5	100	0.0020	17
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	98		
0.6	92	Particle density	(assumed)
0.425	89	2.65	Mg/m3
0.3	85		
0.212	79		
0.15	73		
0.063	64		


Dry Mass of sample, g	69

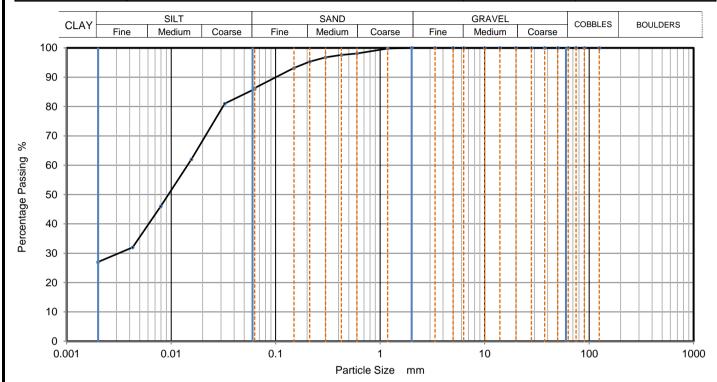
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	36
Silt	47
Clay	17

Grading Analysis		
D100	mm	
D60	mm	0.0483
D30	mm	0.00785
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	Sheet printed	Fig	1
Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		EDIDI ITIONI	Job Ref	17-0167
——GEOTECH	GEOTECH PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH17
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	22
Soil Description	Grey sandy slightly clayey organic SILT.		Depth, m	7.80
Specimen Reference	2 Specimen m Depth		Sample Type	В
Test Method	3S1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112032

Sieving		Sedimo	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	84
90	100	0.0325	76
75	100	0.0158	61
63	100	0.0080	45
50	100	0.0043	29
37.5	100	0.0020	21
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	98	Particle density	(assumed)
0.425	97	2.65	Mg/m3
0.3	95		
0.212	94		
0.15	91]	
0.063	84		


Dry Mass of sample, g	63	
-----------------------	----	--

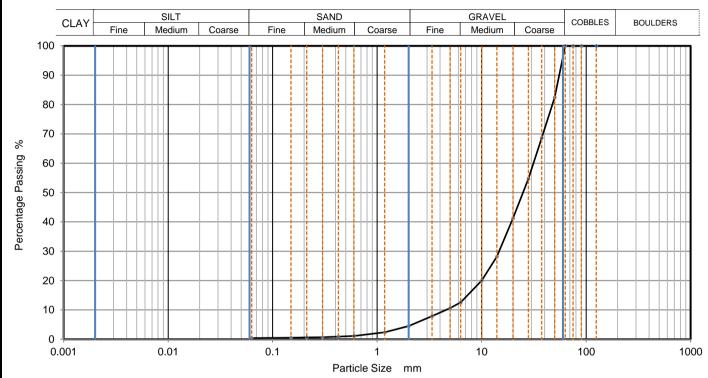
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	16
Silt	63
Clay	21

Grading Analysis		
D100	mm	
D60	mm	0.0153
D30	mm	0.00445
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	·	Fig	1
Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167
GEOTECH PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	BH17	
Site Name	Arklow Sewerage Scheme Marine Outfall GI		Sample No.	23
Soil Description	Grey sandy slightly clayey organic SILT.		Depth, m	8.80
Specimen Reference	2 Specimen m Depth		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112034

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	86	
90	100	0.0325	81	
75	100	0.0156	62	
63	100	0.0079	46	
50	100	0.0043	32	
37.5	100	0.0020	27	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	98	Particle density	(assumed)	
0.425	98	2.65	Mg/m3	
0.3	97			
0.212	95			
0.15	93			
0.063	86			


Dry Mass of sample, g	62

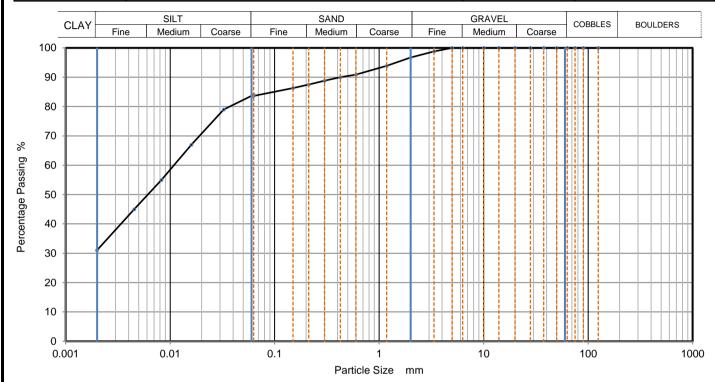
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	14
Silt	59
Clay	27

Grading Analysis		
D100	mm	
D60	mm	0.0143
D30	mm	0.00306
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	·	Fig	1
Stephen.Watson	14/12/2017 17:57	Sheet	

PARTICLE SIZE DISTRIBUTION -		Job Ref	17-0167		
		KIBOTION	Borehole/Pit No.	BH17	
Site Name	arklow Sewerage Scheme Marine Outfall GI			Sample No.	24
Soil Description	Grey slightly sandy subangular to subrounded GRAVEL.		Depth, m	9.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017112036	

Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	82		
37.5	69		
28	55		
20	41		
14	28		
10	20		
6.3	13		
5	11		
3.35	8		
2	5		
1.18	2		
0.6	1		
0.425	1		
0.3	1		
0.212	1		
0.15	1		
0.063	0		


Dry Mass of sample, g	12044

Sample Proportions	% dry mass
Cobbles	0
Gravel	96
Sand	4
Fines < 0.063 mm	0

Grading Analysis		
D100	mm	
D60	mm	31.3
D30	mm	14.7
D10	mm	4.58
Uniformity Coefficient		6.8
Curvature Coefficient		1.5

Approved	·	Fig	1
Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	BH17
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	26
Soil Description	Grey slightly sandy clayey SILT,		Depth, m	11.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112037	

Sievi	ng	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	84
90	100	0.0325	79
75	100	0.0160	67
63	100	0.0083	55
50	100	0.0045	45
37.5	100	0.0020	31
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	97		
1.18	94		
0.6	91	Particle density	(assumed)
0.425	90	2.65	Mg/m3
0.3	89		
0.212	88	7	
0.15	86	7	
0.063	84		

Dry Mass of sample, g	129

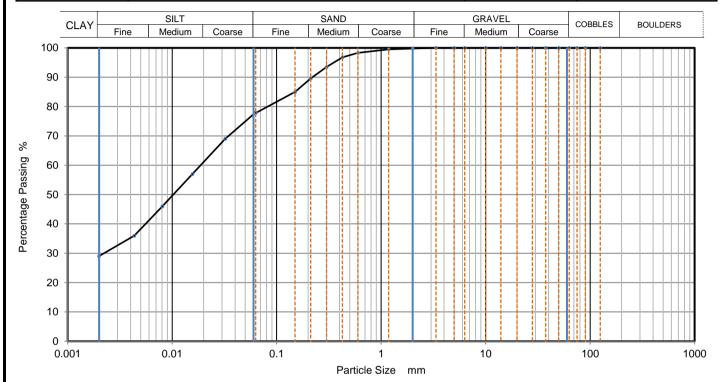
Sample Proportions	% dry mass
Cobbles	0
Gravel	3
Sand	13
Silt	52
Clay	31

Grading Analysis		
D100	mm	
D60	mm	0.0109
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Stephen.Watson 14/12/2017 17:57 Sheet	Approved	Sheet printed	Fig	1
	Stephen. Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DARTI	CLE SIZE DIST	DIBLITION	Job Ref	17-0167
———GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	BH18
Site Name	Arklow Sewerage Sche	eme Marine Outfa	ll GI	Sample No.	2
Soil Description	Grey slightly sandy subar content.			Depth, m	2.80
Specimen Reference	4 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112041

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	1
90	100	0.0322	1
75	100	0.0156	0
63	96	0.0080	0
50	95	0.0043	0
37.5	88	0.0020	0
28	84		
20	77		
14	53		
10	39		
6.3	24		
5	20		
3.35	15		
2	10		
1.18	7		
0.6	5	Particle density	(assumed)
0.425	4	2.65	Mg/m3
0.3	3		
0.212	2		
0.15	1		
0.063	1		


Dry Mass of sample, g	17591

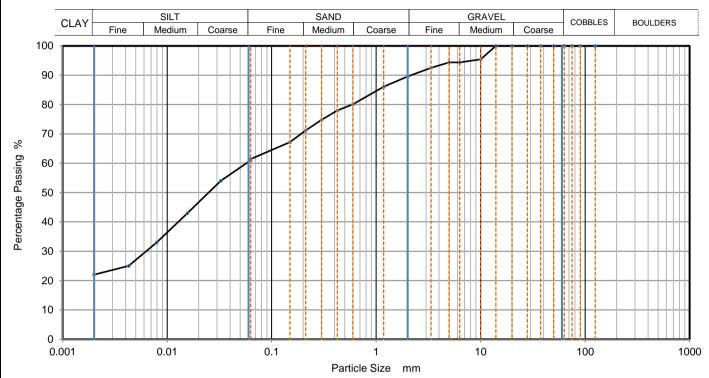
Sample Proportions	% dry mass
Cobbles	4
Gravel	86
Sand	9
Silt	0
Clay	0

Grading Analysis		
D100	mm	
D60	mm	15.5
D30	mm	7.53
D10	mm	2.04
Uniformity Coefficient		7.6
Curvature Coefficient		1.8

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DADTI	CLE SIZE DIST	DIDITION	Job Ref	17-0167
——GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	BH18
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	3
Soil Description	Grey sandy silty CLAY.			Depth, m	4.80
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112043

Sie	ving	Sedimo	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	78
90	100	0.0322	69
75	100	0.0156	57
63	100	0.0080	46
50	100	0.0043	36
37.5	100	0.0020	29
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	98	Particle density	(assumed)
0.425	97	2.65	Mg/m3
0.3	94		
0.212	90		
0.15	85		
0.063	78		


Dry Mass of sample, g	98
Dry Mass of sample, g	98

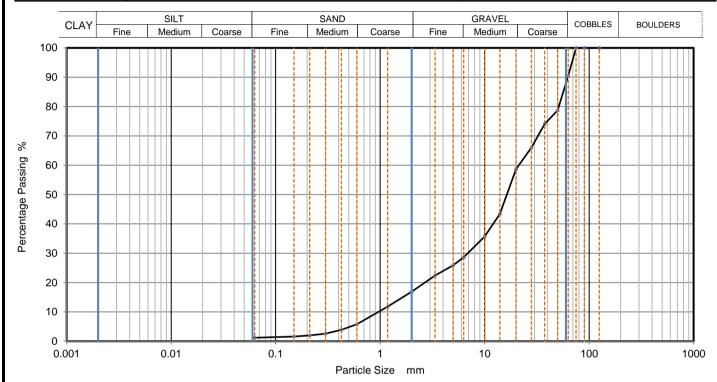
Sample Proportions	% dry mass
Cobbles	0
Gravel	0
Sand	22
Silt	48
Clay	30

Grading Analysis		
D100	mm	
D60	mm	0.0188
D30	mm	0.00213
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167	
——GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	BH18
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	4
Soil Description	Grey sandy slightly gravelly silty CLAY.		Depth, m	6.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112046	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	61	
90	100	0.0325	54	
75	100	0.0156	43	
63	100	0.0079	33	
50	100	0.0043	25	
37.5	100	0.0020	22	
28	100			
20	100			
14	100			
10	95			
6.3	94			
5	94			
3.35	93			
2	90			
1.18	86			
0.6	80	Particle density	(assumed)	
0.425	78	2.65	Mg/m3	
0.3	75			
0.212	71			
0.15	67			
0.063	61			


Dry Mass of sample, g	60

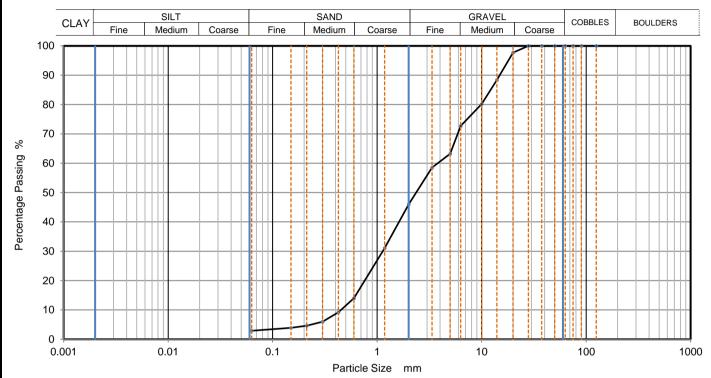
Sample Proportions	% dry mass
Cobbles	0
Gravel	10
Sand	28
Silt	39
Clay	22

Grading Analysis		
D100	mm	
D60	mm	0.0559
D30	mm	0.00624
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Approved	·	Fig	1
Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY PARTICLE SIZE DISTRIBUTION		Job Ref	17-0167		
——GEOTECH	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	BH18
Site Name	Arklow Sewerage Scheme Marine Outfall GI			Sample No.	6
Soil Description	Grey slightly sandy subangular to subrounded fine to coarse GRAVEL with low cobble content.		Depth, m	8.80	
Specimen Reference	2 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017112048	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	91		
50	79		
37.5	74		
28	66		
20	59		
14	43		
10	36		
6.3	29		
5	26		
3.35	22		
2	17		
1.18	12		
0.6	6		
0.425	4	1	
0.3	3		
0.212	2]	
0.15	2]	
0.063	1		


Dry Mass of sample, g	11575

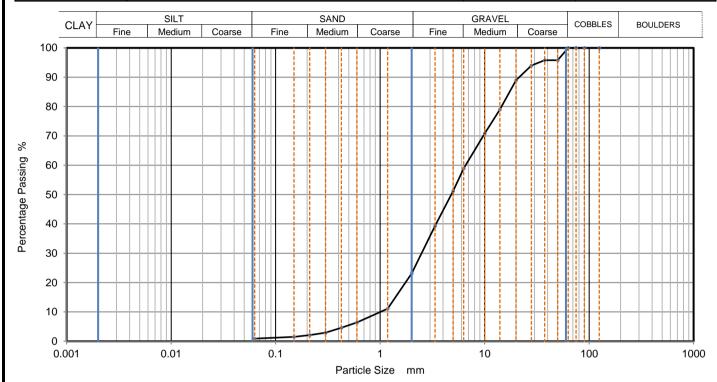
Sample Proportions	% dry mass
Cobbles	10
Gravel	74
Sand	16
Fines <0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	21.2
D30	mm	6.91
D10	mm	0.962
Uniformity Coefficient		22
Curvature Coefficient		2.3

Stephen.Watson 14/12/2017 17:57 Sheet	Approved	Sheet printed	Fig	1
	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DADTI	CLE SIZE DIST	DIBLITION	Job Ref	17-0167
——GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	BH18
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	8
Soil Description	Grey sandy subangular to	Grey sandy subangular to subrounded fine to coarse GRAVEL.		Depth, m	10.80
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017112049

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	98		
14	88		
10	80		
6.3	73		
5	63		
3.35	59		
2	46		
1.18	31		
0.6	14		
0.425	9	1	
0.3	6		
0.212	5		
0.15	4		
0.063	3		


Dry Mass of sample, g	5348

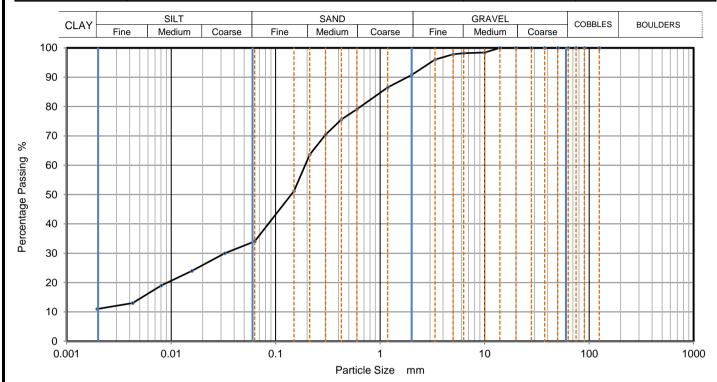
Sample Proportions	% dry mass
Cobbles	0
Gravel	54
Sand	43
Fines < 0.063 mm	3

Grading Analysis		
D100	mm	
D60	mm	3.8
D30	mm	1.13
D10	mm	0.45
Uniformity Coefficient		8.4
Curvature Coefficient		0.74

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DADTI	CLE SIZE DIST	DIBLITION	Job Ref	17-0167
———GEOTECH	PANII	CLE SIZE DIST	RIBUTION	Borehole/Pit No.	BH19
Site Name	Arklow Sewerage Sche	me Marine Outfa	ll GI	Sample No.	2
Soil Description	Greyish brown slightly sa GRAVEL.			Depth, m	1.80
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017112051

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	96		
37.5	96		
28	94		
20	89		
14	79		
10	71		
6.3	59		
5	51		
3.35	39		
2	23		
1.18	11		
0.6	6		
0.425	5	1	
0.3	3		
0.212	2		
0.15	2		
0.063	1		


Dry Mass of sample, g	7275

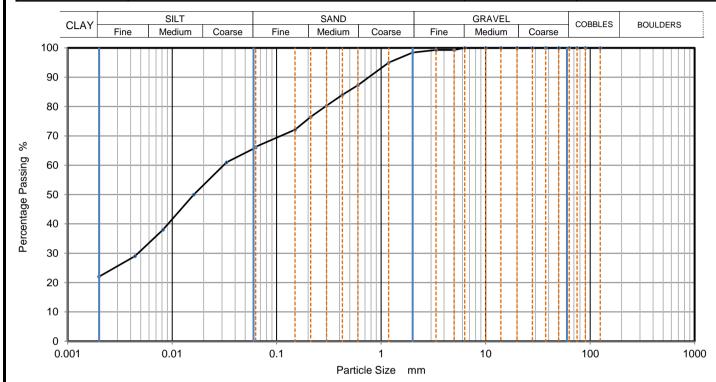
Sample Proportions	% dry mass
Cobbles	0
Gravel	77
Sand	22
Fines <0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	6.57
D30	mm	2.49
D10	mm	1.01
Uniformity Coefficient		6.5
Curvature Coefficient		0.93

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DARTI	CLE SIZE DIST	DIDITION	Job Ref	17-0167
——GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	ВН19
Site Name	Arklow Sewerage Sche	eme Marine Outfa	ll GI	Sample No.	3
Soil Description	Greyish brown slightly gr	Greyish brown slightly gravelly silty fine to coarse SAND.		Depth, m	2.80
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112054

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	34
90	100	0.0325	30
75	100	0.0158	24
63	100	0.0080	19
50	100	0.0043	13
37.5	100	0.0020	11
28	100		
20	100		
14	100		
10	98		
6.3	98		
5	98		
3.35	96		
2	91		
1.18	87		
0.6	79	Particle density	(assumed)
0.425	76	2.65	Mg/m3
0.3	70		
0.212	64		
0.15	51		
0.063	34		


Dry Mass of sample, g	77

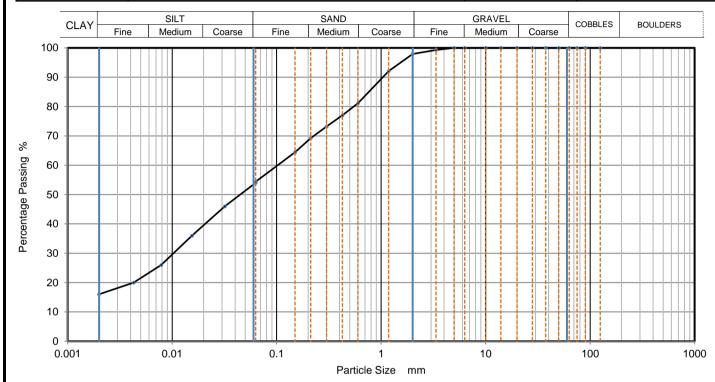
Sample Proportions	% dry mass
Cobbles	0
Gravel	9
Sand	57
Silt	23
Clay	11

Grading Analysis		
D100	mm	
D60	mm	0.192
D30	mm	0.0349
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DADTI	CLE SIZE DIST	DIDITION	Job Ref	17-0167
——GEOTECH	PANII	CLE SIZE DIST	KIBOTION	Borehole/Pit No.	BH19
Site Name	Arklow Sewerage Sche	eme Marine Outfa	ll GI	Sample No.	4
Soil Description	Greyish brown sandy org	Greyish brown sandy organic clayey SILT.		Depth, m	3.80
Specimen Reference	2 Specimen m Depth m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112056

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	66
90	100	0.0332	61
75	100	0.0161	50
63	100	0.0082	38
50	100	0.0044	29
37.5	100	0.0020	22
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	99		
3.35	99		
2	98		
1.18	95		
0.6	87	Particle density	(assumed)
0.425	84	2.65	Mg/m3
0.3	80		
0.212	77		
0.15	72		
0.063	66		


Dry Mass of sample, g	61

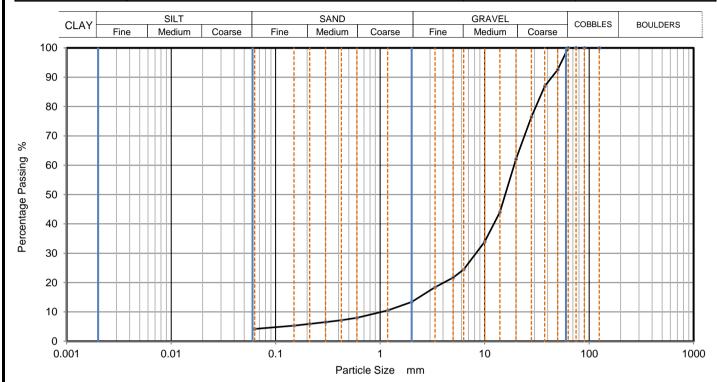
Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	32
Silt	45
Clay	22

Grading Analysis		
D100	mm	
D60	mm	0.0312
D30	mm	0.00482
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DARTI	PARTICLE SIZE DISTRIBUTION –		Job Ref	17-0167
——GEOTECH	PANII	TARTICLE SIZE DISTRIBUTION			ВН19
Site Name	Arklow Sewerage Sche	eme Marine Outfa	ll GI	Sample No.	5
Soil Description	Greyish brown sandy organic clayey SILT.		Depth, m	4.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	Caus2017112059	

Sievi	ng	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	54
90	100	0.0319	46
75	100	0.0154	36
63	100	0.0078	26
50	100	0.0043	20
37.5	100	0.0020	16
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	98		
1.18	92		
0.6	81	Particle density	(assumed)
0.425	77	2.65	Mg/m3
0.3	73		
0.212	69	7	
0.15	64	7	
0.063	54	TI .	


Dry Mass of sample, g	73

Sample Proportions	% dry mass
Cobbles	0
Gravel	2
Sand	44
Silt	38
Clay	17

Grading Analysis		
D100	mm	
D60	mm	0.103
D30	mm	0.01
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

14/12/2017 17:57 Stephen.Watson	Approved	Sheet printed	Fig	1
Sneet	Stephen.Watson	14/12/2017 17:57	Sheet	

CAUSEWAY	DARTI	CI E SIZE DIST	DIBLITION	Job Ref	17-0167
——GEOTECH	PANII	PARTICLE SIZE DISTRIBUTION			BH19
Site Name	Arklow Sewerage Sche	eme Marine Outfa	ll GI	Sample No.	6
Soil Description	Grey slightly sandy angular to subangular fine to coarse GRAVEL.		Depth, m	5.80	
Specimen Reference	2 Specimen m Depth		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	Caus2017112061	

Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	93		
37.5	87		
28	77		
20	62		
14	44		
10	34		
6.3	25		
5	22		
3.35	18		
2	13		
1.18	11		
0.6	8		
0.425	7	1	
0.3	7		
0.212	6]	
0.15	5]	
0.063	4		

Dry Mass of sample, g	6997
2.7	

Sample Proportions	% dry mass
Cobbles	0
Gravel	87
Sand	9
Fines < 0.063mm	4

Grading Analysis		
D100	mm	
D60	mm	19.2
D30	mm	8.27
D10	mm	1.03
Uniformity Coefficient		19
Curvature Coefficient		3.5

Approved	·	Fig	1
Stephen.Watson	14/12/2017 17:57	Sheet	

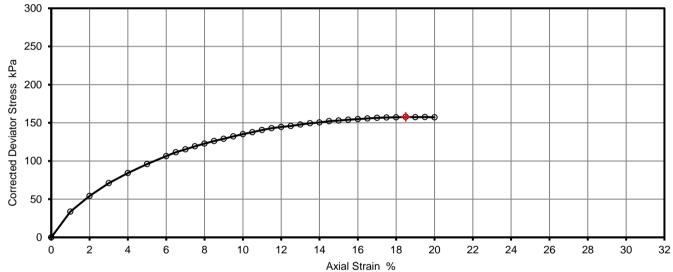
CAUSEWAY	Unconsolidat Compression			Job Ref	17-0167			
GEOTECH	of pore press			Borehole/Pit No.	BH11			
Site Name	Arklow Sewerage S	cheme Marine Ou	utfall GI		Sample No.	17		
Soil Description	Grey slightly sandy	silty CLAY,			Depth	6.00		
Specimen Reference	2	Specimen Depth	6.30	m	Sample Type	U		
Specimen Description	Stiff grey slightly sa	ndy silty CLAY,	-		KeyLAB ID	Caus201711205		
Test Method	BS1377 : Part 7 : 1	990, clause 8, sin	gle specimen		Date of test	08/12/2017		
	Test Number Length Diameter Bulk Density Moisture Content Dry Density Rate of Strain Cell Pressure At failure	Axial Strain Deviator Stress Undrained Shea Mode of Failure	ar Strength, cu		1 200.0 100.0 2.19 21.8 1.80 2.0 120 20.0 221	mm mm Mg/m3 % Mg/m3 %/min kPa % kPa kPa kPa kPa ½(σ1-σ3)f		
riator Stress v A	Axial Strain	Wode of Fallard						
300								
250				+				
200			, 	••••	•			
150								
100								
50								
[∞]]/								
0 1 2	4 6 8	10 12	14 16	18	20 22 24	26 28 30 32		
hr Circles			Axial Strain ^o	%				
300						Deviator stress corrected for area change and		
250						membrane effects		
150						Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.		
100								
50								
0 50	100 150 200	250 300		450	500 550 600)		
0 30		Normal Stree	sses kPa					
Remarks		Normal Stres	Approved	-	Printed	Fig. No.		

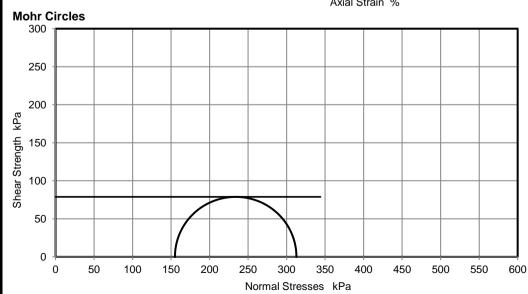
CAUSEWAY		ated Undraine on Test withoเ		ont	Job Ref	17-0167
—— GEOTECH	-	ssure - single	Borehole/Pit No.	BH11		
Site Name	Arklow Sewerage	Scheme Marine Ou		Sample No.	18	
Soil Description	Grey slightly sand	dy silty CLAY,		Depth	8.00	
Specimen Reference	2	Specimen Depth	8.30	m	Sample Type	U
Specimen Description	Stiff grey slightly	sandy silty CLAY,		KeyLAB ID	Caus201711209	
Test Method	BS1377 : Part 7 :	1990, clause 8, sing	gle specimen		Date of test	08/12/2017
	Test Number Length Diameter				1 200.0 100.0	mm mm
	Diameter				0.44	

Test Number Length Diameter Bulk Density Moisture Content Dry Density

Rate of Strain Cell Pressure At failure

Axial Strain Deviator Stress, (σ1 - σ3)f Undrained Shear Strength, cu


Mode of Failure


1	
200.0	mm
100.0	mm
2.11	Mg/m3
25.5	%
1.68	Mg/m3

2.0	%/min
155	kPa
18.5	%
158	kPa
79	kPa ⅓

79 kPa ½(σ1 - σ3)f Brittle

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks

Lab Sheet Reference:

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377

Approved

Stephen.Watson

Printed

14/12/2017 18:06

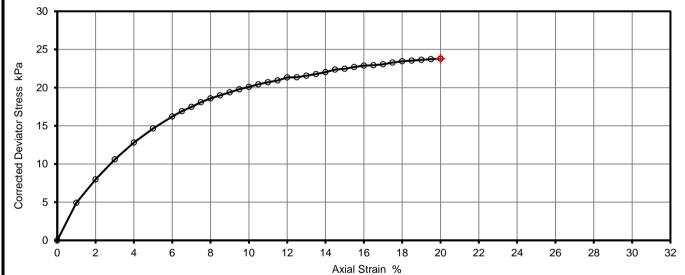
Fig. No.

Sheet 2

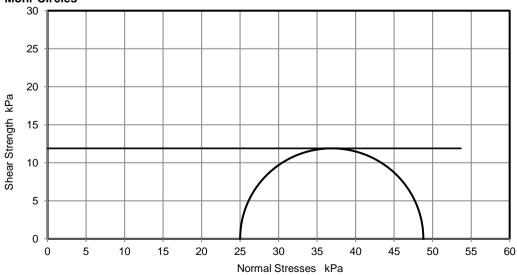
CAUSEWAY		ited Undrained n Test without	Job Ref	17-0167		
——— GEOTECH	_	sure - single s	Borehole/Pit No.	BH16		
Site Name	Arklow Sewerage	Scheme Marine Outfa	Sample No. 18			
Soil Description	Grey sandy slightl	y clayey SILT.			Depth	2.00
Specimen Reference	2	Specimen Depth	m	Sample Type	UT	
Specimen Description	Very soft grey san	dy slightly clayey SIL	т.		KeyLAB ID	Caus2017112016
Test Method	BS1377 : Part 7 :	1990, clause 8, single		Date of test	09/12/2017	

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density

Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure


1	
200.0	mm
100.0	mm
1.35	Mg/m3
130.5	%
0.59	Mg/m3

2.0	%/min
25	kPa
20.0	%
24	kPa
12	kPa ½(σ1 - σ3)f

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for

information only.

Remarks

Lab Sheet Reference:

Testing terminated at 20% strain

Approved

Stephen.Watson

Printed

14/12/2017 18:06

Fig. No.

Sheet

CAUSEWAY	Compression	Compression Test without measurement				Compression Test without measurement							17-0167 BH17			
Site Name	of pore press		-		Sample No.	INO.		27								
Soil Description	Grey sandy slightly				Depth			6.0								
Specimen	2	Specimen	6.30	m	Sample Type			U								
Reference Specimen		Depth				•		Caus201								
Description Test Method	Very soft to soft gre BS1377 : Part 7 : 1			.1.	KeyLAB ID Date of test			09/12/								
	Test Number Length Diameter Bulk Density Moisture Content Dry Density Rate of Strain Cell Pressure At failure	Axial Strain Deviator Stress Undrained Shea Mode of Failure	ar Strength, cu		1 200.0 100.0 1.57 74.2 0.90 2.0 85 20.0 21		mm Mg/m3 % Mg/m3 %/min kPa % kPa kPa	3	5 3)f							
ator Stress v	Axial Strain															
20				0000	•											
15		,0000000														
10																
5																
0 0 2	4 6 8	10 12	14 16		20 22	24	26	28	30	32						
r Circles			Axial Strain	%		_										
50							for are	or stress a chang rane effe	e and	ted						
40						-		circles ar		voroc						

10 0 20 40 10 30 50 60 70 80 90 100 110 120 Normal Stresses kPa Remarks Approved Printed

Lab Sheet Reference :

Testing terminated at 20% strain

Stephen.Watson

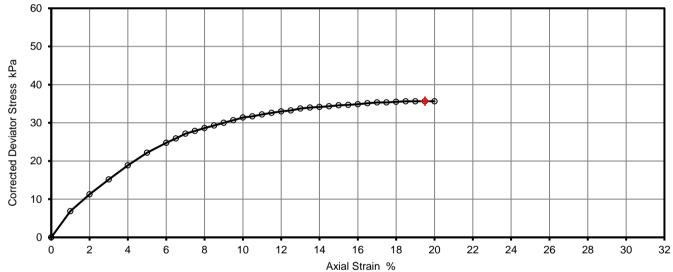
14/12/2017 18:06

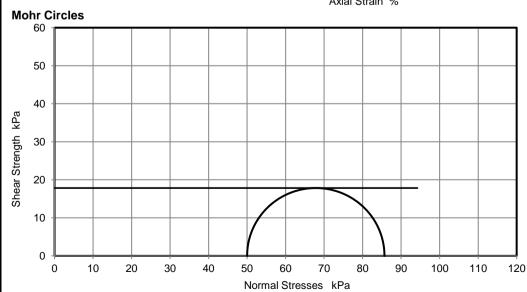
Fig. No. Sheet

	CAUS	SEWAY		Unconsolidated Undrained Triaxial Compression Test without measurement							Job Ref				17-0167						
	CAO	GEOTECH		of pore pressure - single specimen								Borehole/Pit No.			BH17						
Site	e Name	- 	Arklov	w Sewe	erage S	Scher	ne Mar	rine O	utfall	GI				Sam	ple No.				28		
So	il Descr	ription	Grey s	sandy	slightly	claye	ey orga	anic S	ILT.					Dep	th				8.0	0	
	ecimen ference			2			Specim Depth	nen		8.	30		m	Sam	ple Typ	ре			UT	-	
	ecimen scriptio		Soft g	rey sar	ndy sli	ghtly	clayey	orgar	nic SII	LT.				Keyl	AB ID			Cau	ıs2017	'112033	3
Tes	st Meth	od	BS137	77 : Pa	art 7 : 1	990,	clause	8, sir	ngle s	pecime	en			Date	of test	İ		(09/12/2	2017	
iate	or Stro	ess v A	Lengtl Diame Bulk I Moistu Dry Do Rate C Cell P At failu	eter Density ure Cor ensity of Strai Pressure ure	/ ntent in	De Ur	cial Stra eviator ndraine ode of l	Stressed She	ar St						1 200.0 100.0 1.31 146.0 0.53 2.0 95 20.0 50 25)	% Mg. %/r kPa kPa	n /m3 /m3 min a	σ1 - α	r3)f	
1 ato 60	or Stre	ss v A	Axiai S	train										I					_		_
50								•••	•••	, 000	•••	000	-0-0-(
40	1			<u>ا</u>		-															
30	_																\dashv				_
20																					
10																					
0	0	2	4	6	8		10	12	14	4	16	18	2	:0	22	24	26	3	28	30	32
nr (Circles									Axial	Strain	%									
50								Т								\neg	De	viator	stress	correct	ed
25								_									for area change and membrane effects				
00																	inte		ation is	d their not co	vered
75								+									Thi	s is pı	77. ovided on only		
50	-			_				_			-					_			J ilij	, .	
25																					
23								$\sqrt{}$													
0	0	25	50	75	100) 1	125	150	17	75 2	200	225	2	50	275	300					
	arks						Norma	al Stre		kPa roved			ı	Printe	d						
em								_	م م.								_		_		
em		g termina	ated at 2	20% st	train				S	tephen	.Wats	on		14/1	2/2017	18:06			F	ig. No.	1

CAUSEWAY		ted Undraine n Test withou		Job Ref	17-0167		
——— GEOTECH		sure - single s	Borehole/Pit No.	BH18			
Site Name	Arklow Sewerage	Scheme Marine Out	Sample No.	16			
Soil Description	Grey sandy organi	c silty CLAY.	Depth	4.00			
Specimen Reference	2	Specimen Depth	m	Sample Type	UT		
Specimen Description	Soft grey sandy or	ganic silty CLAY.		KeyLAB ID	Caus2017112042		
Test Method	BS1377 : Part 7 : 1	990, clause 8, sing	Date of test	11/12/2017			

Test Number Length Diameter Bulk Density Moisture Content Dry Density


Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, ($\sigma1 - \sigma3$)f Undrained Shear Strength, cu Mode of Failure

1	
200.0	mm
100.0	mm
1.33	Mg/m3
135.0	%
0.57	Mg/m3

2.0	%/min
50	kPa
19.5	%
36	kPa
18	kPa ½(σ1 - σ3)f
Plastic	

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks

Lab Sheet Reference:

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377

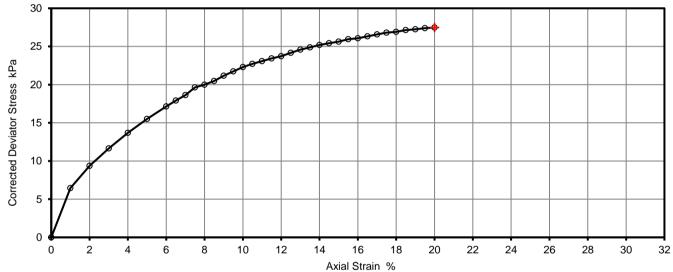
Approved

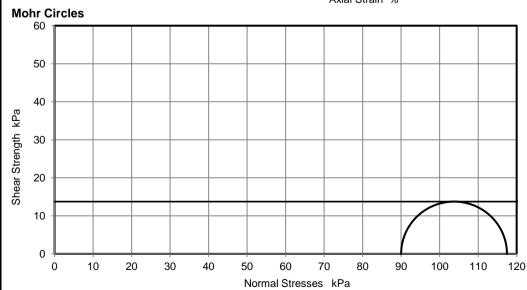
Stephen.Watson

Printed

14/12/2017 18:06

Fig. No. 1 Sheet


CAUSEWAY	Unconsolidated Compression T		ent	Job Ref	17-0167	
4	of pore pressur	e - single	Borehole/Pit No.	BH18		
Site Name	Arklow Sewerage Sche	eme Marine Ou		Sample No.	17	
Soil Description	Grey sandy silty organi	ic CLAY.		Depth	6.00	
Specimen Reference	2	Specimen Depth	6.30	m	Sample Type	UT
Specimen Description	Very soft grey sandy si	ilty organic CLA		KeyLAB ID	Caus2017112045	
Test Method	BS1377 : Part 7 : 1990), clause 8, sing	gle specimen		Date of test	11/12/2017
	Test Number				1	٦
	Length				200.0	mm
	Diameter				100.0	mm
	Bulk Density		1.67	Mg/m3		
	Moisture Content		58.7	%		
	Dry Density				1.05	Mg/m3
	Rate of Strain		2.0	7%/min		


Rate of Strain Cell Pressure At failure

Axial Strain Deviator Stress, ($\sigma1 - \sigma3$)f Undrained Shear Strength, cu Mode of Failure

2.0	%/min
90	kPa
20.0	%
27	kPa
14	kPa ½(σ1 - σ3)f

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks

Lab Sheet Reference:

Testing terminated at 20% strain

Approved

Stephen.Watson

Printed

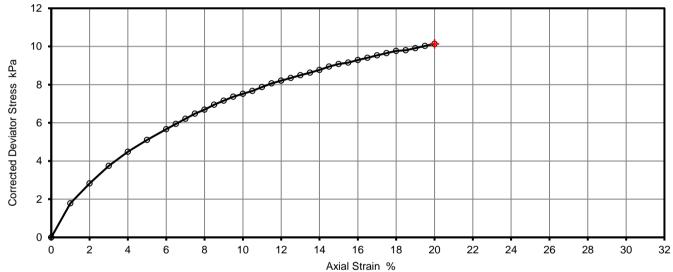
14/12/2017 18:07

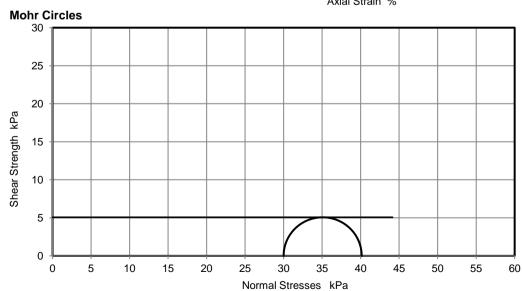
Fig. No. 1 Sheet

CALISEWAY	Unconsolida Compression	ont	Job Ref	17-0167		
CAUSEWAY	of pore pres	Borehole/Pit No.	BH19			
Site Name	Arklow Sewerage	Scheme Marine Ou	itfall GI		Sample No.	13
Soil Description	Greyish brown sa	andy organic silty CL		Depth	2.00	
Specimen Reference	2	Specimen Depth	2.30	m	Sample Type	UT
Specimen Description	Very soft greyish	brown sandy organic		KeyLAB ID	Caus2017112052	
Test Method	BS1377 : Part 7 :	1990, clause 8, sing	gle specimen		Date of test	11/12/2017

Test Number Length Diameter Bulk Density Moisture Content Dry Density

Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure

1	
200.0	mm
100.0	mm
1.45	Mg/m3
104.2	%
0.71	Mg/m3

2.0	%/min
30	kPa
20.0	%
10	kPa
5	kPa ½(σ1-

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

σ3)f

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks

Lab Sheet Reference:

Testing terminated at 20% strain

Approved

Stephen.Watson

Printed

14/12/2017 18:07

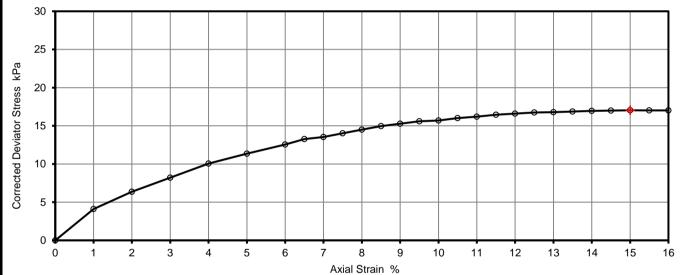
Fig. No.

Sheet

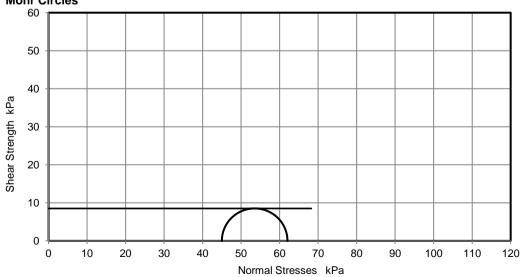
CAUSEWAY	Unconsolidate Compression	Job Ref	17-0167			
—— GEOTECH	of pore press	Borehole/Pit No.	BH19			
Site Name	Arklow Sewerage So	cheme Marine Ou	tfall GI		Sample No.	14
Soil Description	Greyish brown sand	y organic clayey \$	SILT.		Depth	4.00
Specimen Reference	2	Specimen Depth	4.30	Sample Type	UT	
Specimen Description	Very soft greyish bro	own sandy organic	c clayey SILT.		KeyLAB ID	Caus2017112057
Test Method	BS1377 : Part 7 : 19	90, clause 8, sing	gle specimen		Date of test	11/12/2017

Test Number Length Diameter Bulk Density Moisture Content Dry Density

Rate of Strain Cell Pressure At failure


Axial Strain Deviator Stress, (σ1 - σ3)f Undrained Shear Strength, cu

Mode of Failure


1	
200.0	mm
100.0	mm
1.23	Mg/m3
210.5	%
0.40	Mg/m3

2.0	%/min
45	kPa
15.0	%
17	kPa
9	kPa ½(σ1 - σ3)f
Plastic	

Deviator Stress v Axial Strain

Deviator stress corrected for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks

Lab Sheet Reference:

Strengths corrected for area change, and membrane effects based on Fig 11 BS1377

Approved

Stephen.Watson

Printed

14/12/2017 18:07

Fig. No.

Sheet

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report No.: 17-32875-1

Initial Date of Issue: 12-Dec-2017

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Aisling O'Kane

Colm Hurley

Darren O'Mahony John Cameron Kevin Dalton Matthew Gilbert Neil Haggan Paul Dunlop Paul McNamara Stephen Curtis Stephen Franey Stephen Watson

Project 17-0167 Arklow Sewerage Scheme

Marina Outfall GI

Quotation No.: Date Received: 08-Dec-2017

Order No.: Date Instructed: 08-Dec-2017

No. of Samples: 14

Turnaround (Wkdays): 3 Results Due: 12-Dec-2017

Date Approved: 12-Dec-2017

Approved By:

Details: Robert Monk, Technical Manager

Project: 17-0167 Arklow Sewerage Scheme Marina Outfall GI

Client: Causeway Geotech Ltd		Cher	mtest J	ob No.:	17-32875	17-32875	17-32875	17-32875	17-32875	17-32875	17-32875	17-32875	17-32875
Quotation No.:	(Chemte	st Sam	ple ID.:	552101	552102	552103	552104	552105	552106	552107	552108	552109
Order No.:		Clie	nt Locat	tion ID.:	1	5	9	20	23	26	30	1	4
		Client Sample Ref.:				BH11	BH11	BH16	BH16	BH16	BH16	BH17	BH17
	Sample Type:				SOIL								
		Top Depth (m):				4.50	8.50	0.50	3.50	6.50	10.50	0.50	3.50
			Date Sa	ampled:	07-Dec-2017	07-Dec-2017	07-Dec-2017	07-Dec-2017	07-Dec-2017	07-Dec-2017	07-Dec-2017	07-Dec-2017	07-Dec-2017
Determinand	Accred.	SOP	Units	LOD									
Moisture	N	2030	%	0.020	4.2	1.7	22	4.8	59	3.4	19	5.4	4.3
рН	U	2010		N/A	8.6	9.0	8.6	8.5	7.2	8.3	8.3	8.5	7.8
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	0.11	0.13	1.3	0.15	0.020	0.055	0.19

Project: 17-0167 Arklow Sewerage Scheme Marina Outfall GI

Client: Causeway Geotech Ltd	Chemtest Job No.			ob No.:	17-32875	17-32875	17-32875	17-32875	17-32875
Quotation No.:	(Chemte	st Sam	ple ID.:	552110	552111	552112	552113	552114
Order No.:		Clie	nt Locat	ion ID.:	10	18	21	15	19
		Clier	nt Samp	le Ref.:	BH17	BH18	BH18	BH19	BH19
		Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):			8.50	0.50	3.50	0.50	4.50
	Date Sampled:		07-Dec-2017	07-Dec-2017	07-Dec-2017	07-Dec-2017	07-Dec-2017		
Determinand	Accred.	SOP	Units	LOD					
Moisture	N	2030	%	0.020	60	12	17	2.4	64
рН	U	2010		N/A	6.4	8.5	7.9	8.3	7.1
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	1.7	0.34	0.30	0.019	0.23

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk

LABORATORY REPORT

4043

Contract Number: PSL17/5705

Report Date: 08 December 2017

Client's Reference: 17-0167

Client Name: Causeway Geotech

8 Drumahiskey Road

Ballymoney Co.Antrim BT53 7QL

For the attention of: Neil Haggan

Contract Title: Arklow Sewerage Scheme Marine Outfall GI

Date Received: 23/11/2017
Date Commenced: 23/11/2017
Date Completed: 08/12/2017

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins R Berriman (Director) (Director) (Quality Manager)

L Knight S Eyre A Fry

(Senior Technician) (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641

fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk

awatkins@prosoils.co.uk

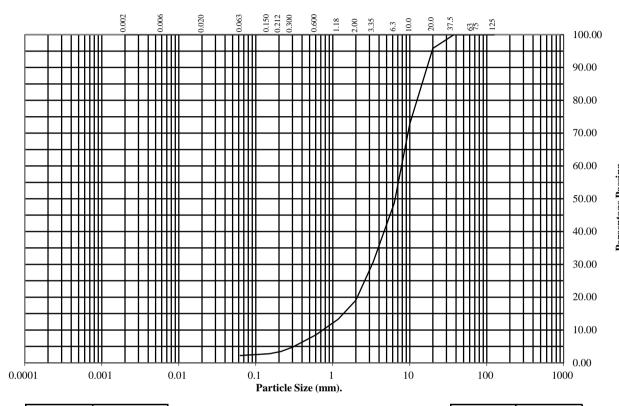
SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH11	20	В	1.80	2.20	Brown very gravelly SAND.
BH11	22	В	3.80	4.20	Brown sandy GRAVEL.
BH11	28	В	9.80	10.20	Brown sandy slightly silty GRAVEL.
BH16	13	В	6.80	7.20	Grey sandy slightly silty GRAVEL.
BH16	14	В	8.80	9.20	Brown slightly gravelly slightly silty SAND.
BH16	16	В	10.80	11.20	Brown very sandy slightly silty GRAVEL.
BH17	16	В	1.80	2.20	Brown gravelly SAND.
BH17	18	В	3.80	4.20	Brown sandy GRAVEL.
BH17	25	В	10.80	11.20	Grey gravelly SAND.
BH18	1	В	0.80	2.20	Dark grey sandy slightly silty GRAVEL.
BH18	7	В	9.80	10.20	Grey gravelly SAND.
BH19	1	В	0.80	1.20	Brown slightly sandy slightly silty GRAVEL.

Arklow Sewerage Scheme Marine Outfall GI

Contract No:
PSL17/5705
Client Ref:
17-0167

PARTICLE SIZE DISTRIBUTION TEST


BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Hole Number: BH11 Top Depth (m): 9.80

Sample Number: 28 Base Depth(m): 10.20

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	96
10	73
6.3	49
3.35	31
2	19
1.18	13
0.6	8
0.3	5
0.212	3
0.15	3
0.063	2

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 81 17 2

Remarks:

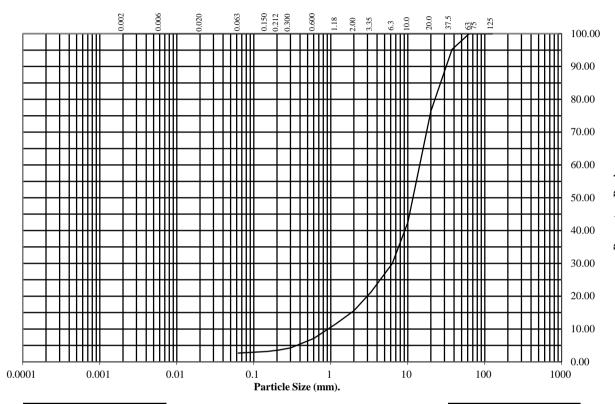
See Summary of Soil Descriptions

Arklow Sewerage Scheme Marine Outfall GI

Contract No:
PSL17/5705
Client Ref:
17-0167

PSL005 Nov 15 Page of

PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH16 Top Depth (m): 6.80

Sample Number: 13 Base Depth(m): 7.20

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	95
20	76
10	42
6.3	30
3.35	21
2	16
1.18	12
0.6	7
0.3	4
0.212	4
0.15	3
0.063	3

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 84 13 3

Remarks:

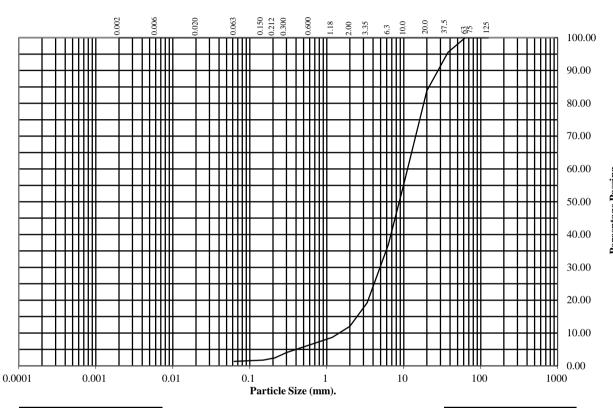
See Summary of Soil Descriptions

Arklow Sewerage Scheme Marine Outfall GI

Contract No:
PSL17/5705
Client Ref:
17-0167

PSL005 Nov 15 Page of

PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH18 Top Depth (m): 0.80

Sample Number: 1 Base Depth(m): 2.20

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	96
20	84
10	55
6.3	37
3.35	19
2	12
1.18	9
0.6	6
0.3	4
0.212	2
0.15	2
0.063	1

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 88 11 1

Remarks:

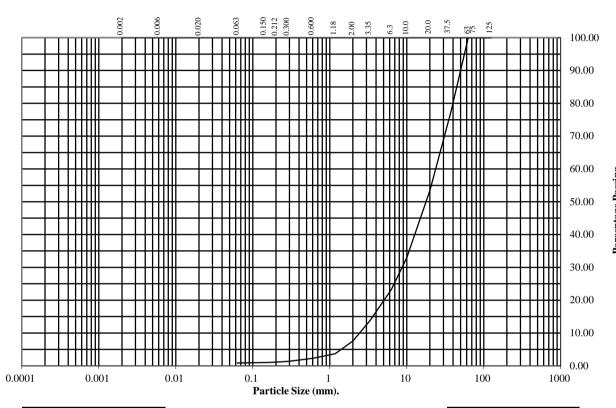
See Summary of Soil Descriptions

Arklow Sewerage Scheme Marine Outfall GI

Contract No:
PSL17/5705
Client Ref:
17-0167

PSL005 Nov 15 Page of

PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH19 Top Depth (m): 0.80

Sample Number: 1 Base Depth(m): 1.20

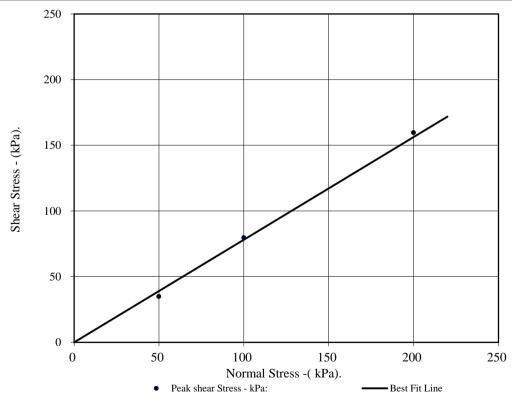
Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	77
20	53
10	33
6.3	23
3.35	14
2	8
1.18	4
0.6	2
0.3	1
0.212	1
0.15	1
0.063	1

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 92 7 1

Remarks:

See Summary of Soil Descriptions

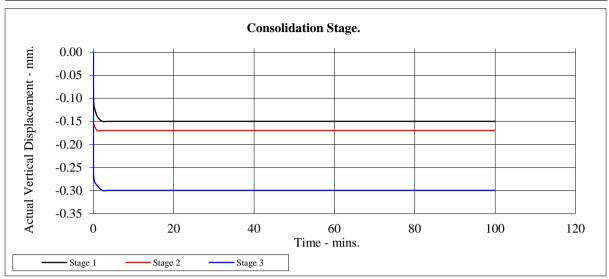

Arklow Sewerage Scheme Marine Outfall GI

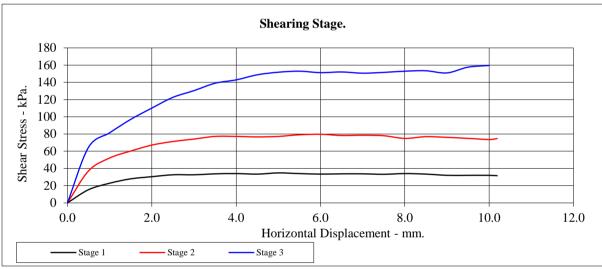
Contract No:
PSL17/5705
Client Ref:
17-0167

PSL005 Nov 15 Page of

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH11		Top Depth:		1.80	
Sample Number:	20 Ba		Base Depth:		2.20	
Sample Conditions:		Submerged	Sample Typ	Sample Type B		3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded 1	using hand tamped effort				
		ed passing 2mm sieve				
Sample Description:	See summar	y of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				24.51	24.51	24.51
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				7.9	7.9	7.9
Bulk Density - Mg/m3:				1.78	1.78	1.78
Dry Density - Mg/m3:				1.65	1.65	1.65
Voids Ratio:				0.610	0.607	0.605
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				24.36	24.34	24.21
		Shearing Stage				
Rate of Strain - mm/min				0.80	0.80	0.80
Displacement at peak shear st	ress - mm			5.00	6.00	10.00
Peak shear Stress - kPa:				35	80	160
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				25	24	24
Bulk Density - Mg/m3:				1.79	1.79	1.80
Dry Density - Mg/m3:	·	<u> </u>		1.43	1.44	1.46
		Peak				
Angle of Shearing Resistance	:(0)				38	
Effective Cohesion - kPa:					0	

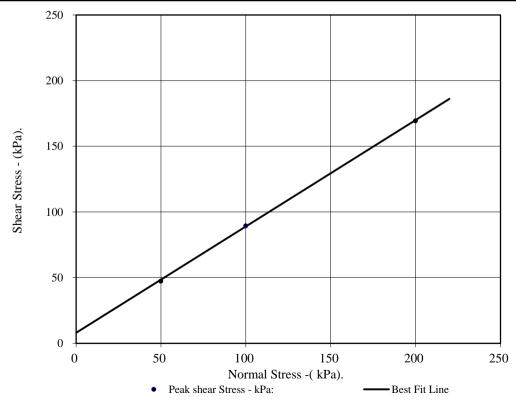





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH11	Top Depth:	1.80
Sample Number:	20	Base Depth:	2.20

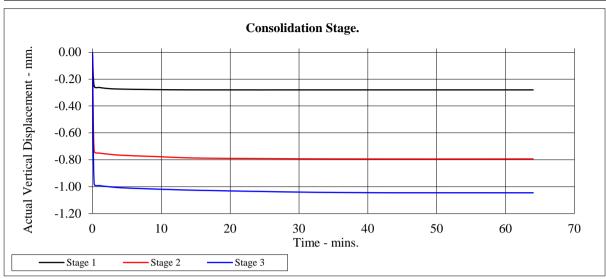


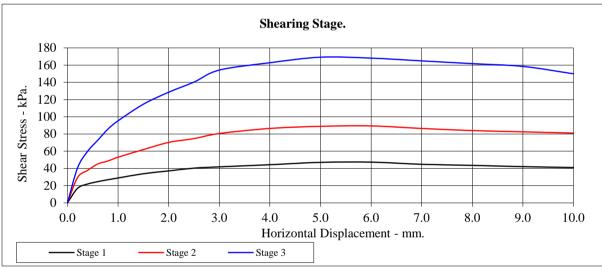
Professional Soils Laboratory

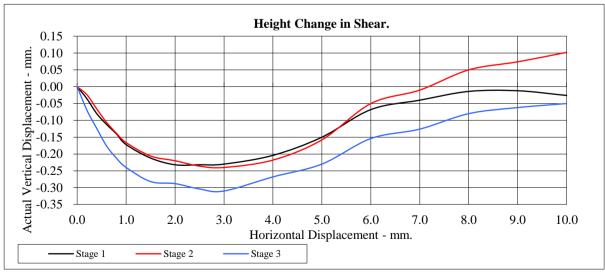
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:		BH11 Top Depth:		3.80		
Sample Number:		22	Base Depth:		4.20	
Sample Conditions:		Submerged	Sample Type B			3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort.				
Sample Freparation.	Material test	ed passing 2mm sieve				
Sample Description:	See summar	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				19.98	19.98	19.98
Length - mm:				60.01	60.01	60.01
Moisture Content - %:				2.7	2.7	2.7
Bulk Density - Mg/m3:				1.72	1.72	1.73
Dry Density - Mg/m3:				1.67	1.68	1.68
Voids Ratio:				0.583	0.578	0.574
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				19.70	19.19	18.93
		Shearing Stage				
Rate of Strain (mm/min)				0.800	0.800	0.800
Displacement at peak shear s	stress (mm)			5.00	6.00	5.00
Peak shear Stress - kPa:				47	89	169
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				19	19	19
Bulk Density - Mg/m3:				1.74	1.80	1.82
Dry Density - Mg/m3:				1.46	1.50	1.53
		Peak				
Angle of Shearing Resistance	e:(0)			<u> </u>	39	<u> </u>
Effective Cohesion - kPa:					8	






Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

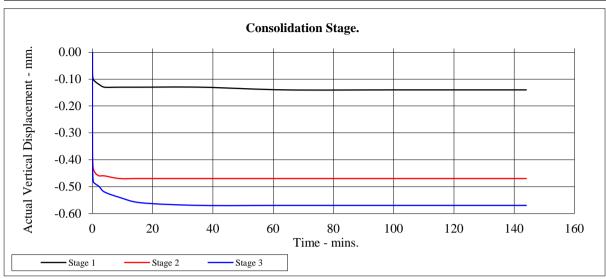
Hole Number:	BH11	Top Depth:	3.80
Sample Number:	22	Base Depth:	4.20

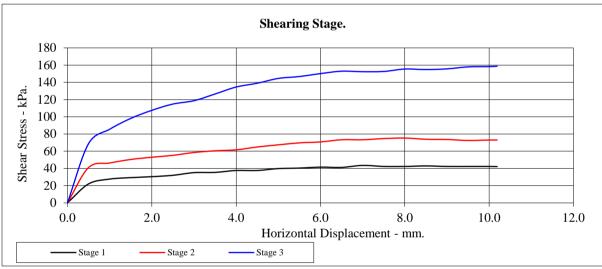


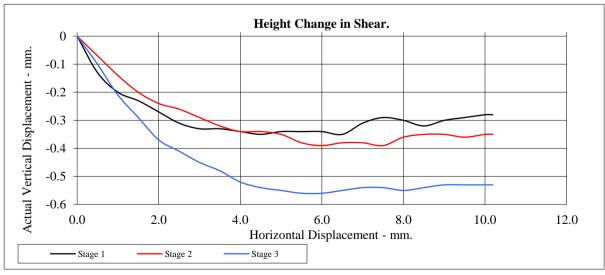
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH11		Top Depth:		9.80	
Sample Number:	28 Base Depth:		10.20		20	
Sample Conditions:		Submerged	Sample Type B		3	
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort				
		ed passing 2mm sieve				
Sample Description:	See summar	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				24.51	24.51	24.51
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				4.8	4.8	4.8
Bulk Density - Mg/m3:				1.76	1.76	1.77
Dry Density - Mg/m3:				1.68	1.68	1.69
Voids Ratio:				0.581	0.578	0.568
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				24.38	24.04	23.94
		Shearing Stage				
Rate of Strain - mm/min				0.80	0.80	0.80
Displacement at peak shear st	tress - mm			0.00	0.00	0.00
Peak shear Stress - kPa:				44	75	159
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				20	20	19
Bulk Density - Mg/m3:				1.77	1.79	1.81
Dry Density - Mg/m3:				1.47	1.49	1.52
		Peak				
Angle of Shearing Resistance	::(0)				37	
Effective Cohesion - kPa:					5	

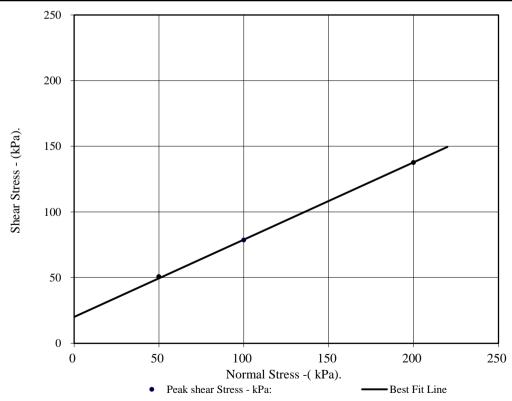





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH11	Top Depth:	9.80
Sample Number:	28	Base Depth:	10.20

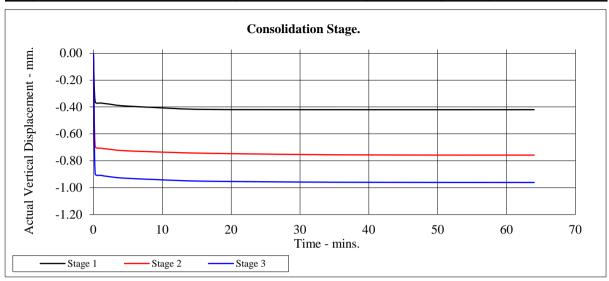


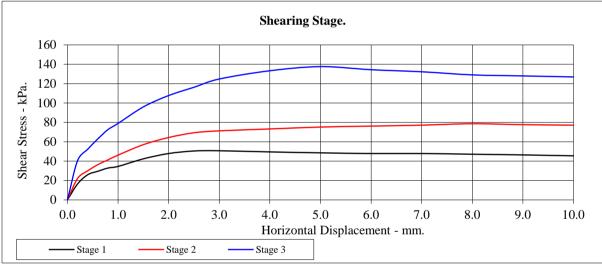
Professional Soils Laboratory

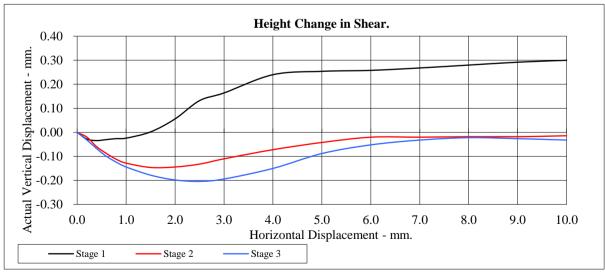
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:		BH16 Top I			6.80	
Sample Number:		Base Depth		pth: 7.20		20
Sample Conditions:		Submerged	Sample Type B			3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort.				
Sample Freparation.	Material test	ed passing 2mm sieve				
Sample Description:	See summar	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				19.98	19.98	19.98
Length - mm:				60.01	60.01	60.01
Moisture Content - %:				13	13	13
Bulk Density - Mg/m3:				2.01	2.01	2.02
Dry Density - Mg/m3:				1.78	1.78	1.78
Voids Ratio:				0.493	0.488	0.487
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				19.56	19.22	19.02
		Shearing Stage				
Rate of Strain (mm/min)				0.800	0.800	0.800
Displacement at peak shear s	stress (mm)			3.00	8.00	5.00
Peak shear Stress - kPa:				51	79	138
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				18	19	18
Bulk Density - Mg/m3:				2.05	2.09	2.12
Dry Density - Mg/m3:				1.74	1.76	1.79
		Peak				
Angle of Shearing Resistance	e:(0)				31	
Effective Cohesion - kPa:					20	

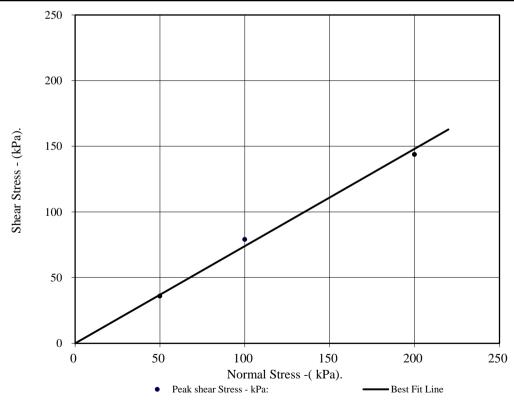





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

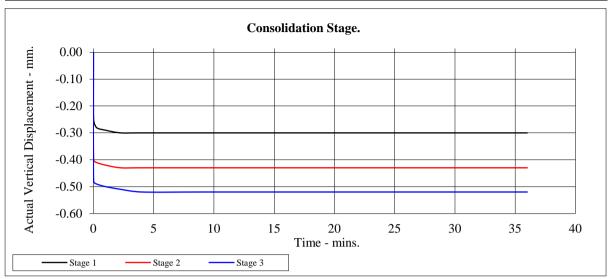
Hole Number:	BH16	Top Depth:	6.80
Sample Number:	13	Base Depth:	7.20

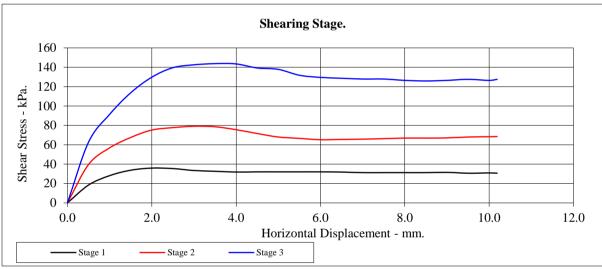


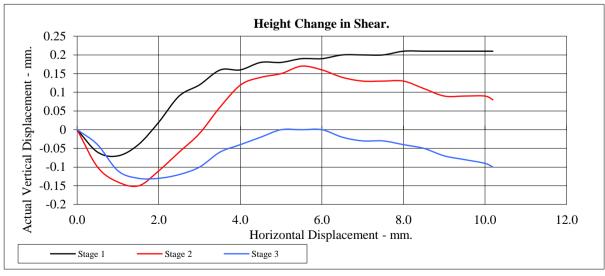
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:		BH16 Top Depth		th: 8.		80
Sample Number:		Base Depth:			9.2	20
Sample Conditions:		Submerged	Sample Typ	e	I	3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort.				
Sample Freparation.	Material test	ed passing 2mm sieve				
Sample Description:	See summar	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				24.51	24.51	24.51
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				24	24	24
Bulk Density - Mg/m3:				1.96	1.97	1.98
Dry Density - Mg/m3:				1.58	1.59	1.60
Voids Ratio:				0.673	0.670	0.660
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				24.21	24.08	23.99
		Shearing Stage				
Rate of Strain - mm/min				0.80	0.80	0.80
Displacement at peak shear s	stress - mm			2.00	3.00	3.50
Peak shear Stress - kPa:				36	79	144
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				22	22	21
Bulk Density - Mg/m3:				1.99	2.00	2.02
Dry Density - Mg/m3:				1.62	1.63	1.66
		Peak				
Angle of Shearing Resistance	e:(0)				37	
Effective Cohesion - kPa:					0	

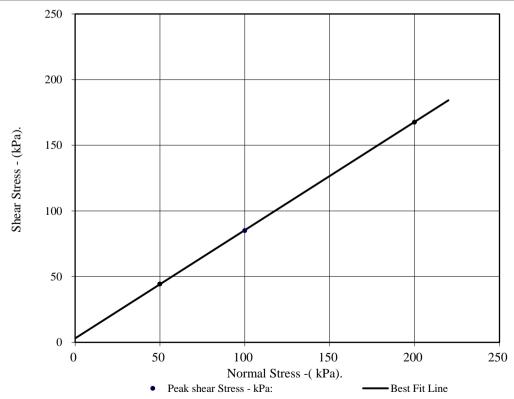





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH16	Top Depth:	8.80
Sample Number:	14	Base Depth:	9.20

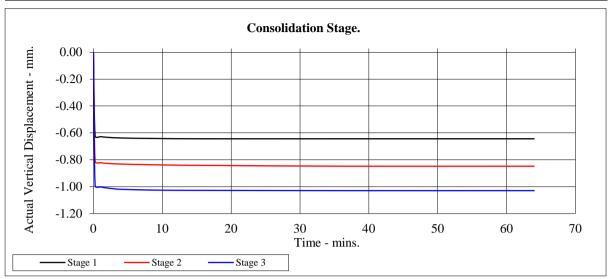


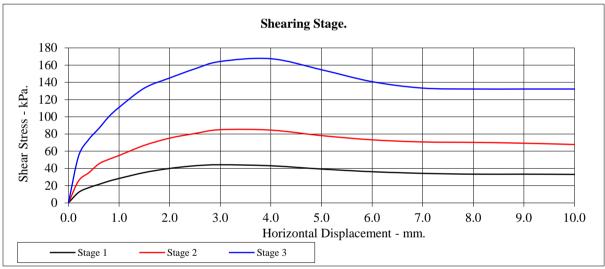
PSL
Professional Soils Laboratory

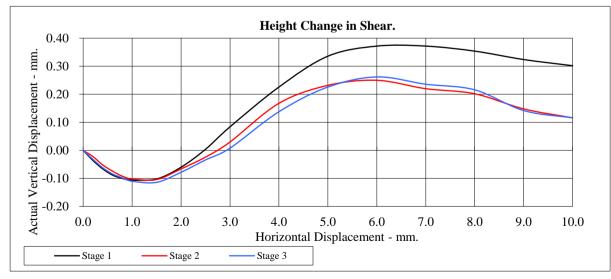
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH16		Top Depth:		10.80	
Sample Number:		16 B		Base Depth:		20
Sample Conditions:		Submerged	Sample Typ	pe	е В	
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort				
		ed passing 2mm sieve				
Sample Description:	See summar	y of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				19.98	19.98	19.98
Length - mm:				60.01	60.01	60.01
Moisture Content - %:				20	20	20
Bulk Density - Mg/m3:				1.92	1.92	1.93
Dry Density - Mg/m3:				1.61	1.61	1.61
Voids Ratio:				0.649	0.648	0.641
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				19.34	19.13	18.95
		Shearing Stage				
Rate of Strain (mm/min)				0.800	0.800	0.800
Displacement at peak shear st	tress (mm)			3.00	3.00	4.00
Peak shear Stress - kPa:				44	85	167
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				22	21	19
Bulk Density - Mg/m3:				1.99	2.01	2.04
Dry Density - Mg/m3:	·	<u> </u>		1.63	1.66	1.71
		Peak				
Angle of Shearing Resistance	:(0)				40	
Effective Cohesion - kPa:					3	

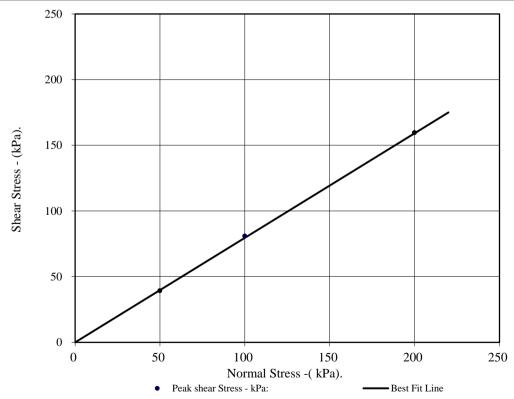





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

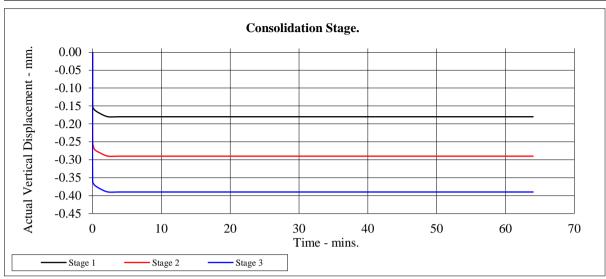
Hole Number:	BH16	Top Depth:	10.80
Sample Number:	16	Base Depth:	11.20

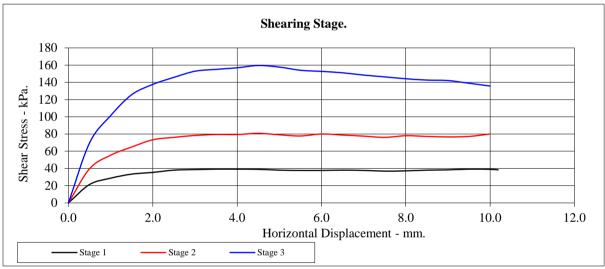


Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH17 Top		Top Depth:		1.80	
Sample Number:		16 Bas		Base Depth:		20
Sample Conditions:		Submerged	Sample Typ	pe	В	
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort				
		ed passing 2mm sieve				
Sample Description:	See summar	y of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				24.51	24.51	24.51
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				4.7	4.7	4.7
Bulk Density - Mg/m3:				1.81	1.81	1.82
Dry Density - Mg/m3:				1.73	1.73	1.73
Voids Ratio:				0.529	0.534	0.528
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				24.33	24.22	24.12
		Shearing Stage				
Rate of Strain - mm/min				0.80	0.80	0.80
Displacement at peak shear st	tress - mm			3.00	4.50	4.50
Peak shear Stress - kPa:				39	81	160
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				19	19	18
Bulk Density - Mg/m3:				1.83	1.83	1.85
Dry Density - Mg/m3:	·	<u> </u>		1.53	1.54	1.56
		Peak				
Angle of Shearing Resistance	:(0)				39	
Effective Cohesion - kPa:					0	

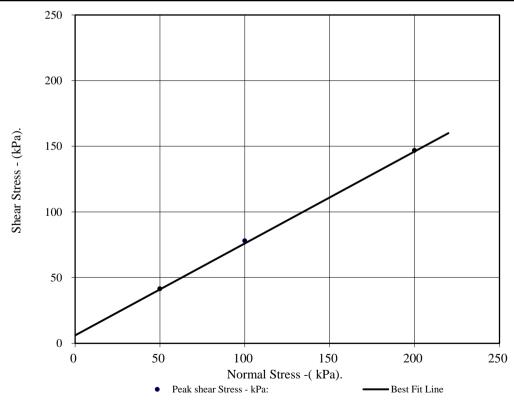




Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

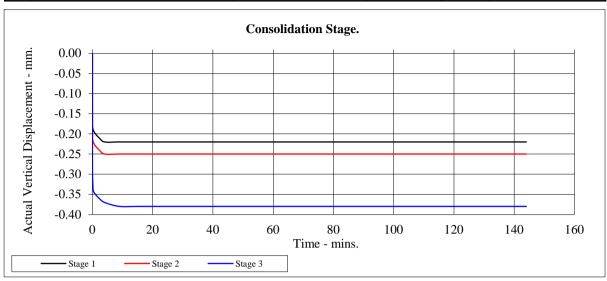
Hole Number:	BH17	Top Depth:	1.80
Sample Number:	16	Base Depth:	2.20

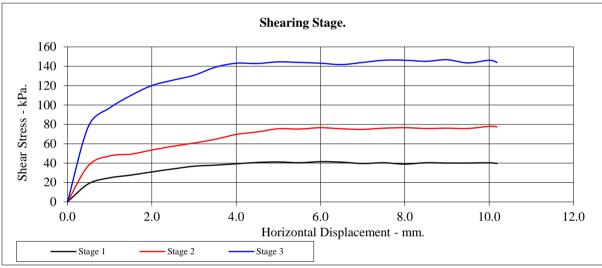


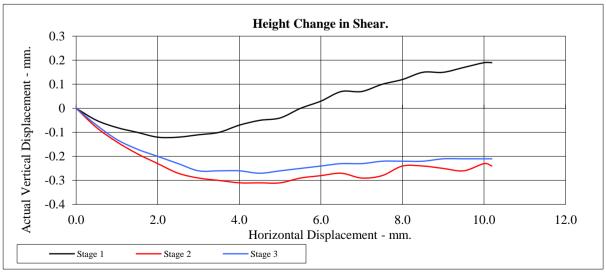
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:		BH17 Top Depth:		n: 3.8 0		80
Sample Number:		18 Base Depth:		:	4.2	20
Sample Conditions:		Submerged	Sample Typ	e	I	3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort.				
Sample Freparation.	Material test	ed passing 2mm sieve				
Sample Description:	See summar	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				24.51	24.51	24.51
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				4.0	4.0	4.0
Bulk Density - Mg/m3:				1.79	1.79	1.80
Dry Density - Mg/m3:				1.72	1.73	1.73
Voids Ratio:				0.540	0.536	0.530
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				24.29	24.26	24.13
		Shearing Stage				
Rate of Strain - mm/min				0.80	0.80	0.80
Displacement at peak shear s	stress - mm			6.00	10.00	9.00
Peak shear Stress - kPa:				42	78	147
	Fi	nal Consolidated Condi	tions			
Moisture Content - %:				18	17	17
Bulk Density - Mg/m3:		·		1.81	1.81	1.83
Dry Density - Mg/m3:				1.53	1.54	1.57
		Peak				
Angle of Shearing Resistance	e:(0)				35	
Effective Cohesion - kPa:					6	

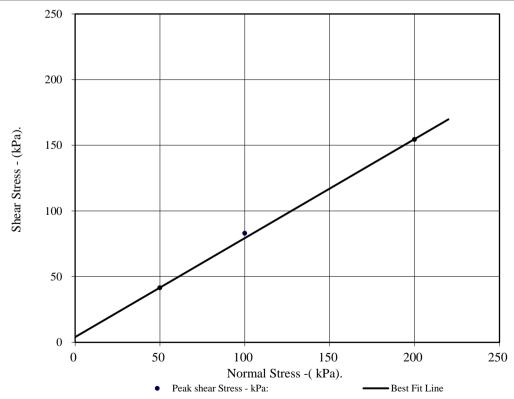





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH17	Top Depth:	3.80
Sample Number:	18	Base Depth:	4.20

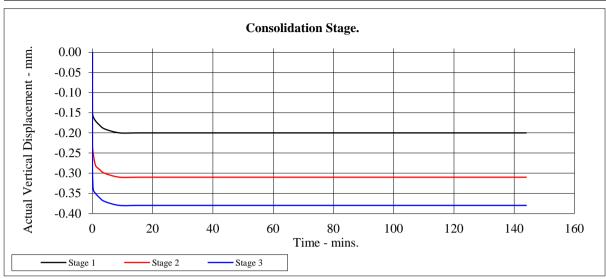


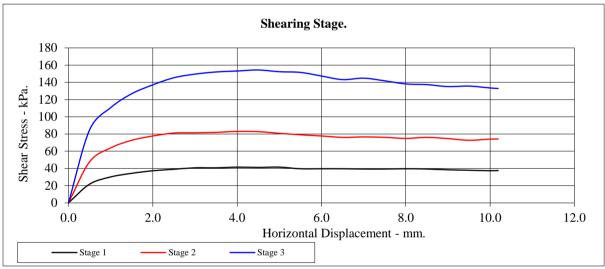
Professional Soils Laboratory

Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH17 Top		Top Depth:		10.80	
Sample Number:		25 Base		:	11.20	
Sample Conditions:		Submerged	Sample Typ	oe .	В	
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort				
1		ed passing 2mm sieve				
Sample Description:	See summar	y of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				24.51	24.51	24.51
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				5.6	5.6	5.6
Bulk Density - Mg/m3:				1.74	1.75	1.76
Dry Density - Mg/m3:				1.65	1.66	1.67
Voids Ratio:				0.604	0.598	0.586
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				24.31	24.20	24.13
		Shearing Stage				
Rate of Strain - mm/min				0.80	0.80	0.80
Displacement at peak shear st	ress - mm			5.00	4.50	4.50
Peak shear Stress - kPa:				42	83	154
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				20	19	19
Bulk Density - Mg/m3:			·	1.76	1.77	1.79
Dry Density - Mg/m3:				1.46	1.49	1.51
		Peak				
Angle of Shearing Resistance	:(0)				37	
Effective Cohesion - kPa:					4	

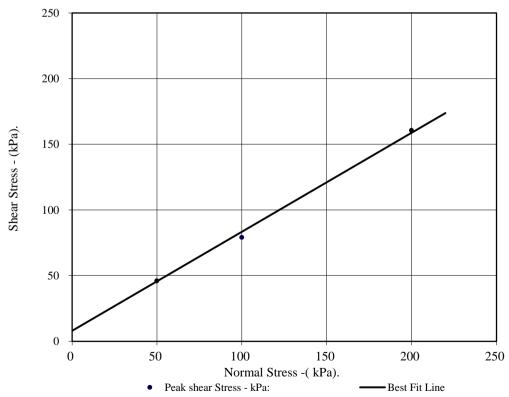




Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH17	Top Depth:	10.80
Sample Number:	25	Base Depth:	11.20

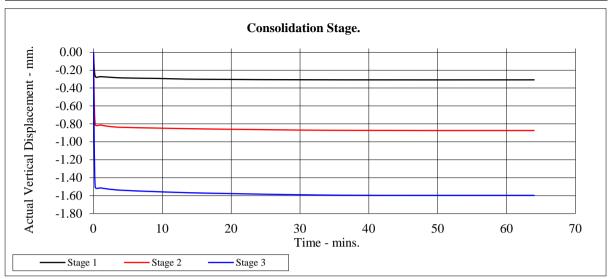


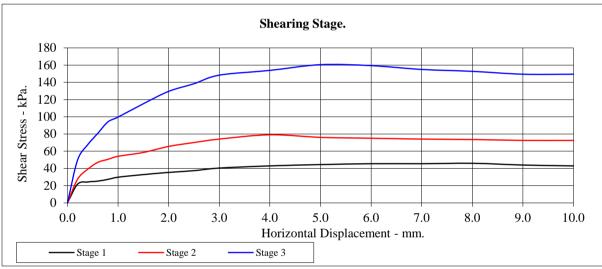
Professional Soils Laboratory

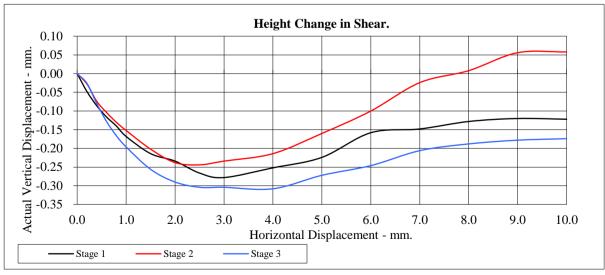
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:		BH18		Top Depth:		30
Sample Number:		1	Base Depth:		2.2	20
Sample Conditions:		Submerged	Sample Typ	Sample Type		3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort	.]			
		ed passing 2mm sieve				
Sample Description:	See summar	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				19.98	19.98	19.98
Length - mm:				60.01	60.01	60.01
Moisture Content - %:				3.6	3.6	3.6
Bulk Density - Mg/m3:				1.74	1.74	1.74
Dry Density - Mg/m3:				1.67	1.68	1.68
Voids Ratio:				0.582	0.582	0.581
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				19.67	19.11	18.38
		Shearing Stage				
Rate of Strain (mm/min)				0.800	0.800	0.800
Displacement at peak shear s	tress (mm)			8.00	4.00	5.00
Peak shear Stress - kPa:				46	79	161
	Fi	nal Consolidated Condi	tions			
Moisture Content - %:				19	19	18
Bulk Density - Mg/m3:				1.76	1.82	1.89
Dry Density - Mg/m3:				1.48	1.52	1.60
		Peak				
Angle of Shearing Resistance	e:(0)				37	
Effective Cohesion - kPa:					8	

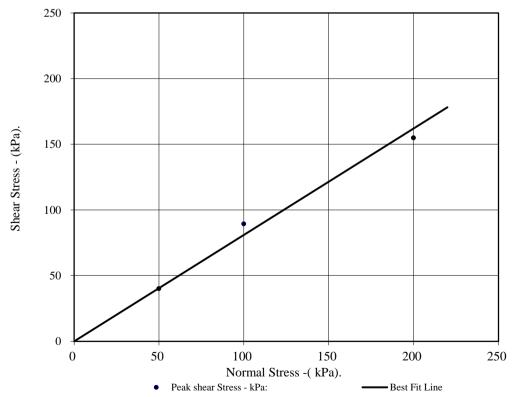





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

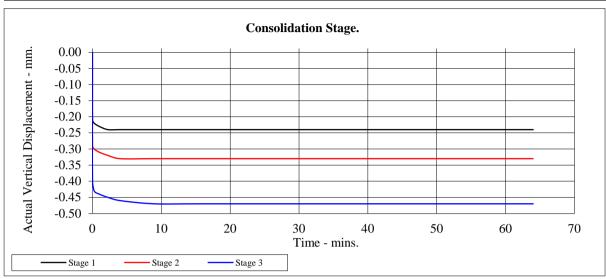
Hole Number:	BH18	Top Depth:	0.80
Sample Number:	1	Base Depth:	2.20

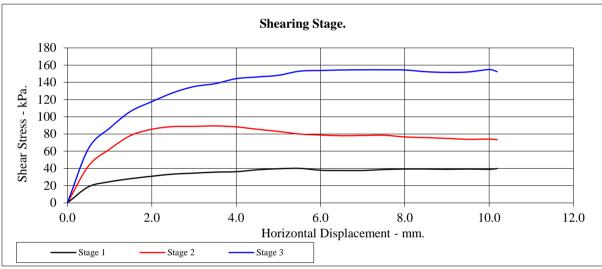


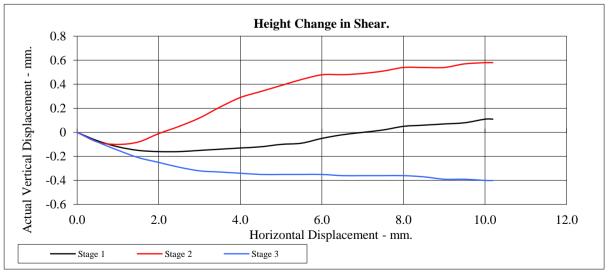
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH18 To		Top Depth:	Top Depth:		80
Sample Number:		7	Base Depth	Base Depth:		20
Sample Conditions:		Submerged	Sample Typ	e	I	3
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort				
		ed passing 2mm sieve				
Sample Description:	See summar	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				24.51	24.51	24.51
Length - mm:				60.00	60.00	60.00
Moisture Content - %:				5.7	5.7	5.7
Bulk Density - Mg/m3:				1.82	1.82	1.82
Dry Density - Mg/m3:				1.72	1.72	1.72
Voids Ratio:				0.539	0.537	0.536
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				24.27	24.18	24.04
		Shearing Stage				
Rate of Strain - mm/min				0.80	0.80	0.80
Displacement at peak shear s	tress - mm			5.50	3.50	7.00
Peak shear Stress - kPa:				40	89	155
	Fi	nal Consolidated Condi	itions			
Moisture Content - %:				19	17	17
Bulk Density - Mg/m3:				1.84	1.85	1.86
Dry Density - Mg/m3:	<u> </u>			1.55	1.57	1.59
		Peak				
Angle of Shearing Resistance	e:(0)				39	
Effective Cohesion - kPa:					0	

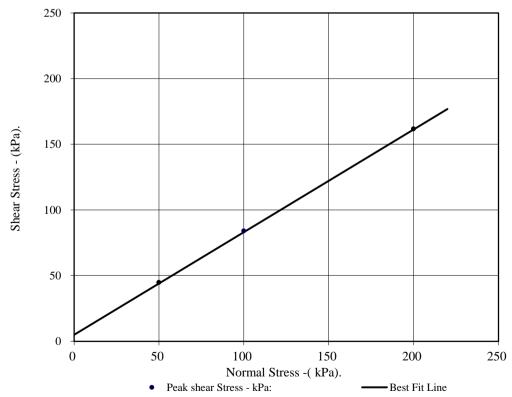





Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH18	Top Depth:	9.80
Sample Number:	7	Base Depth:	10.20

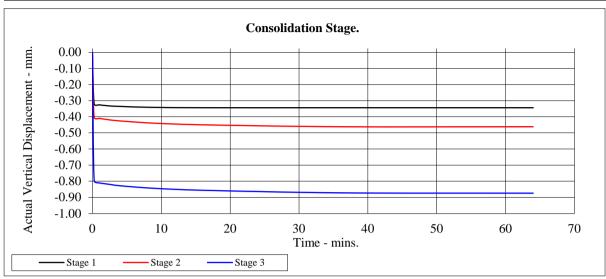


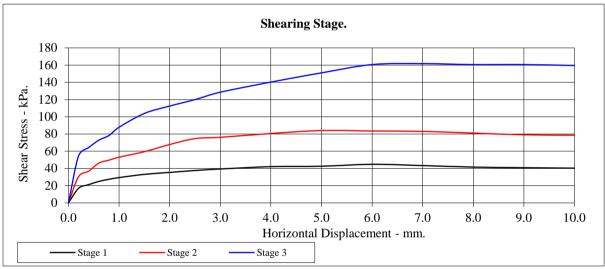
Professional Soils Laboratory

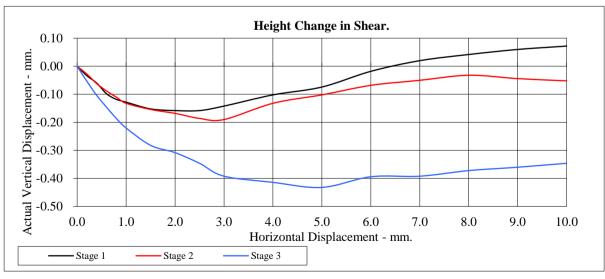
Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH19		Top Depth:		0.80	
Sample Number:		1	Base Depth:		1.20	
Sample Conditions:		Submerged Sample Type		В		
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Remoulded	using hand tamped effort				
		ed passing 2mm sieve				
Sample Description:	See summar	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				19.98	19.98	19.98
Length - mm:				60.01	60.01	60.01
Moisture Content - %:				3.9	3.9	3.9
Bulk Density - Mg/m3:				1.70	1.70	1.71
Dry Density - Mg/m3:				1.63	1.64	1.65
Voids Ratio:				0.621	0.616	0.611
Normal Pressure- kPa				50	100	200
		Consolidation Stage				
Consolidated Height - mm:				19.64	19.52	19.11
		Shearing Stage				
Rate of Strain (mm/min)				0.800	0.800	0.800
Displacement at peak shear s	tress (mm)			6.00	5.00	7.00
Peak shear Stress - kPa:				45	84	162
	Fi	nal Consolidated Condi	tions			
Moisture Content - %:				21	20	20
Bulk Density - Mg/m3:				1.73	1.74	1.79
Dry Density - Mg/m3:				1.42	1.45	1.49
	<u> </u>	Peak				
Angle of Shearing Resistance	::(0)				38	
Effective Cohesion - kPa:					5	






Arklow Sewerage Scheme Marine Outfall GI

BS1377:Part 7:1990 Clause 4.5.4

Hole Number:	BH19	Top Depth:	0.80
Sample Number:	1	Base Depth:	1.20

Arklow Sewerage Scheme Marine Outfall GI

LABORATORY RESTRICTION REPORT

Project Reference	17-0167			То	Neil Haggan
Project Name	Arklow Sewerage Scheme Marie	Arklow Sewerage Scheme Marine Outfall GI			Project Manager
1 Toject Hame	Arkiow dewerage deficitie Main	Alkiow Sewerage Scheme Manne Oditali Gi			Stephen Watson
TR reference	17-0167	1	q	From	Grophien Transcin
TTC TOTOTOTIO	17 0107	,	J	Position	Laboratory Manager

The following sample(s) and test(s) are restricted as detailed below. Could you please complete the "Required Action" column and return the completed form to the laboratory.

Hole		Sample		Test		
Number	Number	Depth	Туре	Туре	Reason for Restriction	Required Action
BH11	10	9.5	D	Atterberg limits	Unsuitable material for test (sandy gravel)	TESTING CANCELLED
BH16	17	4.00- 4.50	UT	Unconsolidated Undrained Triaxial	Sample too granular for test (mostly sand) - collapsed on extrusion	TESTING CANCELLED
BH16	12	5.80- 6.20	В	PSD	No suitable test specimen. Sample damaged/split in transit to laboratory	TESTING CANCELLED
BH18	15	2.00- 2.50	UT	Unconsolidated Undrained Triaxial	Sample too granular for test (mostly sand) - collapsed on extrusion	TESTING CANCELLED
BH18	2	2.8	В	Atterberg limits	Unsuitable material for test (sandy gravel)	TESTING CANCELLED
BH19	17	2.5	D	Atterberg limits, pH & So4	No Sample - lost in transit	TESTING CANCELLED
BH19	20	5.5	D	NMC & Atterberg limits	Unsuitable material for test (Gravel)	TESTING CANCELLED

For electronic reporting a form of electronic signature or printed name is acceptable

Laboratory Signature Stephen Watson	Project Manager Signature Darren O'Mahony
Date	Date
14 December 2017	14 December 2017

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Client:	Irish Water
Engineer:	Byrne Looby ARUP J.V.
From:	Stephen Watson
	Laboratory Manager
	Causeway Geotech Ltd
Tel:	+44(0)2827666640
E-mail:	stephen.watson@causewaygeotech.com
Date:	07/12/17
Ref:	17-0167 - ROCK 1

Arklow Sewerage Scheme Marine Outfall GI

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the *Contents page(s)*.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 60 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Stephen Watson Laboratory Manager

Project Name Arklow Sewerage Scheme Marine Outfall GI

Report Reference. 17-0167 - ROCK 1

The table below details the tests carried out, the specifications used, and the number of tests included in this report:

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	Number of test results included in the report	
SOIL	Undrained shear strength – triaxial compression without measurement of pore pressure (loads from 0.12 to 24 kN)	BS1377: Part 7: Clause 8: 1990	2	
ROCK	Point load index	ISRM Commission on Testing Methods. Suggested Method for Determining Point Load Strength 1985	18	

4.0	Unconsolidated Undrained Triaxial	Job Ref	17-0167
CAUSEWAY GEOTECH	Compression Test without measurement	Borehole/Pit No.	BH08
Site Name	of pore pressure - single specimen Arklow Sewerage Scheme Marine Outfall GI	Sample No.	
Soil Description	Brown sandy gravelly slty CLAY.	Depth	15.10
Specimen	1 Specimen m	Sample Type	С
Reference Specimen	Depth "" Stiff brown sandy gravelly slty CLAY.	KeyLAB ID	Caus2017120518
Description Test Method	BS1377 : Part 7 : 1990, clause 8, single specimen	Date of test	06/12/2017
•	Test Number Length Diameter	1 200.0 100.0	mm mm
	Bulk Density Moisture Content	2.49 10.3	Mg/m3 %
	Dry Density	2.26	Mg/m3
	Rate of Strain Cell Pressure	2.0 335	%/min kPa %
	At failure Axial Strain Deviator Stress, (σ1 - σ3)f	20.0 469	kPa
	Undrained Shear Strength, cu Mode of Failure	234	kPa ½(σ1 - σ3)f
Deviator Stress v A	xial Strain		•
600			
500			
		+	
\$ 400 .	200000000000000000000000000000000000000		
Deviator Stress kPa			
Devia			
200			
Š 100			
0			
0 2	4 6 8 10 12 14 16 18 Axial Strain %	20 22 24	26 28 30 32
Mohr Circles	Add Stall 70		
500			Deviator stress corrected for area change and membrane effects
400			Mohr circles and their interpretation is not covered by PS1377
200			by BS1377. This is provided for information only.
200			
100			
0 100	200 200 400 500 600 700 200 200	1000 1100 1200	
	Normal Stresses kPa	1000 1100 1200	
Remarks Testing termina	Approved ated at 20% strain Stephen.Watson	Printed 07/12/2017 12:07	Fig. No.
Lab Sheet Reference		01/12/2011 12.01] 1 Sheet
			1

CALISEWAY		solidate					nt	Job F	Ref			17-0167		
CAUSEWAY GEOTECH	_	ression [•] e pressu					111	Bore	hole/Pit I	No.	BH08			
Site Name		ewerage Sch			-			Samı	ole No.					
Soil Description	Light brow	wn sandy gra	avelly silty (CLAY.				Dept	h			17.00		
Specimen Reference		1	Specime Depth	n			m	Samı	ole Type			С		
Specimen Description	Stiff light h	brown sand	y gravelly s	ilty CLA	AY.			KeyL	AB ID		Caus	20171205°	19	
Test Method	BS1377 :	Part 7 : 199	00, clause 8	3, single	e specime	en		Date	of test		06	6/12/2017		
	Test Num Length Diameter Bulk Dens Moisture O Dry Densi	sity Content							1 200.0 100.0 2.41 25.1 1.93		mm mm Mg/m3 % Mg/m3			
	Rate of St Cell Press At failure	sure	Axial Strain Deviator S Undrained Mode of Fa	tress, Shear					2.0 365 19.5 517 258 Plastic		%/min kPa % kPa kPa ½(o	ກ1 - σ3)f		
iator Stress v A	xial Strai	in												
600							- 0 0 0	•						
500			مممو	•••	••••		700 y							
00														
00														
200														
00														
0 2	4 6	8	10	12		16 1 Strain %		20	22	24	26 2	8 30	3	
nr Circles					Axiai	Otrain 70				_				
500											Deviator s for area ch membrane	nange and	cted	
00										-	Mohr circle	ion is not c		
00											by BS1377 This is pro	vided for		
200											information	n only.		
00 —						$+ \uparrow$				1				
00														
0	++								4400					
0	200 300	0 400				300 9	00 1	000	1100 1	1200				
0			Normal	Stress	es kPa pproved	300 9 .Watson	– 1	Printed			1	Fig. No		

•	GEOTECH								Strength Index Tests nary of Results									
Project No.	17-0167			Proje	ct Nam	е		Arkl	ow Se	werag	e Sche	eme Ma	arine O	utfall G	il			
Borehole	Sample		Spe	ecimen			Type ISRM			Dimensions			Force P	Equivalent diameter, De	Point Load Strength Index		Remarks (including	
No.	Depth m	Ref.	Туре	Ref.	Depth m	Rock Type	Type (D, A, I, B) Direction		Failure Valid (Y/N)	Lne	W	Dps mm	Dps'	kN	g Equivale	Is MPa	Is(50) MPa	water content if measured)
BH02	24.70	1	С	1	24.70	AMPHOLITE	D	U	NO	132.0	102.0	101.0	95.0	38.6	98.4	4.0	5.4	
BH05	23.25	1	С	2	23.25	AMPHOLITE	ı	U	YES	36.0	42.0	29.0	24.0	2.3	35.8	1.8	1.5	
BH07	14.65	1	С	3	14.65	BRECCIA	ı	U	YES	99.0	78.0	63.0	60.0	0.3	77.2	0.1	0.1	
BH07	14.90	2	С	4	14.90	BRECCIA	ı	U	YES	13.0	79.0	65.0	62.0	0.2	79.0	0.0	0.0	
BH09	10.60	1	С	5	10.60	AMPHIBOLITE	ı	U	NO	33.0	52.0	50.0	48.0	0.4	56.4	0.1	0.1	
BH09	12.80	2	С	6	12.80	AMPHIBOLITE	ı	U	YES	43.0	56.0	38.0	35.0	2.2	50.0	0.9	0.9	
BH09	13.10	3	С	7	13.10	AMPHIBOLITE	1	U	YES	111.0	98.0	78.0	72.0	19.3	94.8	2.1	2.9	
BH09	13.60	4	С	8	13.60	AMPHIBOLITE	А	U	NO		102.0	65.0	58.0	29.3	86.8	3.9	5.0	
BH10	10.70	1	С	9	10.70	SLATE	Α	U	YES		102.0	50.0	47.0	0.5	78.1	0.1	0.1	
BH10	11.90	2	С	10	11.90	SLATE	А	U	NO		101.0	44.0	38.0	6.5	69.9	1.3	1.5	
BH10	12.35	3	С	11	12.35	SLATE	Α	U	NO		101.0	56.0	51.0	0.9	81.0	0.1	0.2	
BH10	12.60	4	С	12	12.60	SLATE	А	U	NO		102.0	72.0	68.0	1.1	94.0	0.1	0.2	
BH10	13.00	5	С	13	13.00	SLATE	Α	U	YES		102.0	63.0	60.0	1.3	88.3	0.2	0.2	
BH10	13.20	6	С	14	13.20	SLATE	Α	U	NO		101.0	58.0	51.0	5.2	81.0	0.8	1.0	
BH10	13.80	7	С	15	13.80	SLATE	А	U	NO		101.0	66.0	61.0	2.3	88.6	0.3	0.4	
BH10	14.30	8	С	16	14.30	SLATE	А	U	YES		102.0	72.0	66.0	1.9	92.6	0.2	0.3	
BH10	15.60	9	С	17	15.60	SLATE	А	U	NO		101.0	48.0	41.0	3.6	72.6	0.7	0.8	
BH10	15.80	10	С	18	15.80	SLATE	А	U	NO		102.0	53.0	48.0	0.9	79.0	0.1	0.2	
Test Type D - Diametral, A Direction L - parallel to pla P - perpendicula U - unknown or i Dimensions Dps - Distance b Dps' - at failure (Lne - Length froi W - Width of sh	anes of weak or to planes or random petween plat (see ISRM r m platens to	ens (pla note 6)	ness aten se	eparatio	on)		D _{ps}	Diame L _{ne}	tral P	(**)	D _{ps}		P		e .	W	gular lui	mp D _{ps}
Test performed in Detailed legend Size factor, F =	for test and	dimensi	ons, ba			ods : 2007, unless s shown above.	noted	otherw	se			Printed 7/2017	00:00	Appro Steph		/ /atson	Table sheet	1

APPENDIX E Environmental laboratory results

ESG Environmental Chemistry - Requested Analysis

Customer **Causeway Geotech Ltd**

Site Arklow Sewerage Scheme Marine Outfall GI **Report No**

S179335

Consignment No S69456 Date Logged 05-Oct-2017

Report Due 18-Oct-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report B	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB-7 Congeners (Marine Sediments)	^Dibutyltin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	No	No	No	No	Yes
CL/1777961	BH01 0.50	21/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1777962	BH01 2.50	21/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1777963	CRM	21/09/17		R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1777964	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1777965	Reference Material (% Recovery	/)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1777961	BH01 0.50	14.3	0.85	18.7	81.8	75.1
S1777962	BH01 2.50	9.5	0.12	17.8	32.9	37.9
S1777963	CRM	17.55	1.58	62.55	54.93	80.16
S1777964	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
\$1777065	Reference Material	00	100	102	06	102
S1777965	(% Recovery)	98	100	103	96	103

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Manganese	Mercury (MS)	Nickel (MS)	Zinc (MS)	Iron
ID Number	Description	(MS) Sediments	Sediments	Sediments	Sediments	(Sediments)
S1777961	BH01 0.50	319	0.02	17.4	200	22100
S1777962	BH01 2.50	361	<0.015	15.3	79.4	20200
S1777963	CRM	1148	0.724	32.92	323	27700
S1777964	QC Blank	<0.5	<0.015	<0.5	<2	<36
	Reference Material					
S1777965	(% Recovery)	100	96	100	100	102

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12	5	2
	Units	%	% M/M	%	ug/kg	ug/kg
ID Number	Description	Tot.Moisture @ 105C	Total Organic Carbon (Sediment)	Carbonate %	^Dibutyltin	^Tributyltin
S1777961	BH01 0.50	47.9	2.67	4.32	<5.00	7.1
S1777962	BH01 2.50	17.5	0.36	3.6	<5.00	<2.00
S1777963	CRM		3.16		69	83
S1777964	QC Blank		<0.02		<5	<2
S1777965	Reference Material (% Recovery)		105	98	84	92

Sample ID	Client ID	Moisture (%)
CL/1777961	BH01 0.50	56.2
CL/1777962	BH01 2.50	15.9

		Sample ID :	CL1777964	CL1777965	CL1777961	CL1777962	CL1777963
		Station :	QC Blank	Reference Material (% Recovery)	BH01 0.50	BH01 2.50	CRM
PAH Fraction	# PAH	Mass					
Naphthalene	1	128	<1	97.3	12.5	<1	532.9
C1 Naphthalenes *	2	142	<1	96.7	28.0	1.5	292.9
C2 Naphthalenes *		156	<1	N.D	87.2	3.5	208.5
C3 Naphthalenes *		170	<1	N.D	108.0	4.5	167.5
C4 Naphthalenes *		184	<1	N.D	101.4	4.9	106.1
Sum Naphthalenes *			0	97	337	14	1308
Phenanthrene / Anthracene	2	178	<1	97.4	86.2	5.3	484.7
C1 178 *		192	<1	N.D	99.8	5.0	267.6
C2 178 *		206	<1	N.D	118.1	5.6	239.6
C3 178 *		220	<1	N.D	156.1	3.7	162.1
Sum 178 *			0	97	460.2	19.6	1153.8
Dibenzothiophene *		184	<1	92	8.9	<1	41.4
C1 Dibenzothiophenes *		198	<1	N.D	26.1	1.3	59.8
C2 Dibenzothiophenes *		212	<1	N.D	54.3	2.3	97.7
C3 Dibenzothiophenes *		226	<1	N.D	67.2	2.5	85.8
Sum Dibenzothiophenes *			0	92	156.5	6.0	284.8
Fluoranthene / pyrene	2	202	<1	95	266.9	15.4	1008.9
C1 202 *		216	<1	N.D	86.2	4.5	248.2
C2 202 *		230	<1	N.D	69.9	3.3	205.5
C3 202 *		244	<1	N.D	44.5	1.7	119.4
Sum 202 *			0	95	467.5	24.9	1582.0
Benzoanthracene / Chrysene	2	228	<1	99	143.1	7.7	649.4
C1 228 *		242	<1	N.D	157.6	5.2	265.1
C2 228 *		256	<1	N.D	69.6	2.4	152.0
Sum 228 *			0	99	370.2	15.2	1066.6
Benzofluoranthenes /	4	252	<1	98	254.0	12.3	1236.5
benzopyrenes C1 252 *		266	<1	N.D	79.8	4.1	241.3
C2 252 *				N.D N.D	79.8 48.0		208.8
		280	<1			2.1	
Sum 252 *			0	98	381.8	18.5	1686.6
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	81	117.6	4.5	517.2
C1 276 *		290	<1	N.D	20.6	<1	69.0
C2 276 *		304	<1	N.D	8.7	<1	37.8
Sum 276 *			0	81	146.9	4.5	624.0
Sum of all fractions *			0	94	2320.2	103.2	7705.5
Sum of NPD fraction *			0	95	953.8	40.0	2746.5
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.26	0.70	0.63	0.55

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

* Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1777964	CL1777965	CL1777961	CL1777962	CL1777963
	Station :	QC Blank	Reference Material (% Recovery)	BH01 0.50	BH01 2.50	CRM
PAH	Mass					
Naphthalene	128	<1	97.3	12.5	<1	532.9
Acenaphthylene	152	<1	102.6	4.1	<1	55.1
Acenaphthene	154	<1	104.1	11.3	<1	28.1
Fluorene	166	<1	104.9	17.7	<1	45.3
Phenanthrene	178	<1	99.2	67.9	3.9	344.6
Dibenzothiophene *	184	<1	92.1	8.9	<1	41.4
Anthracene	178	<1	95.5	18.2	1.4	140.0
Fluoranthene	202	<1	96.3	141.7	7.9	568.9
Pyrene	202	<1	94.5	125.2	7.5	439.9
Benzo[a]anthracene	228	<1	96.6	63.0	3.5	250.4
Chrysene	228	<1	101.8	80.1	4.2	399.1
Benzo[b]fluoranthene	252	<1	99.2	83.4	4.0	446.6
Benzo[k]fluoranthene	252	<1	95.2	38.2	1.9	211.8
Benzo[e]pyrene	252	<1	102.6	65.8	3.1	340.6
Benzo[a]pyrene	252	<1	93.4	66.7	3.3	237.6
Indeno[123,cd]pyrene	276	<1	81.7	52.2	2.1	254.0
Dibenzo[a,h]anthracene	278	<1	73.3	11.7	<1	52.9
Benzo[ghi]perylene	276	<1	87.6	53.6	2.4	210.3

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI **Customer and Site Details:** Matrix:

Soil S17_9335 05-Oct-17 Job Number: Date Booked in: QC Batch Number: 170010 Date Extracted: 13-Oct-17 Directory: 131017PCB.TQ1 Date Analysed: 13-Oct-17 Method: Ultrasonic

			Concentration, (μg/kg)								
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*			
CL1777961	BH01 0.50	0.6	1.1	0.6	0.4	0.6	0.7	0.3			
CL1777962	BH01 2.50	0.1	0.2	<0.08	<0.08	<0.08	<0.08	<0.08			
CL1777963	CRM	1.8	3.2	3.6	1.8	2.9	2.8	1.9			
CL1777964	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08			
CL1777965	Reference Material (% Recovery)	104	109	101	103	108	95	108			

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_9335
QC Batch Number: 170010
Directory: 131017.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:05-Oct-17Date Extracted:13-Oct-17Date Analysed:13-Oct-17UKAS Accredited:No

Sample ID:	CL1777961	CL1777962	CL1777963	CL1777964	CL1777965
					Reference Material (%
Client ID:	BH01 0.50	BH01 2.50	CRM	QC Blank	Recovery)

Compound			Concentration (µg/kg)	
alpha-HCH	<0.10	<0.10	<0.10	<0.10	98
Hexachlorobenzene	0.11	<0.10	4.23	<0.10	93
gamma-HCH	<0.10	<0.10	<0.10	<0.10	100
p,p'-DDE	0.46	0.10	2.76	<0.10	88
Dieldrin	0.48	0.16	0.40	<0.10	97
p,p'-DDD	0.60	<0.10	4.16	<0.10	91
p,p'-DDT	0.30	<0.10	<0.10	<0.10	108

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17 9335

Directory: D:\TES\DATA\2017\1012HSA GC9\101217 2017-10-12 13-19-49\009F0901.D

Method: Headspace GCFID

Matrix: Soil

Date Booked in: 05-Oct-17

Date extracted: 10-Dec-17

Date Analysed: 12-Oct-17, 15

* Sample data with an asterisk are not UKAS accredited.

		C	oncentration	on, (mg/kg) - a	s wet weig			Aliphatics			
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
CL1777961	BH01 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1777962	BH01 2.50	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1777964	QC Blank	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1777965	Reference Material (% Recovery)	94	97	100	101	93	115	110	118	114	115

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17_9335 Separation: Silica gel 171092 Eluents: QC Batch Number: Hexane, DCM D:\TES\DATA\Y2017\101617TPH GC3\101617 2017-10-16 11-46-47\055B0701.D Directory:

Method: Ultra Sonic

Matrix: Soil Date Booked ir

05-Oct-17 Date Extracted 13-Oct-17 Date Analysed: 16-Oct-17, 13:13:56

		Concentration, (mg/kg) - as wet weight											
		>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
CL1777961	BH01 0.50	<4*	<4*	<4	<4	<4	<4	5.76	7.45	37.5	34.5	45	49.8
CL1777962	BH01 2.50	<5*	<4*	<4	<4	<4	<4	<4	4.57	<8.76	14.4	<20	26.7
CL1777964	QC Blank	<6*	<4*	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1777965	Reference Material (% Recovery)	98*	90*	103	88	99	93	97	101	100	105	99	97
•													

Report Number: EFS/179335

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
TPHUSSI	CL1777961 TO CL1777965	The Secondary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily (including the Primary Process Control) and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation , where applicable, from the affected analytes (Banding C8-C10 on both the Aliphatic and Aromatic fractions) . These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1777961	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Dibenzothiothene) . These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1777961 CL1777962 CL1777963	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine C	Outfall GI
Report Number :	S17_9335	
•	=	Note: major constituent in upper case
Lab ID Number	Client ID	Description
		Description
CL/1777961	BH01 0.50 BH01 2.50	MARINE SEDIMENT MARINE SEDIMENT QUALITY CONTROL SAMPLE
CL/1777962 CL/1777963	CRM	OLIALITY CONTROL SAMPLE
CL/1777964	QC Blank	OHALITY CONTROL SAMPLE
CL/1777964 CL/1777965	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
01/11/1303	Treference Material (78 frecevery)	QOVERTY CONTINUE OF MAIL EE
		<u> </u>

Appendix A Page 1 of 1 12/12/2017

ESG Environmental Chemistry - Requested Analysis

S178703

Customer Site Causeway Geotech Ltd Arklow Sewerage Scheme Marine Outfall GI Consignment No S68869
Date Logged 14-Sep-2017

Report No S178703

Report Due 02-Oct-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	^DibutyItin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
CL/1775344	BH02 1.50	29/08/17	С	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775345	BH02 3.50	29/08/17	С	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775346	CRM	29/08/17		R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1775347	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1775348	Reference Material (% Recovery	/)	С	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ID Number	Description	Arsenic (MS) Sediments	1	Chromium (MS) Sediments	'' '	Lead (MS) Sediments
	BH02 1.50	16.5	1.05	18.9	120	118.3
S1775345	BH02 3.50	16.1	0.42	17.1	116.7	99.7
S1775346	CRM	16.65	1.475	58.67	57.83	73.36
S1775347	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
S1775348	Reference Material (% Recovery)	105	107	107	95	109

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Manganese	Mercury (MS)	Nickel (MS)	Zinc (MS)	Iron
ID Number	Description	(MS) Sediments	Sediments	Sediments	Sediments	(Sediments)
S1775344	BH02 1.50	533	0.12	14.9	302.6	30900
S1775345	BH02 3.50	538.4	0.07	14.4	170.9	28300
S1775346	CRM	1117	0.707	31.16	306.6	27700
S1775347	QC Blank	<0.5	<0.015	<0.5	<2	<36
	Reference Material					
S1775348	(% Recovery)	103	102	106	105	105

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12		
	Units	%	% M/M	%	mg/kg	mg/kg
		Tot.Moisture @	Total Organic Carbon	Carbonate %	^Dibutyltin	^Tributyltin
ID Number	Description	105C	(Sediment)			
S1775344	BH02 1.50	53.4	3.08	3.12	<0.02	<0.05
S1775345	BH02 3.50	30.4	1.07	3.84	<0.02	<0.05
S1775346	CRM		2.8645			
S1775347	QC Blank		<0.02		<0.02	<0.05
S1775348	Reference Material (% Recovery)		91	102	100	107

Sample ID	Client ID	Moisture (%)
CL/1775344	BH02 1.50	59.8
CL/1775345	BH02 3.50	12.7

Polyaromatic Trydrocarbon Concer	iti a tionio (<u> </u>	UNAS accredit			
		Sample ID :	CL1775347	CL1775348	CL1775344	CL1775345	CL1775346
				Reference			
		Station :	QC Blank	Material (%	BH02 1.50	BH02 3.50	CRM
				Recovery)			
PAH Fraction	# PAH	Mass					
Naphthalene *	1	128	<1	114.7	32.5	6.6	605.0
C1 Naphthalenes *	2	142	<1	114.6	54.4	8.2	345.0
C2 Naphthalenes *		156	<1	N.D	129.4	14.2	227.8
C3 Naphthalenes *		170	<1	N.D	181.7	16.0	166.2
C4 Naphthalenes *		184	<1	N.D	160.6	12.0	124.4
Sum Naphthalenes *			0	115	559	57	1468
Phenanthrene / Anthracene	2	178	<1	103.0	141.1	48.8	520.2
C1 178 *		192	<1	N.D	151.7	23.2	303.2
C2 178 *		206	<1	N.D	236.6	23.9	269.4
C3 178 *		220	<1	N.D	193.9	17.7	179.1
Sum 178 *			0	103	723.3	113.6	1271.9
Dibenzothiophene		184	<1	103	16.6	4.6	43.7
C1 Dibenzothiophenes *		198	<1	N.D	62.5	6.6	86.6
C2 Dibenzothiophenes *		212	<1	N.D	155.4	12.7	117.8
C3 Dibenzothiophenes *		226	<1	N.D	114.6	9.5	73.4
Sum Dibenzothiophenes *			0	103	349.2	33.4	321.5
Fluoranthene / pyrene	2	202	<1	99	333.5	112.5	1047.1
C1 202 *		216	<1	N.D	133.9	35.6	291.8
C2 202 *		230	<1	N.D	119.0	25.3	211.3
C3 202 *		244	<1	N.D	84.8	14.3	136.6
Sum 202 *			0	99	671.2	187.7	1686.8
Benzoanthracene / Chrysene	2	228	<1	98	187.4	67.2	654.5
C1 228 *		242	<1	N.D	432.9	40.5	283.0
C2 228 *		256	<1	N.D	151.8	21.5	150.5
Sum 228 *		_00	0	98	772.1	129.2	1088.0
Benzofluoranthenes /	1 .						
benzopyrenes	4	252	<1	96	275.8	101.9	1177.0
C1 252 *		266	<1	N.D	109.2	33.7	337.4
C2 252 *		280	<1	N.D	80.0	20.6	199.5
Sum 252 *		_00	0	96	465.0	156.2	1713.9
			_				
Dibenzoanthracene / Indenopyrene /	3	276	<1	92	137.4	48.7	558.5
Benzoperylene							
C1 276 *		290	<1	N.D	35.5	13.4	90.7
C2 276 *		304	<1	N.D	45.7	3.7	62.5
Sum 276 *			0	92	218.6	65.8	711.6
Sum of all fractions *			0	101	3758.0	742.8	8261.9
Sum of NPD fraction *			0	107	1631.2	203.9	3061.7
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.28	0.77	0.38	0.59
IN D/ TO HING I ALLIANO	I		#DIV/U:	0.20	0.77	0.00	0.55

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1775347	CL1775348	CL1775344	CL1775345	CL1775346
	Station :	QC Blank	Reference Material (% Recovery)	BH02 1.50	BH02 3.50	CRM
PAH	Mass					
Naphthalene *	128	<1	114.7	32.5	6.6	605.0
Acenaphthylene	152	<1	117.2	4.0	2.3	51.1
Acenaphthene	154	<1	116.9	17.5	7.1	33.0
Fluorene	166	<1	115.9	31.2	8.7	53.9
Phenanthrene	178	<1	106.6	111.0	34.4	379.2
Dibenzothiophene	184	<1	103.1	16.6	4.6	43.7
Anthracene	178	<1	99.4	30.1	14.3	141.0
Fluoranthene	202	<1	99.6	181.5	61.4	588.4
Pyrene	202	<1	97.6	151.9	51.1	458.7
Benzo[a]anthracene	228	<1	96.4	81.9	32.8	260.7
Chrysene	228	<1	99.1	105.5	34.4	393.8
Benzo[b]fluoranthene	252	<1	94.9	99.3	30.2	423.9
Benzo[k]fluoranthene	252	<1	92.6	33.9	16.0	211.1
Benzo[e]pyrene	252	<1	103.8	72.4	24.7	320.6
Benzo[a]pyrene	252	<1	94.4	70.3	31.1	221.3
Indeno[123,cd]pyrene	276	<1	95.1	64.3	23.3	276.8
Dibenzo[a,h]anthracene	278	<1	80.9	12.5	5.2	63.2
Benzo[ghi]perylene	276	<1	101.1	60.7	20.3	218.4

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$17_8703
 Date Booked in:
 14-Sep-17

 QC Batch Number:
 170006
 Date Extracted:
 21-Sep-17

 Directory:
 290917PCB.TQ1
 Date Analysed:
 28-Sep-17

 Method:
 Ultrasonic

			Concentration, (μg/kg)										
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*					
CL1775344	BH02 1.50	0.8	0.8	0.5	<0.08	0.5	0.6	0.3					
CL1775345	BH02 3.50	0.7	0.8	<0.08	0.6	0.5	0.6	0.3					
CL1775346	CRM	2.5	5.0	5.1	4.5	4.4	5.4	2.8					
CL1775347	QC Blank	<0.08	<0.08	<0.08	<0.08	< 0.08	<0.08	< 0.08					
CL1775348	Reference Material (% Recovery)	105.0	117.6	114.9	153.7	108.2	114.9	114.2					

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_8703
QC Batch Number: 170006
Directory: 270917.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:14-Sep-17Date Extracted:27-Sep-17Date Analysed:28-Sep-17UKAS Accredited:No

Sample ID :	CL1775344	CL1775345	CL1775346	CL1775347	CL1775348
					Reference Material
Client ID:	BH02 1.50	BH02 3.50	CRM	QC Blank	(% Recovery)

Compound		Concentration (μg/kg)									
alpha-HCH	<0.10	<0.10	<0.10	<0.10	168						
Hexachlorobenzene	0.20	<0.10	6.6	<0.10	98						
gamma-HCH	<0.10	<0.10	6.6	<0.10	244						
p,p'-DDE	1.36	1.93	3.6	<0.10	82						
Dieldrin	0.69	0.69	0.6	<0.10	97						
p,p'-DDD	1.26	1.8	5.0	<0.10	108						
p,p'-DDT	1.13	0.7	0.1	<0.10	130						

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_8703

Directory: E:\TES\DATA\2017\0921HSA_GC9\092117 2017-09-21 11-30-37\113B1301.D

 Date Booked in:
 14-Sep-17

 Date extracted:
 21-Sep-17

 21-Sep-17,
 21-Sep-17,

Soil

Matrix:

Method: Headspace GCFID Date Analysed: 15:49:00

* Sample data with an asterisk are not UKAS accredited.

		Concentration, (mg/kg) - as wet weight					Aliphatics				
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
CL1775344	BH02 1.50	< 0.010	< 0.010	<0.010	< 0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775345	BH02 3.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775347	QC Blank	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775348	Reference Material (% Recovery)	103	105	103	104	101	109	104	108	110	107

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI

 Job Number:
 S17_8703
 Separation:
 Silica gel

 QC Batch Number:
 171031
 Eluents:
 Hexane, DCM

 Directory:
 D:\TES\DATA\2017\092717\

Method: Ultra Sonic

Date Booked ir 14-Sep-17
Date Extracted 25-Sep-17

Matrix:

Date Extracted 25-Sep-17

Date Analysed 27-Sep-17, 15:15:31

Soil

					Conce	ntration, (mg	/kg) - as wet v	weight					
* This sample data is not U	KAS accredited.	>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8 ·	· C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
CL1775344	BH02 1.50	<4.12	<4*	<4.12*	<4	<4.12	<4	11.1	7.95	51.2	38.8	68.6	53.8
CL1775345	BH02 3.50	<4.08	<4*	<4.08*	<4	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
CL1775347	QC Blank	<4.16	<4*	<4.16*	<4	<4.16	<4	<4.16	<4	<9.1	<8.76	<20.8	<20
CL1775348	Reference Material (% Recovery)	98%	126%*	89%*	97%	94%	91%	92%	92%	89%	93%	91%	93%

Report Number: EFS/178703

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	CL1775344 to CL1775346	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Naphthalene) . These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1775344 to CL1775346	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.
TPHUSSI	CL1775344 to CL1775348	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Banding C10-C12 on the Aliphatic fraction and C8-C10 on the Apromatic fraction) . These circumstances should be taken into consideration when utilising the data.

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine Ou	utali Gi
Report Number :	S17_8703	ALIANI GI
neport Number .		Note: major constituent in upper case
Lab ID Number	Client ID	Description
		MADINE CEDIMENT
CL/1775344 CL/1775345	BH02 1.50 BH02 3.50	MARINE SEDIMENT MARINE SEDIMENT
CL/1775345	CRM	QUALITY CONTROL SAMPLE
CL/1775346 CL/1775347 CL/1775348	BH02 3.50 CRM QC Blank	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1775348	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
	+	
	+	

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-65410-2

Issue No.: 2

Date of Issue 04/10/2017

Customer Details: ESG Environmental Chemistry, P O Box 100, Bretby Business Park, Burton-on-

Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: \$178703

Quotation Reference: 170504/08

Description: 2 soil samples

Date Received: 22/09/2017

Date Started: 26/09/2017

Date Completed: 03/10/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: This report replaces issue 1 in its entirety

Approved By: Matthew Hickson, Laboratory Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

Results Summary

Report No.: 17-65410-2

Customer Reference: S178703 Customer Order No: 42062 BEC

				Customer	Sample No	S1775344	S1775345
				Custome	r Sample ID	BH02 1.50	BH02 3.50
				RPS	Sample No	340618	340619
				Sa	mple Type	SOIL	SOIL
				Sample	e Depth (m)	1.50m	3.50m
				Sai	mpling Date	29/08/2017	29/08/2017
Determinand	CAS No	Codes	SOP	Units	RL		
butyltin (DBT)	1002-53-5	N	in house	mg/kg as cation	0.02	< 0.02	< 0.02
ibutyltin (TBT)	56573-85-4	N	in house	mg/kg as cation	0.05	< 0.05	< 0.05

Report No.: 17-65410-2Customer Reference: S178703
Customer Order No: 42062 BEC

Comments

Job	Description	Job Comments
17-65410	2 soil samples	Blank: <rl &="" -="" 100%="" 107%<="" aqc:="" dbt="" for="" tbt="" td=""></rl>

Deviating Samples

Report No.: 17-65410-2Customer Reference: S178703
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63).

RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below.

Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed.

Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	lo. Customer No. Customer ID		Customer ID Date Sampled		Deviating Sample	Reason for Sample Deviation
340618	S1775344		29/08/2017	60ml amber glass jar	No	
340619	S1775345		29/08/2017	60ml amber glass jar	No	

Report Information

Key to Report Codes

U	UKAS Accredited
M	MCERTS Accredited
N	Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units) Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1	Clay - Brown
Type 2	Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

ESG Environmental Chemistry - Requested Analysis

Customer Causeway Geotech Ltd Site Arklow Sewerage Scher

Arklow Sewerage Scheme Marine Outfall GI

Report No S179637

Consignment No S69458 Date Logged 12-Oct-2017

Report Due 01-Nov-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	65WTSM
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB-7 Congeners (Marine Sediments)	^DibutyItin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
CL/1779343	BH04 0.50	23/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1779344	BH04 2.50	23/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1779345	CRM	23/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1779346	QC Blank		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1779348	Reference Material (% Recovery	/)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1779343	BH04 0.50	20.6	0.19	8.5	88.9	37
S1779344	BH04 2.50	8.2	0.11	8.2	17.9	8
S1779345	CRM	17.27	1.482	60.15	59.47	76.55
S1779346	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
	Reference Material					
S1779348	(% Recovery)	102	107	104	92	105

N	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
D	Detection Limit	0.5	0.015	0.5	2	36
U	Jnits	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Manganese	Mercury (MS)	Nickel (MS)	Zinc (MS)	Iron
ID Number D	Description	(MS) Sediments	Sediments	Sediments	Sediments	(Sediments)
S1779343 B	3H04 0.50	513.4	<0.015	8.2	85.1	15400
S1779344 B	3H04 2.50	188.4	<0.015	7.8	59.2	11700
S1779345 C	CRM	1103	0.686	31.66	308.8	28000
S1779346 C	QC Blank	<0.5	<0.015	<0.5	<2	<36
	Reference Material					
S1779348 (9	% Recovery)	104	106	104	104	96

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12		
	Units	%	% M/M	%	ug/kg	ug/kg
		Tot.Moisture @	Total Organic			
			Carbon	Carbonate %	^Dibutyltin	^Tributyltin
ID Number	Description	105C	(Sediment)			
S1779343	BH04 0.50	14.1	0.11	6	<5.00	<2.00
S1779344	BH04 2.50	13.6	0.06	5.28	<5.00	<2.00
S1779345	CRM		3.0489		79%	81%
S1779346	QC Blank		<0.02		<5.00	<2.00
	Reference Material					
S1779348	(% Recovery)		96	102	91	91

Sample ID	Client ID	Moisture (%)
CL/1779343	BH04 0.50	23.4
CL/1779344	BH04 2.50	9.1

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

		Sample ID :	CL1779346	CL1779348	CL1779343	CL1779344	CL1779345
		•		Reference			
		Station :	QC Blank	Material (%	BH04 0.50	BH04 2.50	CRM
				Recovery)			
PAH Fraction	# PAH	Mass					
Naphthalene	1	128	<1	97.0	<1	<1	513.3
C1 Naphthalenes *	2	142	<1	96.0	<1	<1	318.7
C2 Naphthalenes *		156	<1	N.D	<1	<1	206.1
C3 Naphthalenes *		170	<1	N.D	<1	<1	164.9
C4 Naphthalenes *		184	<1	N.D	<1	<1	102.9
Sum Naphthalenes *			0	96	0	0	1306
Phenanthrene / Anthracene	2	178	<1	97.7	<1	<1	444.0
C1 178 *		192	<1	N.D	<1	<1	268.1
C2 178 *		206	<1	N.D	<1	<1	195.4
C3 178 *		220	<1	N.D	<1	<1	144.4
Sum 178 *			0	98	0.0	0.0	1051.9
Dibenzothiophene *		184	<1	92	<1	<1	38.5
C1 Dibenzothiophenes *		198	<1	N.D	<1	<1	62.1
C2 Dibenzothiophenes *		212	<1	N.D	<1	<1	107.0
C3 Dibenzothiophenes *		226	<1	N.D	<1	<1	67.9
Sum Dibenzothiophenes *			0	92	0.0	0.0	275.4
Fluoranthene / pyrene	2	202	<1	94	<1	<1	903.2
C1 202 *		216	<1	N.D	<1	<1	240.9
C2 202 *		230	<1	N.D	<1	<1	172.5
C3 202 *		244	<1	N.D	<1	<1	106.4
Sum 202 *			0	94	0.0	0.0	1422.9
Benzoanthracene / Chrysene	2	228	<1	93	<1	<1	558.4
C1 228 *		242	<1	N.D	<1	<1	229.0
C2 228 *		256	<1	N.D	<1	<1	125.1
Sum 228 *			0	93	0.0	0.0	912.4
Benzofluoranthenes /	4	252	<1	92	<1	<1	997.0
benzopyrenes		-	·				
C1 252 *		266	<1	N.D	<1	<1	202.5
C2 252 *		280	<1	N.D	<1	<1	180.1
Sum 252 *			0	92	0.0	0.0	1379.6
Dibenzoanthracene / Indenopyrene /	_						
Benzoperylene	3	276	<1	87	<1	<1	491.8
		000	_	ND			70.0
C1 276 *		290	<1	N.D	<1	<1	76.3
C2 276 *		304	<1	N.D	<1	<1	31.9
Sum 276 *	1		0	87	0.0	0.0	600.0
Sum of all fractions *			0	93	0.0	0.0	6948.0
Sum of NPD fraction *			0	95	0.0	0.0	2633.2
NPD / 4-6 ring PAH ratio *		not in the referen	#DIV/0!	0.26	#DIV/0!	#DIV/0!	0.61

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1779346	CL1779348	CL1779343	CL1779344	CL1779345
	Station :	QC Blank	Reference Material (% Recovery)	BH04 0.50	BH04 2.50	CRM
PAH	Mass					
Naphthalene	128	<1	97.0	<1	<1	513.3
Acenaphthylene	152	<1	96.1	<1	<1	52.1
Acenaphthene	154	<1	96.4	<1	<1	34.5
Fluorene	166	<1	98.8	<1	<1	45.8
Phenanthrene	178	<1	100.5	<1	<1	314.0
Dibenzothiophene *	184	<1	92.1	<1	<1	38.5
Anthracene	178	<1	94.8	<1	<1	130.0
Fluoranthene	202	<1	94.6	<1	<1	503.9
Pyrene	202	<1	93.9	<1	<1	399.3
Benzo[a]anthracene	228	<1	91.5	<1	<1	220.1
Chrysene	228	<1	95.3	<1	<1	338.3
Benzo[b]fluoranthene	252	<1	95.4	<1	<1	364.5
Benzo[k]fluoranthene	252	<1	92.4	<1	<1	175.2
Benzo[e]pyrene	252	<1	92.1	<1	<1	267.0
Benzo[a]pyrene	252	<1	88.4	<1	<1	190.3
Indeno[123,cd]pyrene	276	<1	86.8	<1	<1	244.7
Dibenzo[a,h]anthracene	278	<1	84.2	<1	<1	54.9
Benzo[ghi]perylene	276	<1	89.9	<1	<1	192.2

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI **Customer and Site Details:** Matrix:

Soil 12-Oct-17 Job Number: S17_9637 Date Booked in: 170011 Date Extracted: 24-Oct-17 QC Batch Number: Directory: 261017PCB.TQ1 Date Analysed: 27-Oct-17

Method: Ultrasonic

				Con	centration,	(μg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1779343	BH04 0.50	0.1	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1779344	BH04 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1779345	CRM	3.1	4.4	4.5	2.8	3.9	4.9	2.7
CL1779346	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1779348	Reference Material (% Recovery)	123	107	106	108	102	110	111

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_9637
QC Batch Number: 170011
Directory: 261017.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:12-Oct-17Date Extracted:24-Oct-17Date Analysed:27-Oct-17UKAS Accredited:No

Sample ID :	CL1779343	CL1779344	CL1779344 CL1779345		CL1779348	
					Reference Material (%	
Client ID:	BH04 0.50	BH04 2.50	CRM	QC Blank	Recovery)	

Compound	Concentration (µg/kg)									
alpha-HCH	<0.10	<0.10	<0.10	<0.10	91					
Hexachlorobenzene	<0.10	<0.10	6.52	<0.10	94					
gamma-HCH	<0.10	<0.10	<0.10	<0.10	93					
p,p'-DDE	<0.10	<0.10	2.94	<0.10	98					
Dieldrin	<0.10	<0.10	0.40	<0.10	103					
p,p'-DDD	<0.10	<0.10	2.68	<0.10	96					
p,p'-DDT	<0.10	<0.10	<0.10	<0.10						

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17_9637

Directory: D:\TES\DATA\2017\1025HSA GC9\102517 2017-10-25 12-09-58\125B2501.D

Method: Headspace GCFID

Matrix: Soil
Date Booked in: 12-Oct-17
Date extracted: 17-Oct-24
Date Analysed: 25-Oct-17, 19

		Concentration, (mg/kg) - as wet weight						Aliphatics			
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
CL1779343	BH04 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1779344	BH04 2.50	< 0.010	< 0.010	<0.010	< 0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1779346	QC Blank	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1779348	Reference Material (% Recovery)	96	95	102	103	97	110	115	120	119	116

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

 Customer and Site Details:
 Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI

Job Number:S17_9637Separation:Silica gelQC Batch Number:171154Eluents:Hexane, DCM

Directory: D:\TES\DATA\2017\102717\102717 2017-10-27 14-14-24\F-089-82-RMS171154ARO.D

Method: Ultra Sonic

Date Booked ir 12-Oct-17
Date Extracted 26-Oct-17

Matrix:

Date Extracted 26-Oct-17

Date Analysed 28-Oct-17, 09:43:32

Soil

	Ollia Sonic	Concentration, (mg/kg) - as wet weight											
		>C8	- C10	10 >C10 - C12		>C12 - C16			- C21	>C21 - C35		>C8	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
CL1779343	BH04 0.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1779344	BH04 2.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1779346	QC Blank	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1779348	Reference Material (% Recovery)	92	86	98	90	96	93	96	96	98	101	95	95
													1
													<u> </u>

Report Number: EFS/179637

Additional Report Notes

Sample ID	The following information should be taken into consideration when using the data contained within this report
CL1779343 CL1779344	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Dibenzothiothene) . These circumstances should be taken into consideration when utilising the data.
CL1779345	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.
	CL1779343 CL1779344 CL1779345

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine Ou	tfall GI
Report Number :	S17_9637	
·		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1779343 CL/1779344 CL/1779345 CL/1779346 CL/1779348	BH04 0.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1779344	BH04 2.50	MARINE SEDIMENTS
CL/1779345	CRM	QUALITY CONTROL SAMPLE
CL/1779346	QC Blank	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1779348	BH04 2.50 CRM QC Blank Reference Material (% Recovery)	QUALITY CONTROL SAMPLE

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-66304-1

Issue No.: 1

Date of Issue 01/11/2017

Customer Details: SOCOTEC UK - Environmental Chemistry, P O Box 100, Bretby Business Park,

Burton-on-Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: S179637

Quotation Reference: 170504/06

Description: 2 sediment samples

Date Received: 24/10/2017

Date Started: 25/10/2017

Date Completed: 31/10/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: None

Approved By:

Matthew Hickson, Laboratory Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

This certificate shall not be reproduced except in full without the prior written approval of the laboratory.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

1663

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

Results Summary

Report No.: 17-66304-1

Customer Reference: S179637 Customer Order No: 42062 BEC

				Customer S	Sample No	S1779343	S1779344
				Custome	r Sample ID	BH04 0.50	BH04 2.50
				RPS	Sample No	343731	343732
				Sa	mple Type	SEDIMENT	SEDIMENT
				Sa	mpling Date	23/09/2017	23/09/2017
Determinand	CAS No	Codes	SOP	Units	RL		
butyltin (DBT)	1002-53-5	U	395	ug/kg as cation	5	< 5.00	< 5.00
ibutyltin (TBT)	56573-85-4	U	395	ug/kg as cation	2	< 2.00	< 2.00

Report No.: 17-66304-1Customer Reference: S179637
Customer Order No: 42062 BEC

Comments

Job	Description	Job Comments
17-66304		Blank <rl &="" -="" 91%="" 91%<="" aqc="" dbt="" tbt="" td=""></rl>
		CRM DBT - 79% TBT - 81%

Deviating Samples

Report No.: 17-66304-1Customer Reference: S179637
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63).

RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below.

Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed.

Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating Sample	Reason for Sample Deviation
343731	S1779343		23/09/2017	60ml amber glass jar	No	
343732	S1779344		23/09/2017	60ml amber glass jar	No	

Report Information

Key to Report Codes

U UKAS Accredited
M MCERTS Accredited
N Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units)

Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1 Clay - Brown
Type 2 Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

ESG Environmental Chemistry - Requested Analysis

Customer Causeway Geotech Ltd Site Arklow Sewerage Scher

Arklow Sewerage Scheme Marine Outfall GI

Report No S179638

Consignment No S69457 Date Logged 12-Oct-2017

Report Due 01-Nov-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	^DibutyItin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	S Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
CL/1779349	BH05 0.50	26/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1779350	BH05 3.50	26/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1779351	CRM	26/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1779352	QC Blank		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1779353	Reference Material (% Recovery	<i>'</i>)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1779349	BH05 0.50	10.4	<0.04	12.3	11.4	5.5
S1779350	BH05 3.50	4.5	<0.04	7.1	4.2	3.3
S1779351	CRM	17.27	1.482	60.15	59.47	76.55
S1779352	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
S1779353	Reference Material (% Recovery)	102	107	104	92	105

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Manganese	Mercury (MS)	Nickel (MS)	Zinc (MS)	Iron
ID Number	Description	(MS) Sediments	Sediments	Sediments	Sediments	(Sediments)
S1779349	BH05 0.50	265.4	<0.015	12.2	24.8	13700
S1779350	BH05 3.50	154.6	<0.015	5.9	15.8	7080
S1779351	CRM	1103	0.686	31.66	308.8	28000
S1779352	QC Blank	<0.5	<0.015	<0.5	<2	<36
	Reference Material					
S1779353	(% Recovery)	104	106	104	104	96

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12		
	Units	%	% M/M	%	ug/kg	ug/kg
		Tot.Moisture @	Total Organic			
		105C	Carbon	Carbonate %	^Dibutyltin	^Tributyltin
ID Number	Description	1030	(Sediment)			
S1779349	BH05 0.50	13.7	0.08	5.76	<5.00	<2.00
S1779350	BH05 3.50	15.4	0.1	6.96	< 5.00	<2.00
S1779351	CRM		3.0489		79%	81%
S1779352	QC Blank		< 0.02		< 5.00	<2.00
	Reference Material					
S1779353	(% Recovery)		96	102	91	91

Sample ID	Client ID	Moisture (%)
CL/1779349	BH05 0.50	11.8
CL/1779350	BH05 3.50	25.1

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAH Fraction			Sample ID :	CL1779352	CL1779353	CL1779349	CL1779350	CL1779351
Naphthalene								
Recovery Recovery			Station :	QC Blank		BH05 0.50	BH05 3.50	CRM
PAH Fraction					,			
C1 Naphthalenes* 2 142 <1 96.0 <1 <1 318.7 C2 Naphthalenes* 156 <1 N.D <1 1.0 206.1 C3 Naphthalenes* 170 <1 N.D <1 <1 164.9 C4 Naphthalenes* 184 <1 N.D <1 <1 102.9 Sum Naphthalenes* 0 96 0 1 102.9 Sum Naphthalenes* 0 96 0 1 102.9 Sum Aphthalenes* 192 <1 N.D <1 <1 102.9 Sum Tas* 206 <1 N.D <1 <1 444.0 <1 92.1 <1 <1 195.4 <1 92.1 <1 <1 144.4 <1 92.2 <1 <1 11 144.4 <1 92.2 <1 <1 184.4 <1 92.2 <1 <1 38.5 <1 N.D <1 <1 38.5	PAH Fraction	# PAH	Mass		,,,			
C2 Naphthalenes *	Naphthalene	1	128	<1	97.0	<1	<1	513.3
C3 Naphthalenes *	C1 Naphthalenes *	2	142	<1	96.0	<1	<1	318.7
C4 Naphthalenes	C2 Naphthalenes *			<1	N.D	<1	1.0	206.1
Sum Naphthalenes	C3 Naphthalenes *		170	<1	N.D	<1	<1	164.9
Phenanthrene Anthracene 2 178 <1 97.7 <1 <1 444.0	C4 Naphthalenes *		184	<1	N.D	<1	<1	102.9
C1 178 *	Sum Naphthalenes *			0	96	0	1	1306
C2 178 * 206	Phenanthrene / Anthracene	2	178	<1	97.7	<1	<1	444.0
C3 178 * 220	C1 178 *		192	<1	N.D	<1	<1	268.1
Sum 178 * 0 98 0.0 0.0 1051.9 Dibenzothiophene * 184 <1	C2 178 *		206	<1	N.D	<1	<1	195.4
Dibenzothiophene * 184	C3 178 *		220	<1	N.D	<1	<1	144.4
C1 Dibenzothiophenes *	Sum 178 *			0	98	0.0	0.0	1051.9
C2 Dibenzothiophenes * 212 <1	Dibenzothiophene *		184	<1	92	<1	<1	38.5
G3 Dibenzothiophenes * 226 <1			198	<1	N.D	<1	<1	62.1
Sum Dibenzothiophenes* 0 92 0.0 0.0 275.4 Fluoranthene / pyrene 2 202 <1	C2 Dibenzothiophenes *		212	<1	N.D	<1	<1	107.0
Fluoranthene / pyrene 2 202 <1 94 <1 <1 093.2 C1 202 * C1 202 * C1 240.9 C2 202 * C2 202 * C2 202 * C2 203	C3 Dibenzothiophenes *		226	<1	N.D	<1	<1	67.9
C1 202 *	Sum Dibenzothiophenes *			0	92	0.0	0.0	275.4
C2 202 * 230 <1		2		<1		<1	<1	
C3 202 * 244 <1	C1 202 *		216	<1	N.D	<1	<1	240.9
Sum 202 * 0 94 0.0 0.0 1422.9 Benzoanthracene / Chrysene 2 228 <1						<1	<1	
Benzoanthracene / Chrysene 2 228 <1 93 <1 <1 558.4	C3 202 *		244	<1	N.D	<1	<1	
C1 228 *	Sum 202 *					0.0	0.0	
C2 228 * 256 <1	Benzoanthracene / Chrysene	2	228	<1	93	<1	<1	558.4
Sum 228 * 0 93 0.0 0.0 912.4 Benzofluoranthenes / benzopyrenes 4 252 <1				<1		<1	<1	
Benzofluoranthenes / benzopyrenes 4 252 <1	C2 228 *		256	<1			<1	
benzopyrenes C1 252 * C2 252 * C2 252 * C2 252 * C3 0 0 92 0.0 0.0 1379.6 Dibenzoanthracene / Indenopyrene / Benzoperylene C1 276 * C2 276 * C3 290 <1 N.D <1 <1 <1 491.8 C1 276 * C2 276 * C3 290 <1 N.D <1 <1 <1 491.8 C1 276 * C3 290 <1 N.D <1 <1 <1 76.3 C3 276 * C3 276 * C4 N.D <1 <1 <1 31.9 C5 276 * C6 276 * C7 276 * C8 290 <1 N.D <1 <1 <1 31.9 C9 276 *	Sum 228 *			0	93	0.0	0.0	912.4
C1 252 * 266 <1		4	252	<1	92	<1	<1	997.0
C2 252 * Sum 252 * Sum 252 * Sum 252 * Sum 252 * Sum 252 * Sum 252 * Sum 252 * Sum 252 * Sum 252 * Sum 252 * Sum of NPD fraction * 280 <1 N.D	C1 252 *		266	<1	N.D	<1	<1	202.5
Dibenzoanthracene / Indenopyrene / Benzoperylene 3 276 <1	C2 252 *			<1	N.D		<1	180.1
Benzoperylene 3 276 <1	Sum 252 *			0	92	0.0	0.0	1379.6
C1 276 * 290 <1 N.D <1 <1 76.3	Dibenzoanthracene / Indenopyrene /	2	276	-1	07	-1	-1	401.9
C2 276 * 304 <1	Benzoperylene	3	2/0	< 1	07	< 1	< 1	431.0
Sum 276 * 0 87 0.0 0.0 600.0 Sum of all fractions * 0 93 0.0 1.0 6948.0 Sum of NPD fraction * 0 95 0.0 1.0 2633.2	C1 276 *			<1		<1	<1	
Sum of all fractions * 0 93 0.0 1.0 6948.0 Sum of NPD fraction * 0 95 0.0 1.0 2633.2			304	<1			<1	
Sum of NPD fraction * 0 95 0.0 1.0 2633.2	Sum 276 *			0		0.0	0.0	600.0
	Sum of all fractions *			0	93	0.0	1.0	6948.0
	Sum of NPD fraction *			0	95	0.0	1.0	2633.2
	NPD / 4-6 ring PAH ratio *			#DIV/0!	0.26	#DIV/0!	#DIV/0!	

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1779352	CL1779353	CL1779349	CL1779350	CL1779351
	Station :	QC Blank	Reference Material (% Recovery)	BH05 0.50	BH05 3.50	CRM
PAH	Mass					
Naphthalene	128	<1	97.0	<1	<1	513.3
Acenaphthylene	152	<1	96.1	<1	<1	52.1
Acenaphthene	154	<1	96.4	<1	<1	34.5
Fluorene	166	<1	98.8	<1	<1	45.8
Phenanthrene	178	<1	100.5	<1	<1	314.0
Dibenzothiophene *	184	<1	92.1	<1	<1	38.5
Anthracene	178	<1	94.8	<1	<1	130.0
Fluoranthene	202	<1	94.6	<1	<1	503.9
Pyrene	202	<1	93.9	<1	<1	399.3
Benzo[a]anthracene	228	<1	91.5	<1	<1	220.1
Chrysene	228	<1	95.3	<1	<1	338.3
Benzo[b]fluoranthene	252	<1	95.4	<1	<1	364.5
Benzo[k]fluoranthene	252	<1	92.4	<1	<1	175.2
Benzo[e]pyrene	252	<1	92.1	<1	<1	267.0
Benzo[a]pyrene	252	<1	88.4	<1	<1	190.3
Indeno[123,cd]pyrene	276	<1	86.8	<1	<1	244.7
Dibenzo[a,h]anthracene	278	<1	84.2	<1	<1	54.9
Benzo[ghi]perylene	276	<1	89.9	<1	<1	192.2

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI **Customer and Site Details:** Matrix:

Soil S17_9638 12-Oct-17 Job Number: Date Booked in: 170011 Date Extracted: 24-Oct-17 QC Batch Number: Directory: 261017PCB.TQ1 Date Analysed: 27-Oct-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

		Concentration, (μg/kg)								
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*		
CL1779349	BH05 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		
CL1779350	BH05 3.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		
CL1779351	CRM	3.1	4.4	4.5	2.8	3.9	4.9	2.7		
CL1779352	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		
CL1779353	Reference Material (% Recovery)	123	107	106	108	102	110	111		
·										
·										
·										

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_9638
QC Batch Number: 170011
Directory: 261017.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:12-Oct-17Date Extracted:24-Oct-17Date Analysed:27-Oct-17UKAS Accredited:No

Compounds marked * are not UKAS or MCerts accredited

Sample ID :	CL1779349	CL1779350	CL1779351	CL1779352	CL1779353
					Reference Material (%
Client ID:	BH05 0.50	BH05 3.50	CRM	QC Blank	Recovery)

Compound			Concentration (µg/kg)	
alpha-HCH	<0.10	<0.10	<0.10	<0.10	91
Hexachlorobenzene	<0.10	<0.10	6.52	<0.10	94
gamma-HCH	<0.10	<0.10	<0.10	<0.10	93
p,p'-DDE	<0.10	<0.10	2.94	<0.10	98
Dieldrin	<0.10	<0.10	0.40	<0.10	103
p,p'-DDD	<0.10	<0.10	2.68	<0.10	96
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17 9638

Directory:

D:\TES\DATA\2017\1025HSA GC9\102517 2017-10-25 12-09-58\034F3401.D

Headspace GCFID Method:

Matrix: Soil 12-Oct-17 Date Booked in: 17-Oct-24 Date extracted: Date Analysed: 25-Oct-17, 22

		C	oncentratio	on, (mg/kg) - a	s wet weig	ht			Aliphatics		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
CL1779349	BH05 0.50	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1779350	BH05 3.50	<0.010	<0.010	<0.010	0.012	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1779352	QC Blank	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1779353	Reference Material (% Recovery)	103	101	100	101	98	105	108	108	104	106
	1	00 10		1	100 11 1				00 100		

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9. Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17_9638 Separation: Silica gel 171154 Hexane, DCM QC Batch Number: Eluents:

Directory: Method:	D:\TES\DATA\2017\1027 Ultra Sonic		'-10-27 14-14-24		171154ARO.D				28-Oct-17, 09:4				
					Conce	entration, (mg	/kg) - as wet	weight					
		>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
CL1779349	BH05 0.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1779350	BH05 3.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1779352	QC Blank	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1779353	Reference Material (% Recovery)	92	86	98	90	96	93	96	96	98	101	95	95
													<u> </u>
													
		_										_	
													<u> </u>
	i	1	I	I	1	1	I	1	I	1	1	i	1

Matrix:

Date Booked ir

Date Extracted

Soil

12-Oct-17

26-Oct-17

Report Number: EFS/179638

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	CL1779349 CL1779350 CL1779351	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Dibenzothiothene) . These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1779351	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine	Outfall GI
Report Number :	S17_9638	
,		Note: major constituent in upper case
Lab ID Number	Client ID	Description
	BH05 0.50	
CL/1779349 CL/1779350	BH05 3.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1779351 CL/1779352	CRM QC Blank	QUALITY CONTROL SAMPLE
CL/1779352	QC Blank	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1779353	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-66305-1

Issue No.: 1

Date of Issue 01/11/2017

Customer Details: SOCOTEC UK - Environmental Chemistry, P O Box 100, Bretby Business Park,

Burton-on-Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: S179638

Quotation Reference: 170504/06

Description: 2 sediment samples

Date Received: 24/10/2017

Date Started: 25/10/2017

Date Completed: 31/10/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: None

Approved By:

Matthew Hickson, Laboratory Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

This certificate shall not be reproduced except in full without the prior written approval of the laboratory.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

1663

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

Results Summary

Report No.: 17-66305-1

Customer Reference: S179638 Customer Order No: 42062 BEC

				Customer	Sample No	S1779349	S1779350
				Custome	r Sample ID	BH05 0.50	BH05 3.50
				RPS	Sample No	343733	343734
				Sa	mple Type	SEDIMENT	SEDIMENT
				Sa	mpling Date	26/09/2017	26/09/2017
Determinand	CAS No	Codes	SOP	Units	RL		
butyltin (DBT)	1002-53-5	U	395	ug/kg as cation	5	< 5.00	< 5.00
butyltin (TBT)	56573-85-4	U	395	ug/kg as cation	2	< 2.00	< 2.00

Report No.: 17-66305-1Customer Reference: S179638
Customer Order No: 42062 BEC

Comments

Job	Description	Job Comments
17-66305		Blank <rl &="" -="" 91%="" 91%<="" aqc="" dbt="" tbt="" td=""></rl>
		CRM DBT - 79% TBT - 81%

Deviating Samples

Report No.: 17-66305-1Customer Reference: S179638
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63).

RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below.

Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed.

Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating Sample	Reason for Sample Deviation
343733	S1779349		26/09/2017	60ml amber glass jar	No	
343734	S1779350		26/09/2017	60ml amber glass jar	No	

Report Information

Key to Report Codes

U UKAS Accredited
M MCERTS Accredited
N Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units)

Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1 Clay - Brown
Type 2 Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

Socotec Environmental Chemistry - Requested Analysis

Customer Site

Causeway Geotech Ltd

Arklow Sewerage Scheme Marine Outfall GI

Report No S179800

Consignment No S_NonCon Date Logged 17-Oct-2017

Report Due 03-Nov-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS	·								ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	^DibutyItin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
CL/1780171	BH06 0.50	29/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1780172	BH06 1.50	29/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1780173	BH06 2.50	29/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1780174	CRM	29/09/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1780175	QC Blank		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1780176	Reference Material (% Recovery	/)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1780171	BH06 0.50	8.5	0.07	9.7	8.6	5.7
S1780172	BH06 1.50	4.7	0.04	6.5	4	2.8
S1780173	BH06 2.50	4.5	<0.04	6.2	4	2.7
S1780174	CRM	17.98	1.576	61.02	57.25	78.09
S1780175	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
	Reference Material					
S1780176	(% Recovery)	98	100	103	96	103

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ID Number	Description	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)
	BH06 0.50	227.1	<0.015	8.3	22.5	9740
S1780172	BH06 1.50	127.8	<0.015	5	12.2	6380
S1780173	BH06 2.50	118.9	<0.015	4.7	12.2	6150
S1780174	CRM	1150	0.753	32.89	323	27800
S1780175	QC Blank	<0.5	<0.015	<0.5	<2	<36
S1780176	Reference Material (% Recovery)	100	96	100	100	102

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12		
	Units	%	% M/M	%	ug/kg	ug/kg
		Tot.Moisture @	Total Organic			
		_	Carbon	Carbonate %	^Dibutyltin	^Tributyltin
ID Number	Description	105C	(Sediment)			
S1780171	BH06 0.50	15.9	0.08	5.28	<5	<2
S1780172	BH06 1.50	15.5	0.04	4.56	<5	<2
S1780173	BH06 2.50	16.5	0.04	4.32	<5	<2
S1780174	CRM		3.249		70	101
S1780175	QC Blank		<0.02		<5	<2
	Reference Material					
S1780176	(% Recovery)		103	97.6	93	109

Sample ID	Client ID	Moisture (%)
CL/1780171	BH06 0.50	12.7
CL/1780172	BH06 1.50	27.6
CL/1780173	BH06 2.50	18.7

		Sample ID :	CL1780175	CL1780176	CL1780171	CL1780172	CL1780173	CL1780174
		-		Reference				
		Station :	QC Blank	Material (%	BH06 0.50	BH06 1.50	BH06 2.50	CRM
544.5				Recovery)				
PAH Fraction	# PAH	Mass		27.0				
Naphthalene	1	128	<1	97.0	<1	<1	<1	513.3
C1 Naphthalenes *	2	142	<1	96.0	1.8	<1	<1	318.7
C2 Naphthalenes *		156	<1	N.D	2.3	<1	<1	206.1
C3 Naphthalenes *		170	<1	N.D	1.5	<1	<1	164.9
C4 Naphthalenes *		184	<1	N.D	<1	<1	<1	102.9
Sum Naphthalenes *			0	96	6	0	0	1306
Phenanthrene / Anthracene	2	178	<1	97.7	1.4	<1	<1	444.0
C1 178 *		192	<1	N.D	2.2	<1	<1	268.1
C2 178 *		206	<1	N.D	2.1	<1	<1	195.4
C3 178 *		220	<1	N.D	1.3	<1	<1	144.4
Sum 178 *			0	98	7.1	0.0	0.0	1051.9
Dibenzothiophene *		184	<1	92	<1	<1	<1	38.5
C1 Dibenzothiophenes *		198	<1	N.D	<1	<1	<1	62.1
C2 Dibenzothiophenes *		212	<1	N.D	<1	<1	<1	107.0
C3 Dibenzothiophenes *		226	<1	N.D	<1	<1	<1	67.9
Sum Dibenzothiophenes *			0	92	0.0	0.0	0.0	275.4
Fluoranthene / pyrene	2	202	<1	94	2.8	<1	<1	903.2
C1 202 *		216	<1	N.D	1.6	<1	<1	240.9
C2 202 *		230	<1	N.D	1.5	<1	<1	172.5
C3 202 *		244	<1	N.D	1.1	<1	<1	106.4
Sum 202 *			0	94	6.9	0.0	0.0	1422.9
Benzoanthracene / Chrysene	2	228	<1	93	1.5	<1	<1	558.4
C1 228 *		242	<1	N.D	1.6	<1	<1	229.0
C2 228 *		256	<1	N.D	1.3	<1	<1	125.1
Sum 228 *			0	93	4.4	0.0	0.0	912.4
Benzofluoranthenes / benzopyrenes	4	252	<1	92	3.0	<1	<1	997.0
C1 252 *		266	<1	N.D	1.8	<1	<1	202.5
C2 252 *		280	<1	N.D	1.6	<1	<1	180.1
Sum 252 *			0	92	6.4	0.0	0.0	1379.6
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	87	2.7	<1	<1	491.8
C1 276 *		290	<1	N.D	<1	<1	<1	76.3
C2 276 *		304	<1	N.D	<1	<1	<1	31.9
Sum 276 *		557	0	87	2.7	0.0	0.0	600.0
Sum of all fractions *	1		0	93	33.2	0.0	0.0	6948.0
Sum of NPD fraction *			0	95	12.8	0.0	0.0	2633.2
	1		#DIV/0!	0.26		#DIV/0!	#DIV/0!	
NPD / 4-6 ring PAH ratio *			#UIV/U!	0.26	0.63	#UIV/U!	#DIV/U!	0.61

N.D = Not Determined as these compounds are not in the reference material spike.
 As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1780175	CL1780176	CL1780171	CL1780172	CL1780173	CL1780174
	Station :	QC Blank	Reference Material (% Recovery)	BH06 0.50	BH06 1.50	BH06 2.50	CRM
PAH	Mass						
Naphthalene	128	<1	97.0	<1	<1	<1	513.3
Acenaphthylene	152	<1	96.1	<1	<1	<1	52.1
Acenaphthene	154	<1	96.4	<1	<1	<1	34.5
Fluorene	166	<1	98.8	<1	<1	<1	45.8
Phenanthrene	178	<1	100.5	1.4	<1	<1	314.0
Dibenzothiophene *	184	<1	92.1	<1	<1	<1	38.5
Anthracene	178	<1	94.8	<1	<1	<1	130.0
Fluoranthene	202	<1	94.6	1.5	<1	<1	503.9
Pyrene	202	<1	93.9	1.2	<1	<1	399.3
Benzo[a]anthracene	228	<1	91.5	<1	<1	<1	220.1
Chrysene	228	<1	95.3	1.5	<1	<1	338.3
Benzo[b]fluoranthene	252	<1	95.4	1.7	<1	<1	364.5
Benzo[k]fluoranthene	252	<1	92.4	<1	<1	<1	175.2
Benzo[e]pyrene	252	<1	92.1	1.3	<1	<1	267.0
Benzo[a]pyrene	252	<1	88.4	<1	<1	<1	190.3
Indeno[123,cd]pyrene	276	<1	86.8	1.4	<1	<1	244.7
Dibenzo[a,h]anthracene	278	<1	84.2	<1	<1	<1	54.9
Benzo[ghi]perylene	276	<1	89.9	1.4	<1	<1	192.2

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI **Customer and Site Details:** Matrix:

Soil S17_9800 17-Oct-17 Job Number: Date Booked in: 170011 Date Extracted: 24-Oct-17 QC Batch Number: Directory: 261017PCB.TQ1 Date Analysed: 27-Oct-17

Method: Ultrasonic Compounds marked * are not UKAS or MCerts accredited

				Con	centration,	(μg/kg)			
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*	
CL1780171	BH06 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1780172	BH06 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1780173	BH06 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1780174	CRM	3.1	4.4	4.5	2.8	3.9	4.9	2.7	
CL1780175	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
CL1780176	Reference Material (% Recovery)	123	107	106	108	102	110	111	

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_9800 QC Batch Number: 170011 Directory: 261017.TQ1 Method: Ultrasonic Matrix:SedimentDate Booked in:17-Oct-17Date Extracted:24-Oct-17

Date Analysed: 27-Oct-17
UKAS Accredited: No

Compounds marked * are not UKAS or MCerts accredited

Sample ID:	CL1780171	CL1780172	CL1780173	CL1780174	CL1780175	CL1780176
						Reference Material
Client ID:	BH06 0.50	BH06 1.50	BH06 2.50	CRM	QC Blank	(% Recovery)

Compound			Concentrat	tion (μg/kg)		
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	91
Hexachlorobenzene	<0.10	<0.10	<0.10	6.52	<0.10	94
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	93
p,p'-DDE	<0.10	<0.10	<0.10	2.94	<0.10	98
Dieldrin	<0.10	<0.10	<0.10	0.40	<0.10	103
p,p'-DDD	<0.10	<0.10	<0.10	2.68	<0.10	96
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10	

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17 9800

Directory:

D:\TES\DATA\2017\1024HSA GC9\102417 2017-10-24 12-17-32\146B4601.D

Headspace GCFID Method:

Soil Matrix: 17-Oct-17 Date Booked in: 17-Oct-24 Date extracted: Date Analysed: 25-Oct-17, 01

		C	oncentrati	on, (mg/kg) - a	as wet weig	ht			Aliphatics		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
CL1780171	BH06 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1780172	BH06 1.50	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1780173	BH06 2.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1780175	QC Blank	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1780176	Reference Material (% Recovery)	103	101	100	101	98	105	108	108	104	106

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9. Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17_9800 Separation: Silica gel 171154 QC Batch Number: Eluents: Hexane, DCM D\TE\$\D&T&\2017\102717\102717 2017-10-27 14-14-24\F-089-82-RM\$171154ABO D

Directory: Method:	D:\TES\DATA\2017\1027 Ultra Sonic	17\102717 2017	'-10-27 14-14-24	\F-089-82-RMS	171154ARO.D			Date Analysed	28-Oct-17, 09:4	3:32			
	Olific Corno				Conce	entration, (mg	/kg) - as wet	weight					
* This sample data is not	UKAS accredited.	>C8	- C10	>C10	- C12	>C12 - C16		>C16 - C21		>C21 - C35		>C8	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
CL1780171	BH06 0.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1780172	BH06 1.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1780173	BH06 2.50	<4	<4	<4	<4	<4	<4	4.77	<4	<8.76	<8.76	<20	<20
CL1780175	QC Blank	<4		<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1780176	Reference Material (% Recovery)	92	86	98	90	96	93	96	96	98	101	95	95

Matrix:

Date Booked ir

Soil

Date Extracted 26-Oct-17

17-Oct-17

Report Number: EFS/179800

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	CL1780172	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Dibenzothiothene) . These circumstances should be taken into consideration when utilising the data.
PAHSED		Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine O	itfall GI
		JULIAN CHI
Report Number :	S17_9800	Note and the second sec
		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1780171	BH06 0.50	MARINE SEDIMENTS MARINE SEDIMENTS MARINE SEDIMENTS
CL/1780172	BH06 1.50 BH06 2.50	MARINE SEDIMENTS
CL/1780173	BH06 2.50 CRM	MARINE SEDIMENTS
CL/1780174	OC Plank	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1780175 CL/1780176	QC Blank Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
02,1700170	Treference material (70 Trecevery)	QOVERTY CONTINUED ON WITH ELE

Appendix A Page 1 of 1 12/12/2017

Socotec Environmental Chemistry - Requested Analysis

Customer Causeway Geotech Ltd

Site Arklow Sewerage Scheme Marine Outfall GI

Report No S179865

Consignment No S_NonCon Date Logged 19-Oct-2017

Report Due 07-Nov-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS	·								ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	^Dibutyltin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No	Yes
CL/1780497	BH07 0.50	11/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1780498	BH07 1.50	11/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1780499	BH07 2.50	11/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1780500	CRM	11/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1780501	QC Blank		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1780502	Reference Material (% Recovery	/)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)		Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1780497	BH07 0.50	5.2	0.07	20.7	10	5.2
S1780498	BH07 1.50	15.9	0.17	12	20.9	24.4
S1780499	BH07 2.50	9	0.11	20	12	11.3
S1780500	CRM	17.98	1.576	61.02	57.25	78.09
S1780501	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
	Reference Material					
S1780502	(% Recovery)	98	100	103	96	103

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL 36 mg/kg	
	Detection Limit	0.5	0.015	0.5	2		
	Units	mg/kg	mg/kg	mg/kg	mg/kg		
ID Nivershave	Description	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	
S1780497	Description BH07 0.50	142.8	<0.015	14.9	18.3	8970	
	BH07 1.50	374.5	<0.015	11.3	73	13900	
S1780499	BH07 2.50	452.3	<0.015	21	49.9	20200	
S1780500	CRM	1150	0.753	32.89	323	27800	
S1780501	QC Blank	<0.5	<0.015	<0.5	<2	<36	
S1780502	Reference Material (% Recovery)	100	96	100	100	102	

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005	
	Detection Limit	0.1	0.02	0.12			
	Units	%	% M/M	%	ug/kg	ug/kg	
		Tot.Moisture @	Total Organic			^Tributyltin	
			Carbon	Carbonate %	^Dibutyltin		
ID Number	Description	105C	(Sediment)				
S1780497	BH07 0.50	1.3	0.07	8.16	<5.00	<2.00	
S1780498	BH07 1.50	10.9	0.13	9.6	<5.00	<2.00	
S1780499	BH07 2.50	21	0.33	6.96	<5.00	<2.00	
S1780500	CRM		3.179		70	101	
S1780501	QC Blank		<0.02		<5	<2	
	Reference Material						
S1780502	(% Recovery)		101	102	93	109	

Sample ID	Client ID	Moisture (%)
CL/1780497	BH07 0.50	12.5
CL/1780498	BH07 1.50	13.8
CL/1780499	BH07 2.50	27.2

UKAS accredited?: Yes

		Sample ID :	CL1780501	CL1780502	CL1780497	CL1780498	CL1780499	CL1780500
		Station :	QC Blank	Reference Material (% Recovery)	BH07 0.50	BH07 1.50	BH07 2.50	CRM
PAH Fraction	# PAH	Mass						
Naphthalene	1	128	<1	96.6	1.2	<1	<1	477.5
C1 Naphthalenes *	2	142	<1	95.7	1.6	1.4	4.5	268.2
C2 Naphthalenes *		156	<1	N.D	1.5	2.1	7.2	187.5
C3 Naphthalenes *		170	<1	N.D	1.0	1.4	6.4	152.0
C4 Naphthalenes *		184	<1	N.D	<1	<1	4.6	94.5
Sum Naphthalenes *			0	96	5	5	23	1180
Phenanthrene / Anthracene	2	178	<1	94.0	4.7	2.5	6.3	403.4
C1 178 *		192	<1	N.D	2.2	1.9	7.4	227.8
C2 178 *		206	<1	N.D	1.5	1.5	5.7	186.7
C3 178 *		220	<1	N.D	<1	<1	3.9	146.9
Sum 178 *			0.0	94	8.4	6.0	23.2	964.8
Dibenzothiophene *		184	<1	91	<1	<1	1.1	36.5
C1 Dibenzothiophenes *		198	<1	N.D	<1	<1	1.6	61.8
C2 Dibenzothiophenes *		212	<1	N.D	<1	<1	1.7	93.9
C3 Dibenzothiophenes *		226	<1	N.D	<1	<1	1.0	85.6
Sum Dibenzothiophenes *			0.0	91	0.0	0.0	5.4	277.8
Fluoranthene / pyrene	2	202	<1	92	8.7	4.7	5.5	879.4
C1 202 *		216	<1	N.D	2.7	1.7	5.7	263.4
C2 202 *		230	<1	N.D	1.4	1.1	4.7	228.8
C3 202 *		244	<1	N.D	<1	<1	3.6	109.3
Sum 202 *			0.0	92	12.8	7.5	19.5	1480.9
Benzoanthracene / Chrysene	2	228	<1	93	3.9	2.5	4.7	572.4
C1 228 *		242	<1	N.D	1.9	1.2	4.3	224.7
C2 228 *		256	<1	N.D	1.1	1.1	3.5	128.6
Sum 228 *			0.0	93	6.8	4.9	12.5	925.6
Benzofluoranthenes / benzopyrenes	4	252	<1	91	6.4	3.5	6.8	1048.7
C1 252 *		266	<1	N.D	2.6	2.1	4.4	219.9
C2 252 *		280	<1	N.D	1.1	<1	4.2	210.3
Sum 252 *			0.0	91	10.1	5.6	15.4	1478.8
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	101	3.0	2.1	3.5	532.2
C1 276 *		290	<1	N.D	<1	<1	1.0	108.8
C2 276 *		304	<1	N.D N.D	<1 <1	<1	1.5	30.8
Sum 276 *		30 4	0.0	101	3.0	2.1	6.1	671.9
Sum of all fractions *	 		0.0	94	46.5	31.0	104.8	6979.4
Sum of NPD fraction *	 		0.0	94	13.8	10.9	51.3	2422.2
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.25	0.42	0.54	0.96	0.53

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

* Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

EPA 16 PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1780501	CL1780502	CL1780497	CL1780498	CL1780499	CL1780500
	Station :	QC Blank	Reference Material (% Recovery)	BH07 0.50	BH07 1.50	BH07 2.50	CRM
PAH	Mass						
Naphthalene	128	<1	96.6	1.2	<1	<1	477.5
Acenaphthylene	152	<1	98.5	<1	<1	<1	46.5
Acenaphthene	154	<1	99.3	<1	<1	<1	33.4
Fluorene	166	<1	101.0	<1	<1	1.2	40.2
Phenanthrene	178	<1	95.5	3.6	2.5	5.3	292.6
Dibenzothiophene *	184	<1	90.8	<1	<1	1.1	36.5
Anthracene	178	<1	92.5	1.2	<1	1.0	110.8
Fluoranthene	202	<1	93.2	4.1	2.3	2.5	493.9
Pyrene	202	<1	90.7	4.6	2.4	3.0	385.5
Benzo[a]anthracene	228	<1	91.9	1.7	1.1	1.4	221.4
Chrysene	228	<1	94.7	2.1	1.5	3.3	351.0
Benzo[b]fluoranthene	252	<1	86.9	1.9	1.3	2.7	363.1
Benzo[k]fluoranthene	252	<1	89.0	1.3	<1	<1	201.8
Benzo[e]pyrene	252	<1	93.0	1.7	1.1	2.9	280.4
Benzo[a]pyrene	252	<1	93.8	1.5	1.0	1.2	203.3
Indeno[123,cd]pyrene	276	<1	100.0	1.5	1.0	1.0	262.3
Dibenzo[a,h]anthracene	278	<1	103.0	<1	<1	<1	57.4
Benzo[ghi]perylene	276	<1	101.2	1.5	1.1	2.5	212.6

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Soil

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix:

 Job Number:
 \$17_9865
 Date Booked in:
 19-Oct-17

 QC Batch Number:
 170011
 Date Extracted:
 24-Oct-17

 Directory:
 261017PCB.TQ1
 Date Analysed:
 27-Oct-17

 Method:
 Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

				Con									
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*					
CL1780497	BH07 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08					
CL1780498	BH07 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08					
CL1780499	BH07 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08					
CL1780500	CRM	3.1	4.4	4.5	2.8	3.9	4.9	2.7					
CL1780501	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08					
CL1780502	Reference Material (% Recovery)	123	107	106	108	102	110	111					
	-												

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_9865 QC Batch Number: 170011 Directory: 261017.TQ1 Method: Ultrasonic Matrix:SedimentDate Booked in:19-Oct-17Date Extracted:24-Oct-17Date Analysed:27-Oct-17

UKAS Accredited: No

Compounds marked * are not UKAS or MCerts accredited

Sample ID :	CL1780497	CL1780498	CL1780499	CL1780500	CL1780501	CL1780502
						Reference Material
Client ID:	BH07 0.50	BH07 1.50	BH07 2.50	CRM	QC Blank	(% Recovery)

Compound			Concentrat	tion (μg/kg)		
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	91
Hexachlorobenzene	<0.10	<0.10	<0.10	6.52	<0.10	94
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	93
p,p'-DDE	<0.10	<0.10	<0.10	2.94	<0.10	98
Dieldrin	<0.10	<0.10	<0.10	0.40	<0.10	103
p,p'-DDD	0.19	<0.10	<0.10	2.68	<0.10	96
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10	

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number:

Directory:

S17 9865

D:\TES\DATA\2017\1025HSA GC9\102517 2017-10-25 12-09-58\066F6601.D

Headspace GCFID Method:

Matrix: Soil 19-Oct-17 Date Booked in: 17-Oct-25 Date extracted: Date Analysed: 26-Oct-17, 07

		C	oncentrati	on, (mg/kg) - a	s wet weig	ht	Aliphatics								
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO				
CL1780497	BH07 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2				
CL1780498	BH07 1.50	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2				
CL1780499	BH07 2.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2				
CL1780501	QC Blank	<0.010	<0.010	< 0.010	< 0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2				
CL1780502	Reference Material (% Recovery)	94	90	102	102	97	90	84	81	93	88				

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9. Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI

Job Number:S17_9865Separation:Silica gelQC Batch Number:171154Eluents:Hexane, DCM

Directory: D:\TES\DATA\2017\102717\102717 2017-10-27 14-14-24\F-089-82-RMS171154ARO.D

Method: Ultra Sonic

Matrix: Soil

Date Booked ir 19-Oct-17 Date Extracted 26-Oct-17 Date Analysed 28-Oct-17, 09:43:32

		>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8	- C40		
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics		
CL1780497	BH07 0.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20		
CL1780498	BH07 1.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20		
CL1780499	BH07 2.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20		
CL1780501		<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20		
CL1780502	Reference Material (% Recovery)	92	86	98	90	96	93	96	96	98	101	95	95		
	CL1780497 CL1780498 CL1780499 CL1780501	CL1780497 BH07 0.50 CL1780498 BH07 1.50 CL1780499 BH07 2.50 CL1780501 QC Blank Reference Material (%	Sample ID Client ID Aliphatics CL1780497 BH07 0.50 <4	CL1780497 BH07 0.50 <4	Sample ID Client ID Aliphatics Aromatics Aliphatics CL1780497 BH07 0.50 <4	>C8 - C10 >C10 - C12 Sample ID Client ID Aliphatics Aromatics Aliphatics Aromatics CL1780497 BH07 0.50 <4	>C8 - C10 >C10 - C12 >C12 Sample ID Client ID Aliphatics Aromatics Aliphatics Aromatics Aliphatics CL1780497 BH07 0.50 <4	Sample ID Client ID Aliphatics Aromatics Aliphatics Aromatics Aliphatics Aromatics Aliphatics Aromatics CL1780497 BH07 0.50 <4	Sample ID Client ID Aliphatics Aromatics Aliphatics Aromatics Aliphatics Aromatics Aliphatics CL1780497 BH07 0.50 <4	Sample ID Client ID Aliphatics Aromatics Aromatics Aliphatics Aromatics Aromatics Aliphatics Aromatics Aromatics	Sample ID Client ID Aliphatics Aromatics Aliphatics Aromatics	Sample ID Client ID Aliphatics Aromatics Aliphatics Aromatics	Sample ID Client ID Aliphatics Aromatics Aliphatics Aromatics		

Report Number: EFS/179865

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	CL1780498 CL1780499	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Dibenzothiothene) . These circumstances should be taken into consideration when utilising the data.
PAHSED		Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.
_		

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine O	rutfall GI
Report Number :	S17_9865	
		Note: major constituent in upper case
Lab ID Number	Client ID	Description
		MADINE CEDIMENTS
CL/1780497 CL/1780498	BH07 0.50 BH07 1.50	MARINE SEDIMENTS MARINE SEDIMENTS MARINE SEDIMENTS
CI /1780499	BH07 1.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1780500	CRM	QUALITY CONTROL SAMPLE
CL/1780501	QC Blank	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1780500 CL/1780501 CL/1780502	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-66337-1

Issue No.: 1

Date of Issue 03/11/2017

Customer Details: SOCOTEC UK - Environmental Chemistry, P O Box 100, Bretby Business Park,

Burton-on-Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: S179865

Quotation Reference: 170504/06

Description: 3 sediment samples

Date Received: 25/10/2017

Date Started: 01/11/2017

Date Completed: 03/11/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: None

Approved By: Marco Lattughi, Operational Director

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

This certificate shall not be reproduced except in full without the prior written approval of the laboratory.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

1663

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

Results Summary

Report No.: 17-66337-1

Customer Reference: S179865 Customer Order No: 42062 BEC

				Customer S	Sample No	S1780497	S1780498	S1780499
				Custome	r Sample ID	BH07 0.50	BH07 1.50	BH07 2.50
			Sample No	343837	343838	343839		
				Sa	mple Type	SEDIMENT	SEDIMENT	SEDIMENT
				Sa	mpling Date	11/10/2017	11/10/2017	11/10/2017
Determinand	CAS No	Codes	SOP	Units	RL			
outyltin (DBT)	1002-53-5	U	395	ug/kg as cation	5	< 5.00	< 5.00	< 5.00
butyltin (TBT)	56573-85-4	U	395	ug/kg as cation	2	< 2.00	< 2.00	< 2.00

Report No.: 17-66337-1Customer Reference: S179865
Customer Order No: 42062 BEC

Comments

Job	Description	Job Comments
17-66337	3 sediment samples	Method Blank TBT = < 2ug/Kg DBT= < 5ug/Kg
		CRM recovery TBT = 101% DBT = 70%
		AQC recovery TBT = 109% DBT = 93%

Deviating Samples

Report No.: 17-66337-1Customer Reference: S179865
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63).

RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below. Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed. Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating Sample	Reason for Sample Deviation
343837	S1780497		11/10/2017	60ml amber glass jar	No	
343838	S1780498		11/10/2017	60ml amber glass jar	No	
343839	S1780499		11/10/2017	60ml amber glass jar	No	

Report Information

Key to Report Codes

U UKAS Accredited
M MCERTS Accredited
N Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units)

Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1 Clay - Brown
Type 2 Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

Socotec Environmental Chemistry - Requested Analysis

Customer C

Report No

Causeway Geotech Ltd Arklow Sewerage Scheme Marine Outfall GI

S179862

Consignment No S_NonCon
Date Logged 19-Oct-2017

Report Due 07-Nov-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS	·								ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	^Dibutyltin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No	Yes
CL/1780485	BH08 0.50	10/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1780486	BH08 1.50	10/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1780487	BH08 2.50	10/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1780488	CRM	10/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1780489	QC Blank		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1780490	Reference Material (% Recovery	/)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)	1	Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1780485	BH08 0.50	10.5	0.09	9.1	14	16.7
S1780486	BH08 1.50	6.3	0.06	9	9.5	6.1
S1780487	BH08 2.50	3.8	<0.04	6.4	7.5	3.4
S1780488	CRM	17.98	1.576	61.02	57.25	78.09
S1780489	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
C1700400	Reference Material	0.0	100	100	06	102
S1780490	(% Recovery)	98	100	103	96	103

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ID Number	Description	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)
	BH08 0.50	247.3	<0.015	8.2	33.3	20400
S1780486	BH08 1.50	171.5	<0.015	7.3	22.4	8950
S1780487	BH08 2.50	126.9	<0.015	4.9	14.2	6100
S1780488	CRM	1150	0.753	32.89	323	27800
S1780489	QC Blank	<0.5	<0.015	<0.5	<2	<36
S1780490	Reference Material (% Recovery)	100	96	100	100	102

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12		
	Units	%	% M/M	%	ug/kg	ug/kg
		Tat Maiatura @	Total Organic			
		Tot.Moisture @	Carbon	Carbonate %	^Dibutyltin	^Tributyltin
ID Number	Description	105C	(Sediment)			
S1780485	BH08 0.50	9	0.07	5.28	<5	<2
S1780486	BH08 1.50	14	0.08	6.48	<5	<2
S1780487	BH08 2.50	16.8	0.06	4.32	<5	<2
S1780488	CRM		3.179		70	101
S1780489	QC Blank		<0.02		<5	<2
	Reference Material					
S1780490	(% Recovery)		101	102	93	109

Sample ID	Client ID	Moisture (%)
CL/1780485	BH08 0.50	13.7
CL/1780486	BH08 1.50	26.7
CL/1780487	BH08 2.50	17.1

UKAS accredited?: Yes

		Sample ID :	CL1780489	CL1780490	CL1780485	CL1780486	CL1780487	CL1780488
		Station :	QC Blank	Reference Material (% Recovery)	BH08 0.50	BH08 1.50	BH08 2.50	CRM
PAH Fraction	# PAH	Mass						
Naphthalene	1	128	<1	96.6	<1	<1	<1	477.5
C1 Naphthalenes *	2	142	<1	95.7	1.2	<1	<1	268.2
C2 Naphthalenes *		156	<1	N.D	1.5	1.2	1.1	187.5
C3 Naphthalenes *		170	<1	N.D	<1	<1	<1	152.0
C4 Naphthalenes *		184	<1	N.D	<1	<1	<1	94.5
Sum Naphthalenes *			0	96	3	1	1	1180
Phenanthrene / Anthracene	2	178	<1	94.0	1.1	<1	<1	403.4
C1 178 *		192	<1	N.D	1.4	1.0	<1	227.8
C2 178 *		206	<1	N.D	1.2	<1	<1	186.7
C3 178 *		220	<1	N.D	<1	<1	<1	146.9
Sum 178 *			0.0	94	3.7	1.0	0.0	964.8
Dibenzothiophene *		184	<1	91	<1	<1	<1	36.5
C1 Dibenzothiophenes *		198	<1	N.D	<1	<1	<1	61.8
C2 Dibenzothiophenes *		212	<1	N.D	<1	<1	<1	93.9
C3 Dibenzothiophenes *		226	<1	N.D	<1	<1	<1	85.6
Sum Dibenzothiophenes *			0.0	91	0.0	0.0	0.0	277.8
Fluoranthene / pyrene	2	202	<1	92	1.1	<1	<1	879.4
C1 202 *		216	<1	N.D	<1	<1	<1	263.4
C2 202 *		230	<1	N.D	<1	<1	<1	228.8
C3 202 *		244	<1	N.D	<1	<1	<1	109.3
Sum 202 *			0.0	92	1.1	0.0	0.0	1480.9
Benzoanthracene / Chrysene	2	228	<1	93	<1	<1	<1	572.4
C1 228 *		242	<1	N.D	<1	<1	<1	224.7
C2 228 *		256	<1	N.D	<1	<1	<1	128.6
Sum 228 *			0.0	93	0.0	0.0	0.0	925.6
Benzofluoranthenes / benzopyrenes	4	252	<1	91	<1	<1	<1	1048.7
C1 252 *		266	<1	N.D	1.5	<1	<1	219.9
C2 252 *		280	<1	N.D	<1	<1	<1	210.3
Sum 252 *			0.0	91	1.5	0.0	0.0	1478.8
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	101	<1	<1	<1	532.2
C1 276 *		290	<1	N.D	<1	<1	<1	108.8
C2 276 *		304	<1	N.D N.D	<1	<1	<1	30.8
Sum 276 *		JU4	0.0	101	0.0	0.0	0.0	671.9
Sum of all fractions *			0.0	94	8.9	2.2	1.1	6979.4
Sum of NPD fraction *	 		0.0	94	6.3	2.2	1.1	2422.2
	 		#DIV/0!	0.25	2.47	#DIV/0!	#DIV/0!	0.53
NPD / 4-6 ring PAH ratio *			#DIV/U!	0.∠5	2.41	#DIV/U!	#DIV/U!	U.ეკ

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

* Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1780489	CL1780490	CL1780485	CL1780486	CL1780487	CL1780488
	Station :	QC Blank	Reference Material (% Recovery)	BH08 0.50	BH08 1.50	BH08 2.50	CRM
PAH	Mass						
Naphthalene	128	<1	96.6	<1	<1	<1	477.5
Acenaphthylene	152	<1	98.5	<1	<1	<1	46.5
Acenaphthene	154	<1	99.3	<1	<1	<1	33.4
Fluorene	166	<1	101.0	<1	<1	<1	40.2
Phenanthrene	178	<1	95.5	1.1	<1	<1	292.6
Dibenzothiophene *	184	<1	90.8	<1	<1	<1	36.5
Anthracene	178	<1	92.5	<1	<1	<1	110.8
Fluoranthene	202	<1	93.2	<1	<1	<1	493.9
Pyrene	202	<1	90.7	1.1	<1	<1	385.5
Benzo[a]anthracene	228	<1	91.9	<1	<1	<1	221.4
Chrysene	228	<1	94.7	<1	<1	<1	351.0
Benzo[b]fluoranthene	252	<1	86.9	<1	<1	<1	363.1
Benzo[k]fluoranthene	252	<1	89.0	<1	<1	<1	201.8
Benzo[e]pyrene	252	<1	93.0	<1	<1	<1	280.4
Benzo[a]pyrene	252	<1	93.8	<1	<1	<1	203.3
Indeno[123,cd]pyrene	276	<1	100.0	<1	<1	<1	262.3
Dibenzo[a,h]anthracene	278	<1	103.0	<1	<1	<1	57.4
Benzo[ghi]perylene	276	<1	101.2	<1	<1	<1	212.6

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Soil

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix:

 Job Number:
 S17_9862
 Date Booked in:
 19-Oct-17

 QC Batch Number:
 170011
 Date Extracted:
 24-Oct-17

 Directory:
 261017PCB.TQ1
 Date Analysed:
 27-Oct-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

				Con	centration,	(μg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1780485	BH08 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1780486	BH08 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1780487	BH08 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1780488	CRM	3.1	4.4	4.5	2.8	3.9	4.9	2.7
CL1780489	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1780490	Reference Material (% Recovery)	123	107	106	108	102	110	111

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_9862
QC Batch Number: 170011
Directory: 261017.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:19-Oct-17Date Extracted:24-Oct-17Date Analysed:27-Oct-17

UKAS Accredited: No

Compounds marked * are not UKAS or MCerts accredited

Sample ID :	CL1780485	CL1780486	CL1780487	CL1780488	CL1780489	CL1780490
						Reference Material
Client ID :	BH08 0.50	BH08 1.50	BH08 2.50	CRM	QC Blank	(% Recovery)

Compound		Concentration (μg/kg)											
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	91							
Hexachlorobenzene	<0.10	<0.10	<0.10	6.52	<0.10	94							
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	93							
p,p'-DDE	<0.10	<0.10	<0.10	2.94	<0.10	98							
Dieldrin	<0.10	<0.10	<0.10	0.40	<0.10	103							
p,p'-DDD	<0.10	<0.10	<0.10	2.68	<0.10	96							
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10								

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17 9862

Directory:

D:\TES\DATA\2017\1024HSA GC9\102417 2017-10-24 12-17-32\149B4901.D

Headspace GCFID Method:

Matrix: Soil 19-Oct-17 Date Booked in: 17-Oct-24 Date extracted: Date Analysed: 25-Oct-17, 02

		Concentration, (mg/kg) - as wet weight					Aliphatics				
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
CL1780485	BH08 0.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1780486	BH08 1.50	< 0.010	<0.010	<0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1780487	BH08 2.50	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1780489	QC Blank	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1780490	Reference Material (% Recovery)	103	101	100	101	98	105	108	108	104	106

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9. Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

 Customer and Site Details:
 Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI

Job Number:S17_9862Separation:Silica gelQC Batch Number:171154Eluents:Hexane, DCM

Directory: D:\TES\DATA\2017\102717\102717 2017-10-27 14-14-24\F-089-82-RMS171154ARO.D

Method: Ultra Sonic

Matrix: Soil

Date Booked ir 19-Oct-17 Date Extracted 26-Oct-17 Date Analysed 28-Oct-17, 09:43:32

			Concentration, (mg/kg) - as wet weight										
		>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8 ·	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
CL1780485	BH08 0.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1780486	BH08 1.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1780487	BH08 2.50	<4	<4	<4	<4	<4	<4	<4	5.85	<8.76	<8.76	<20	<20
CL1780489	QC Blank	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1780490	Reference Material (% Recovery)	92		98	90	96	93	96	96	98	101	95	95
									l				

Report Number: EFS/179862

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	CL1780486 CL1780487	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Dibenzothiothene) . These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1780488	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.
	_	

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine Out	fall GI
Report Number :	S17_9862	
neport Number .		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1780485	BH08 0.50	MADINE SEDIMENTS
CL/1780486	BH08 1 50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1780487	BH08 2.50 CRM	MARINE SEDIMENTS
CL/1780488	CRM	QUALITY CONTROL SAMPLE
CL/1780487 CL/1780488 CL/1780489 CL/1780490	QC Blank Reference Material (% Recovery)	MARINE SEDIMENTS MARINE SEDIMENTS QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1780490	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-66334-1

Issue No.: 1

Date of Issue 03/11/2017

Customer Details: SOCOTEC UK - Environmental Chemistry, P O Box 100, Bretby Business Park,

Burton-on-Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: S179862

Quotation Reference: 170504/06

Description: 3 sediment samples

Date Received: 25/10/2017

Date Started: 01/11/2017

Date Completed: 03/11/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: None

Approved By: Marco Lattughi, Operational Director

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

This certificate shall not be reproduced except in full without the prior written approval of the laboratory.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

1663

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

Results Summary

Report No.: 17-66334-1

Customer Reference: S179862 Customer Order No: 42062 BEC

				Customer S	Sample No	S1780485	S1780486	S1780487
				Custome	r Sample ID	BH08 0.50	BH08 1.50	BH08 2.50
				RPS	Sample No	343819	343820	343821
				Sa	mple Type	SEDIMENT	SEDIMENT	SEDIMENT
				Sai	mpling Date	10/10/2017	10/10/2017	10/10/2017
Determinand	CAS No	Codes	SOP	Units	RL			
butyltin (DBT)	1002-53-5	J	395	ug/kg as cation	5	< 5.00	< 5.00	< 5.00
ibutyltin (TBT)	56573-85-4	J	395	ug/kg as cation	2	< 2.00	< 2.00	< 2.00

Report No.: 17-66334-1Customer Reference: S179862
Customer Order No: 42062 BEC

Comments

Job	Description	Job Comments
17-66334	3 sediment samples	Method Blank
		TBT = < 2ug/Kg
		DBT= < 5ug/Kg
		CRM recovery
		TBT = 101%
		DBT = 70%
		AOC vees very
		AQC recovery
		TBT = 109%
		DBT = 93%

Deviating Samples

Report No.: 17-66334-1Customer Reference: S179862
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63). RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below. Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed. Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating Sample	Reason for Sample Deviation
343819	S1780485		10/10/2017	60ml amber glass jar	No	
343820	S1780486		10/10/2017	60ml amber glass jar	No	
343821	S1780487		10/10/2017	60ml amber glass jar	No	

Report Information

Key to Report Codes

U UKAS Accredited
M MCERTS Accredited
N Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units)

Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1 Clay - Brown
Type 2 Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

Socotec Environmental Chemistry - Requested Analysis

Customer Causeway Geotech Ltd

Site Arklow Sewerage Scheme Marine Outfall GI

Report No S180512

Consignment No S_NonCon Date Logged 09-Nov-2017

Report Due 29-Nov-2017

		MethodID	ANC	CustSer	GROHSA	ICPMSS		rt Due							ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	∾ Report C	GRO (AA) by HSA GC-FID	s Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	lron (Sediments)	PAH by MS Dti		PCB- 7 Congeners (Marine Sediments)	⁵ ^DibutyItin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	S Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
CL/1783099	BH09 0.50	27/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1783100	BH09 1.50	27/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1783101	BH09 2.50	27/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1783102	CRM	27/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1783103	QC Blank		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1783104	Reference Material (% Recovery	<i>'</i>)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R				R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1783099	BH09 0.50	7.2	0.07	8	17.5	12.8
S1783100	BH09 1.50	7.9	0.05	8	16.4	11.6
S1783101	BH09 2.50	16.2	0.08	13.9	22.2	15
S1783102	CRM	18.96	1.653	63.24	52.84	77.69
S1783103	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
	Reference Material					
S1783104	(% Recovery)	93	96	99	104	103

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.015	0.5	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ID Number	Description	Mercury (MS) Sediments	Manganese (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)
	BH09 0.50	0.05	177.3	6.5	37.5	10700
S1783100	BH09 1.50	0.03	162.8	6.2	34.4	10100
S1783101	BH09 2.50	0.03	278.5	12.9	49.7	18800
S1783102	CRM	0.696	1197	34.45	323.6	27900
S1783103	QC Blank	< 0.015	<0.5	<0.5	<2	<36
S1783104	Reference Material (% Recovery)	104	96	96	100	104

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12		
	Units	%	% M/M	%	ug/kg	ug/kg
		Tet Meisture	Total Organic			
		Tot.Moisture @	Carbon	Carbonate %	^Dibutyltin	^Tributyltin
ID Number	Description	105C	(Sediment)			
S1783099	BH09 0.50	13.4	0.06	4.56	<5.00	<2.00
S1783100	BH09 1.50	16.7	0.06	1.68	<5.00	<2.00
S1783101	BH09 2.50	16.8	0.16	6.72	<5.00	<2.00
S1783102	CRM		3.1765		78%	103%
S1783103	QC Blank		<0.02		<5	<2
	Reference Material					
S1783104	(% Recovery)		101	98.5		

Sample ID	Client ID	Moisture (%)
CL/1783099	BH09 0.50	16
CL/1783100	BH09 1.50	13.5
CL/1783101	BH09 2.50	12.2

		Sample ID :	CL1783103	CL1783104	CL1783102	CL1783099	CL1783100	CL1783101
		-		Reference				
		Station :	QC Blank	Material (% Recovery)	CRM 1941b	BH09 0.50	BH09 1.50	BH09 2.50
PAH Fraction	# PAH	Mass						
Naphthalene *	1	128	<1	118.9	575.0	1.4	<1	<1
C1 Naphthalenes *	2	142	<1	124.1	319.4	1.7	3.7	1.1
C2 Naphthalenes *		156	<1	N.D	208.4	8.5	17.7	9.1
C3 Naphthalenes *		170	<1	N.D	154.4	1.8	3.7	8.7
C4 Naphthalenes *		184	<1	N.D	109.9	1.4	<1	<1
Sum Naphthalenes *			0	122	1367	15	25	19
Phenanthrene / Anthracene	2	178	<1	108.2	526.6	10.6	3.5	<1
C1 178 *		192	<1	N.D	317.3	8.1	3.2	<1
C2 178 *		206	<1	N.D	253.2	7.4	2.7	<1
C3 178 *		220	<1	N.D	161.2	4.3	1.4	<1
Sum 178 *			0	108	1258.4	30.3	10.8	0.0
Dibenzothiophene		184	<1	109	45.1	<1	<1	<1
C1 Dibenzothiophenes *		198	<1	N.D	69.2	1.2	<1	<1
C2 Dibenzothiophenes *		212	<1	N.D	108.8	1.8	<1	<1
C3 Dibenzothiophenes *		226	<1	N.D	60.2	1.7	<1	<1
Sum Dibenzothiophenes *			0	109	283.3	4.8	0.0	0.0
Fluoranthene / pyrene	2	202	<1	107	1081.7	58.0	11.8	<1
C1 202 *		216	<1	N.D	247.5	18.8	3.7	<1
C2 202 *		230	<1	N.D	213.4	11.8	2.2	<1
C3 202 *		244	<1	N.D	107.4	4.9	1.0	<1
Sum 202 *			0	107	1650.1	93.5	18.7	0.0
Benzoanthracene / Chrysene	2	228	<1	107	666.6	41.6	6.7	<1
C1 228 *		242	<1	N.D	253.7	16.7	3.1	<1
C2 228 *		256	<1	N.D	142.6	7.2	1.5	<1
Sum 228 *			0	107	1062.9	65.5	11.4	0.0
Benzofluoranthenes / benzopyrenes	4	252	<1	102	1255.9	80.1	11.7	<1
C1 252 *		266	<1	N.D	261.1	13.8	<1	<1
C2 252 *		280	<1	N.D	97.7	7.9	<1	<1
Sum 252 *			0	102	1614.6	101.8	11.7	0.0
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	102	566.1	36.1	5.2	<1
C1 276 *		290	<1	N.D	79.2	4.6	<1	<1
C2 276 *		304	<1	N.D N.D	79.2 35.7	2.3	<1	<1
Sum 276 *		304	0	102	681.0	43.0	5.2	0.0
Sum of all fractions *			0	108	7917.4	353.7	83.0	18.9
			0	113				18.9
Sum of NPD fraction *			•		2908.8	49.9	36.0	
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.27	0.58	0.16	0.76	#DIV/0!

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1783103	CL1783104	CL1783102	CL1783099	CL1783100	CL1783101
	Station :	QC Blank	Reference Material (% Recovery)	CRM 1941b	BH09 0.50	BH09 1.50	BH09 2.50
PAH	Mass						
Naphthalene *	128	<1	118.9	575.0	1.4	<1	<1
Acenaphthylene	152	<1	125.7	50.7	1.9	<1	<1
Acenaphthene	154	<1	125.5	32.9	<1	<1	<1
Fluorene *	166	<1	126.7	48.4	<1	<1	<1
Phenanthrene	178	<1	111.8	383.8	7.9	3.5	<1
Dibenzothiophene	184	<1	109.4	45.1	<1	<1	<1
Anthracene	178	<1	104.7	142.9	2.7	<1	<1
Fluoranthene	202	<1	106.5	603.7	28.7	6.0	<1
Pyrene	202	<1	107.7	478.0	29.3	5.9	<1
Benzo[a]anthracene	228	<1	104.4	269.1	18.7	2.9	<1
Chrysene	228	<1	110.3	397.5	22.9	3.8	<1
Benzo[b]fluoranthene	252	<1	93.4	453.0	24.5	3.8	<1
Benzo[k]fluoranthene	252	<1	106.8	227.6	12.6	2.0	<1
Benzo[e]pyrene	252	<1	105.6	333.8	18.6	2.9	<1
Benzo[a]pyrene	252	<1	101.2	241.5	24.3	3.0	<1
Perylene *	252	<1	104.0	254.0	6.3	<1	7.4
Indeno[123,cd]pyrene	276	<1	101.8	276.6	17.1	2.7	<1
Dibenzo[a,h]anthracene	278	<1	100.4	55.0	3.8	<1	<1
Benzo[ghi]perylene	276	<1	103.8	234.5	15.2	2.5	<1

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$18_0512
 Date Booked in:
 09-Nov-17

 QC Batch Number:
 170015
 Date Extracted:
 24-Nov-17

 Directory:
 241117PCB.TQ1
 Date Analysed:
 28-Nov-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

				Con	centration,	(μg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1783099	BH09 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1783100	BH09 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1783101	BH09 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1783102	CRM	3.25	4.26	5.13	3.02	4.25	3.88	2.65
CL1783103	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	< 0.08
CL1783104	Reference Material (% Recovery)	87	100	105	105	101	102	118

Polychlorinated Biphenyls

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18_0512
QC Batch Number: 170015
Directory: 241117.TQ1
Method: Ultrasonic

Matrix: Sediment
Date Booked in: 09-Nov-17
Date Extracted: 24-Nov-17
Date Analysed: 28-Nov-17

UKAS Accredited: No

Compounds marked * are not UKAS or MCerts accredited

Sample ID:	CL1783099	CL1783100	CL1783101	CL1783102	CL1783103	CL1783104
						Reference Material
Client ID:	BH09 0.50	BH09 1.50	BH09 2.50	CRM	QC Blank	(% Recovery)

Compound			Concentration (μg/kg)						
alpha-HCH	<0.10 <0.10		<0.10	<0.10	<0.10	89			
Hexachlorobenzene	<0.10	<0.10	<0.10	7.93	<0.10	97			
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	93			
p,p'-DDE	<0.10	<0.10	<0.10	2.37	<0.10	90			
Dieldrin	<0.10	<0.10	<0.10	0.25	<0.10	92			
p,p'-DDD	<0.10	<0.10	<0.10	3.44	<0.10	97			
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10	90			

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18_0512

Directory: D:\TES\DATA\2017\1115HSA_GC9\111517 2017-11-15 12-58-23\015F1501.D

Method: Headspace GCFID

Matrix: Soil

Date Booked in: 09-Nov-17
Date extracted: 17-Nov-15

Date Analysed: 15-Nov-17, 17:1

* Sample data with an asterisk are not UKAS accredited.

		Concentration, (mg/kg) - as wet weight				Aliphatics					
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
* CL1783099	BH09 0.50	<0.010	<0.010	<0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1783100	BH09 1.50	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1783101	BH09 2.50	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1783103	QC Blank	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1783104	Reference Material (% Recovery)	93	93	96	92	91	87	99	110	123	103

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI

Method: Ultra Sonic

Job Number:

Directory:

QC Batch Number:

				Concentration, (mg/kg) - as wet weight										
* Th	is sample data is not UKA	AS accredited.	>C8 - C10		>C10 - C12		>C12 - C16		>C16 - C21		>C21 - C35		>C8 - C40	
	Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics Aromatics		Aliphatics	Aromatics	Aliphatics Aromatics		Aliphatics Aromatics		Aliphatics	Aromatics
*	CL1783099	BH09 0.50	<4.04	<4	<4.04	<4	17.1	<4	<4.04	<4	<8.85	12.1	30.3	21.8
*	CL1783100	BH09 1.50	<4	<4	<4	<4	26.9	<4	<4	<4	17.7	13.7	51.5	22.4
*	CL1783101	BH09 2.50	<4	<4	<4	<4	13.2	<4	<4	<4	<8.76	11.8	<20	<20
*	CL1783103	QC Blank	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
*	CL1783104	Reference Material (% Recovery)	82	94	90	106	93	110	91	113	103	120	97	113
	•													

Matrix:

Soil

Date Analysed: 17-Nov-17, 19:39:58

Date Booked in 09-Nov-17

Date Extracted: 16-Nov-17

Report Number: EFS/180512

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	CL1783099 to CL1783102	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Naphthalene, Fluorene) . These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1783099 to CL1783104	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine	Outfall GI
		Outrail Gi
Report Number :	S18_0512	Nister and its continues in the continues of the continue
	011 . 15	Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1783099	BH09 0.50	MARINE SEDIMENTS
CL/1783100 CL/1783101	BH09 1.50 BH09 2.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1/83101	CRM	OHALITY CONTROL SAMPLE
CL/1783102	OC Blank	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1783102 CL/1783103 CL/1783104	QC Blank Reference Material (% Recovery)	QUALITY CONTROL SAMPLE

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-67031-1

Issue No.: 1

Date of Issue 23/11/2017

Customer Details: SOCOTEC UK - Environmental Chemistry, P O Box 100, Bretby Business Park,

Burton-on-Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: \$180512

Quotation Reference: 170504/06

Description: 3 sediment samples

Date Received: 14/11/2017

Date Started: 21/11/2017

Date Completed: 22/11/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: None

Approved By:

Matthew Hickson, Laboratory Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

This certificate shall not be reproduced except in full without the prior written approval of the laboratory.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

1663

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

Results Summary

Report No.: 17-67031-1Customer Reference: S180512
Customer Order No: 42062 BEC

				Customer	Sample No	S1783099	S1783100	S1783101
				Custome	r Sample ID	BH09 0.50	BH09 1.50	BH09 2.50
				RPS	Sample No	346349	346350	346351
				Sa	mple Type	SEDIMENT	SEDIMENT	SEDIMENT
				Sample	e Depth (m)	0.50m	1.50m	2.50m
				Sa	mpling Date	27/10/2017	27/10/2017	27/10/2017
Determinand	CAS No	Codes	SOP	Units	RL			
butyltin (DBT)	1002-53-5	U	395	ug/kg as cation	5	< 5.00	< 5.00	< 5.00
butyltin (TBT)	56573-85-4	U	395	ug/kg as cation	2	< 2.00	< 2.00	< 2.00

Report No.: 17-67031-1Customer Reference: S180512
Customer Order No: 42062 BEC

Comments

Job	Description	Job Comments
17-67031		BLANK: DBT <rl <rl<="" tbt="" td=""></rl>
		CRM: DBT - 78% TBT - 103%

Deviating Samples

Report No.: 17-67031-1Customer Reference: S180512
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63).

RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below. Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed. Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating Sample	Reason for Sample Deviation
346349	S1783099		27/10/2017	120ml amber glass jar	No	
346350	S1783100		27/10/2017	120ml amber glass jar	No	
346351	S1783101		27/10/2017	120ml amber glass jar	No	

Report Information

Key to Report Codes

U UKAS Accredited
M MCERTS Accredited
N Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units)

Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1 Clay - Brown
Type 2 Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

Socotec Environmental Chemistry - Requested Analysis

Customer Causeway Geotech Ltd Site Arklow Sewerage Scher

Arklow Sewerage Scheme Marine Outfall GI

Report No S180514

Consignment No S_NonCon Date Logged 09-Nov-2017

Report Due 29-Nov-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS	·								ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	^Dibutyltin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	S Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
CL/1783110	BH10 0.50	26/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1783111	BH10 1.50	26/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1783112	BH10 2.50	26/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1783113	CRM	26/10/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1783114	QC Blank		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1783115	Reference Material (% Recovery	′)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R				R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Copper (MS) Sediment	Lead (MS) Sediments
ID Number	Description	Seaments	Seuments	Sediments	Seament	Sediments
S1783110	BH10 0.50	14.9	0.25	13.2	25.9	31.3
S1783111	BH10 1.50	14.6	0.92	29.7	27.2	23.2
S1783112	BH10 2.50	14.4	0.32	19.3	22.6	10.8
S1783113	CRM	18.96	1.653	63.24	52.84	77.69
S1783114	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
0.17001.15	Reference Material				101	100
S1/83115	(% Recovery)	93	96	99	104	103

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.015	0.5	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ID Number	Description	Mercury (MS) Sediments	Nickel (MS) Sediments	Manganese (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)
	BH10 0.50	0.06	11.4	457.1	89.8	22800
S1783111	BH10 1.50	0.06	38.8	389.3	149.6	35900
S1783112	BH10 2.50	0.04	30.5	748.6	92.9	32100
S1783113	CRM	0.696	34.45	1197	323.6	27900
S1783114	QC Blank	<0.015	<0.5	<0.5	<2	<36
S1783115	Reference Material (% Recovery)	104	96	96	100	104

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12		
	Units	%	% M/M	%	ug/kg	ug/kg
		Tot Moisture @	Total Organic			
		Tot.Moisture @	Carbon	Carbonate %	^Dibutyltin	^Tributyltin
ID Number	Description	105C	(Sediment)			
S1783110	BH10 0.50	5.9	0.08	5.52	<5.00	<2.00
S1783111	BH10 1.50	43.7	6	0.72	<5.00	<2.00
S1783112	BH10 2.50	7.7	0.18	1.2	<5.00	<2.00
S1783113	CRM		3.18		78%	103%
S1783114	QC Blank		<0.02		<5	<2
	Reference Material					
S1783115	(% Recovery)		101	99		

Sample ID	Client ID	Moisture (%)
CL/1783110	BH10 0.50	40.2
CL/1783111	BH10 1.50	18.8
CL/1783112	BH10 2.50	15.8

		Sample ID :	CL1783114	CL1783115	CL178313	CL1783110	CL1783111	CL1783112
		•		Reference				
		Station :	QC Blank	Material (% Recovery)	CRM 1941b	BH10 0.50	BH10 1.50	BH10 2.50
PAH Fraction	# PAH	Mass						
Naphthalene *	1	128	<1	118.9	575.0	2.4	2.4	<1
C1 Naphthalenes *	2	142	<1	124.1	319.4	3.8	12.5	<1
C2 Naphthalenes *		156	<1	N.D	208.4	5.8	20.7	3.0
C3 Naphthalenes *		170	<1	N.D	154.4	6.4	17.0	3.9
C4 Naphthalenes *		184	<1	N.D	109.9	3.4	11.4	1.9
Sum Naphthalenes *			0	122	1367	22	64	9
Phenanthrene / Anthracene	2	178	<1	108.2	526.6	51.0	14.4	2.0
C1 178 *		192	<1	N.D	317.3	10.4	23.1	2.1
C2 178 *		206	<1	N.D	253.2	5.3	16.4	1.6
C3 178 *		220	<1	N.D	161.2	3.1	11.1	<1
Sum 178 *			0	108	1258.4	69.7	64.9	5.7
Dibenzothiophene		184	<1	109	45.1	4.5	2.8	<1
C1 Dibenzothiophenes *		198	<1	N.D	69.2	2.2	4.5	<1
C2 Dibenzothiophenes *		212	<1	N.D	108.8	2.2	4.5	<1
C3 Dibenzothiophenes *		226	<1	N.D	60.2	1.7	2.6	<1
Sum Dibenzothiophenes *			0	109	283.3	10.7	14.4	0.0
Fluoranthene / pyrene	2	202	<1	107	1081.7	57.9	9.4	<1
C1 202 *		216	<1	N.D	247.5	7.0	13.5	<1
C2 202 *		230	<1	N.D	213.4	5.1	23.7	1.2
C3 202 *		244	<1	N.D	107.4	2.1	11.6	1.2
Sum 202 *			0	107	1650.1	72.1	58.2	2.5
Benzoanthracene / Chrysene	2	228	<1	107	666.6	10.1	10.3	<1
C1 228 *		242	<1	N.D	253.7	4.6	12.4	<1
C2 228 *		256	<1	N.D	142.6	2.5	9.7	<1
Sum 228 *			0	107	1062.9	17.2	32.5	0.0
Benzofluoranthenes / benzopyrenes	4	252	<1	102	1255.9	17.7	16.2	<1
C1 252 *		266	<1	N.D	261.1	5.0	27.6	<1
C2 252 *		280	<1	N.D	97.7	3.1	13.2	<1
Sum 252 *			0	102	1614.6	25.8	57.0	0.0
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	102	566.1	8.4	8.0	<1
C1 276 *		290	<1	N.D	79.2	1.7	4.8	<1
C2 276 *		304	<1	N.D	35.7	<1.7 <1	3.1	<1
Sum 276 *		55 7	0	102	681.0	10.2	15.8	0.0
Sum of all fractions *			0	108	7917.4	227.5	306.8	16.9
Sum of NPD fraction *			0	113	2908.8	102.2	143.4	14.4
			#DIV/0!	0.27	0.58	0.82	0.88	5.84
NPD / 4-6 ring PAH ratio *			#DIV/U!	0.27	ს.ეგ	0.82	ს.გგ	ე.გ4

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1783114	CL1783115	CL178313	CL1783110	CL1783111	CL1783112
	Station :	QC Blank	Reference Material (% Recovery)	CRM 1941b	BH10 0.50	BH10 1.50	BH10 2.50
PAH	Mass						
Naphthalene *	128	<1	118.9	575.0	2.4	2.4	<1
Acenaphthylene	152	<1	125.7	50.7	<1	<1	<1
Acenaphthene	154	<1	125.5	32.9	1.4	1.1	<1
Fluorene *	166	<1	126.7	48.4	4.6	3.4	<1
Phenanthrene	178	<1	111.8	383.8	27.1	13.3	2.0
Dibenzothiophene	184	<1	109.4	45.1	4.5	2.8	<1
Anthracene	178	<1	104.7	142.9	23.9	1.2	<1
Fluoranthene	202	<1	106.5	603.7	31.0	4.1	<1
Pyrene	202	<1	107.7	478.0	26.9	5.3	<1
Benzo[a]anthracene	228	<1	104.4	269.1	4.4	2.3	<1
Chrysene	228	<1	110.3	397.5	5.7	8.0	<1
Benzo[b]fluoranthene	252	<1	93.4	453.0	5.9	6.0	<1
Benzo[k]fluoranthene	252	<1	106.8	227.6	2.9	1.1	<1
Benzo[e]pyrene	252	<1	105.6	333.8	4.7	7.3	<1
Benzo[a]pyrene	252	<1	101.2	241.5	4.1	1.8	<1
Perylene *	252	<1	104.0	254.0	3.6	871.9	79.3
Indeno[123,cd]pyrene	276	<1	101.8	276.6	4.4	1.8	<1
Dibenzo[a,h]anthracene	278	<1	100.4	55.0	<1	<1	<1
Benzo[ghi]perylene	276	<1	103.8	234.5	4.0	6.2	<1

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Soil

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix:

 Job Number:
 \$18_0514
 Date Booked in:
 09-Nov-17

 QC Batch Number:
 170015
 Date Extracted:
 24-Nov-17

 Directory:
 241117PCB.TQ1
 Date Analysed:
 28-Nov-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

				Con	centration,	(μg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1783110	BH10 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1783111	BH10 1.50	0.10	0.09	<0.08	<0.08	<0.08	<0.08	<0.08
CL1783112	BH10 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1783113	CRM	3.25	4.26	5.13	3.02	4.25	3.88	2.65
CL1783114	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1783115	Reference Material (% Recovery)	87	100	105	105	101	102	118

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18_0514
QC Batch Number: 170015
Directory: 241117.TQ1
Method: Ultrasonic

Matrix: Sediment
Date Booked in: 09-Nov-17
Date Extracted: 24-Nov-17
Date Analysed: 28-Nov-17
UKAS Accredited: No

Compounds marked * are not UKAS or MCerts accredited

Sample ID :	CL1783110	CL1783111	CL1783112	CL1783113	CL1783114	CL1783115
						Reference Material
Client ID:	BH10 0.50	BH10 1.50	BH10 2.50	CRM	QC Blank	(% Recovery)

Compound			Concentra	tion (μg/kg)		
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	89
Hexachlorobenzene	<0.10	<0.10	<0.10	7.93	<0.10	97
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	93
p,p'-DDE	<0.10	<0.10	<0.10	2.37	<0.10	90
Dieldrin	<0.10	<0.10	<0.10	0.25	<0.10	92
p,p'-DDD	<0.10	<0.10	<0.10	3.44	<0.10	97
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10	90

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI Job Number: S18_0514

Directory: Method: D:\TE\$\DATA\2017\1115HSA_GC9\111517 2017-11-15 12-58-23\018F1801.D Headspace GCFID

Matrix: Date Booked in: 09-Nov-17 Date extracted: 17-Nov-15 Date Analysed: 15-Nov-17, 18:09:33

* Sample data with an asterisk are not UKAS accredited.

		Co	oncentratio	on, (mg/kg) - a	as wet weig	Aliphatics								
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO			
CL1783110	BH10 0.50	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2			
CL1783111	BH10 1.50	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2			
CL1783112	BH10 2.50	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.2	< 0.2	<0.2	<0.2	<0.2			
CL1783114	QC Blank	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.2	< 0.2	<0.2	<0.2	<0.2			
CL1783115	Reference Material (% Recovery)	93	93	96	92	91	87	99	110	123	103			
·														

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI

S18_0514 Separation: Silica gel 181251 Eluents: Hexane, DCM

Directory: D:\TES\DATA\2017\112317\112317 2017-11-23 12-23-21\B-078-63-RMS171251ARO.D

Method: Ultra Sonic

Job Number:

QC Batch Number:

						Conce	ntration, (mg	/kg) - as wet	weight					
* TI	his sample data is not Ul	(AS accredited.	>C8	>C8 - C10				- C21	>C21	- C35	>C8	- C40		
	Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aliphatics Aromatics		Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
*	CL1783110	BH10 0.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	11.3	<20	<20
*	CL1783111	BH10 1.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	16.1	<20	24.9
*	CL1783112	BH10 2.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	13.8	<20	21.4
*	CL1783114	QC Blank	<4	<4	<4	<4	<4	<4	<4	<4	14.1	9.2	<20	<20
*	CL1783115	Reference Material (% Recovery)	104	84	122	106	119	115	112	119	102	0.98	113	110

Matrix:

Date Booked ir

Soil

Date Analysed: 24-Nov-17, 03:26:57

Date Extracted 22-Nov-17

09-Nov-17

Report Number: EFS/180514

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	CL1783110 to CL1783115	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Naphthalene, Fluorene) . These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1783111 to CL1783113	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

Sample Descriptions

		Sample Descriptions
Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine	Outfall GI
Report Number :	S18_0514	
		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1783110	BH10 0.50	MARINE SEDIMENTS
CL/1783111	BH10 1.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1783112	BH10 2.50	MARINE SEDIMENTS
CL/1783113	CRM	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1783114 CL/1783115	QC Blank	QUALITY CONTROL SAMPLE
CL/1783115	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
	T. Control of the Con	

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-67032-1

Issue No.: 1

Date of Issue 23/11/2017

Customer Details: SOCOTEC UK - Environmental Chemistry, P O Box 100, Bretby Business Park,

Burton-on-Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: S180514

Quotation Reference: 170504/06

Description: 3 sediment samples

Date Received: 14/11/2017

Date Started: 21/11/2017

Date Completed: 22/11/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: None

Approved By:

Matthew Hickson, Laboratory Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

This certificate shall not be reproduced except in full without the prior written approval of the laboratory.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

1663

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

Results Summary

Report No.: 17-67032-1Customer Reference: S180514

Customer Order No: 42062 BEC

				Customer	Sample No	S1783110	S1783111	S1783112
		r Sample ID	BH10 0.50	BH10 1.50	BH10 2.50			
	Sample No	346352	346353	346354				
				Sa	mple Type	SEDIMENT	SEDIMENT	SEDIMENT
				Sample	e Depth (m)	0.50m	1.50m	2.50m
				Sa	mpling Date	26/10/2017	26/10/2017	26/10/2017
Determinand	CAS No	Codes	SOP	Units	RL			
utyltin (DBT) 1002-53-5 U 395 ug/kg as cation 5					5	< 5.00	< 5.00	< 5.00
ibutyltin (TBT)	56573-85-4	2	< 2.00	< 2.00	< 2.00			

Report No.: 17-67032-1Customer Reference: S180514
Customer Order No: 42062 BEC

Comments

Description	Job Comments
3 sediment samples	BLANK:
	DBT <rl< td=""></rl<>
	TBT <rl< td=""></rl<>
	CRM:
	DBT - 78%
	TBT - 103%
	3 sediment samples

Deviating Samples

Report No.: 17-67032-1Customer Reference: S180514
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63).

RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below. Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed. Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating Sample	Reason for Sample Deviation
346352	S1783110		26/10/2017	120ml amber glass jar	No	
346353	S1783111		26/10/2017	120ml amber glass jar	No	
346354	S1783112		26/10/2017	120ml amber glass jar	No	

Report Information

Key to Report Codes

U UKAS Accredited
M MCERTS Accredited
N Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units)

Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1 Clay - Brown
Type 2 Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

Customer Causeway Geotech Ltd

Site Arklow Sewerage Scheme Marine Outfall GI

Report No S180837

Consignment No S70496 Date Logged 21-Nov-2017

Report Due 11-Dec-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	OGSNSED		PAHSED	PCBMS3Q		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	No	Yes	Yes	Yes
CL/1784492	BH11 1.50	02/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784493	BH11 3.50	02/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784494	CRM			R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			R
CL/1784495	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1784496			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1784492	BH11 1.50	19.1	0.18	24.8	80.7	53.2
S1784493	BH11 3.50	16.7	0.11	19	59.9	44.9
S1784494	CRM	17.77	1.611	62.77	56.42	81.22
S1784495	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
S1784496	Reference Material (% Recovery)	99	98	100	97	99

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Manganese	Mercury (MS)	Nickel (MS)	Zinc (MS)	Iron
D Number	Description	(MS) Sediments	Sediments	Sediments	Sediments	(Sediments)
S1784492	BH11 1.50	706.7	0.07	19.7	171.7	38100
S1784493	BH11 3.50	685.1	0.03	16	131.3	33500
S1784494	CRM	1200	0.761	33.1	327.2	28200
S1784495	QC Blank	<0.5	<0.015	<0.5	<2	<36
	Reference Material					
S1784496	(% Recovery)	96	95	99	99	99

	Method Codes	TMSS	WSLM59	ANC	OGSNSED	OGSNSED	
	Detection Limit	0.1	0.02	0.12	1	1	
	Units	%	% M/M	%	ug Sn/kg	ug Sn/kg	
		Tot.Moisture @	Total Organic		Dibutyl Tin	Tributyl Tin	
		105C	Carbon	Carbonate %	(Sediments)	(Sediments)	
ID Number	Description		(Sediment)		(Commondy)	(222	
S1784492	BH11 1.50	5.9	0.43	1.92	<1	<1	
S1784493	BH11 3.50	5	0.18	1.2	<1	<1	
S1784494	CRM		3.1073		120	94	
S1784495	QC Blank		<0.02		<1	<1	
	Reference Material						
S1784496	(% Recovery)		98	98	93	91	

Sample ID	Client ID	Moisture (%)
CL/1784492	BH11 1.50	6.6
CL/1784493	BH11 3.50	8.0

		Sample ID :	CL1784495	CL1784496	CL1784494	CL1784492	CL1784493
		-		Reference			
		Station :	QC Blank	Material (% Recovery)	1941b	BH11 1.50	BH11 3.50
PAH Fraction	# PAH	Mass		.,			
Naphthalene	1	128	<1	104.4	582.4	2.3	1.4
C1 Naphthalenes *	2	142	<1	100.1	325.7	2.5	3.2
C2 Naphthalenes *		156	<1	N.D	219.2	3.8	10.1
C3 Naphthalenes *		170	<1	N.D	179.5	5.6	11.9
C4 Naphthalenes *		184	<1	N.D	120.0	3.9	6.0
Sum Naphthalenes *			0	102	1427	18	33
Phenanthrene / Anthracene	2	178	<1	105.2	519.2	74.1	25.5
C1 178 *		192	<1	N.D	309.5	33.6	15.9
C2 178 *		206	<1	N.D	243.8	21.3	15.0
C3 178 *		220	<1	N.D	171.0	11.5	14.5
Sum 178 *			0	105	1243.5	140.5	70.9
Dibenzothiophene		184	<1	105	46.9	3.5	1.4
C1 Dibenzothiophenes *		198	<1	N.D	72.1	3.8	3.2
C2 Dibenzothiophenes *		212	<1	N.D	104.8	4.0	7.3
C3 Dibenzothiophenes *		226	<1	N.D	67.3	2.8	10.9
Sum Dibenzothiophenes *			0	105	291.0	14.1	22.8
Fluoranthene / pyrene	2	202	<1	105	1061.6	223.7	79.7
C1 202 *		216	<1	N.D	291.9	45.8	19.9
C2 202 *		230	<1	N.D	248.4	26.3	13.6
C3 202 *		244	<1	N.D	111.6	9.1	6.7
Sum 202 *			0	105	1713.4	304.9	119.9
Benzoanthracene / Chrysene	2	228	<1	104	679.3	113.5	40.3
C1 228 *		242	<1	N.D	272.2	33.2	15.8
C2 228 *		256	<1	N.D	146.6	20.1	10.6
Sum 228 *			0	104	1098.1	166.8	66.8
Benzofluoranthenes /	4	252	<1	99	1224.0	154.0	52.7
benzopyrenes C1 252 *		266	<1	N.D	319.9	37.3	15.9
C2 252 *		280	<1 <1	N.D N.D	231.3	18.9	7.7
Sum 252 *		200	0	99	1775.2	210.3	7.7 76.3
Suiii 232			U	99	1775.2	210.3	70.3
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	97	603.7	71.9	21.9
C1 276 *		290	<1	N.D	89.3	14.7	5.4
C2 276 *		304	<1	N.D	37.8	4.3	1.7
Sum 276 *			0	97	730.8	91.0	29.1
Sum of all fractions *			0	103	8278.6	945.6	418.4
Sum of NPD fraction *			0	104	2961.2	172.7	126.3
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.26	0.56	0.22	0.43

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1784495	CL1784496	CL1784494	CL1784492	CL1784493
	Station :	QC Blank	Reference Material (% Recovery)			BH11 3.50
PAH	Mass					
Naphthalene	128	<1	104	582.4	2.3	1.4
Acenaphthylene	152	<1	103	59.8	5.6	1.0
Acenaphthene	154	<1	105	32.9	1.8	1.2
Fluorene	166	<1	105	50.4	5.3	2.0
Phenanthrene	178	<1	108	372.7	55.5	18.1
Dibenzothiophene	184	<1	105	46.9	3.5	1.4
Anthracene	178	<1	103	146.5	18.6	7.5
Fluoranthene	202	<1	105	596.8	119.0	42.2
Pyrene	202	<1	106	464.8	104.6	37.5
Benzo[a]anthracene	228	<1	102	269.7	54.9	18.9
Chrysene	228	<1	106	409.7	58.7	21.4
Benzo[b]fluoranthene	252	<1	98	449.7	38.9	15.2
Benzo[k]fluoranthene	252	<1	95	213.0	23.9	8.4
Benzo[e]pyrene	252	<1	103	326.8	35.7	12.4
Benzo[a]pyrene	252	<1	99	234.4	55.6	16.7
Perylene *	252	<1	103	257.0	16.3	5.4
Indeno[123,cd]pyrene	276	<1	95	295.9	34.4	10.3
Dibenzo[a,h]anthracene	278	<1	97	57.4	5.0	1.8
Benzo[ghi]perylene	276	<1	100	250.4	32.6	9.9

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$18_0837
 Date Booked in:
 21-Nov-17

 QC Batch Number:
 170016
 Date Extracted:
 01-Dec-17

 Directory:
 041217PCB.TQ1
 Date Analysed:
 05-Dec-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

				Con	centration,	(μg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1784492	BH11 1.50	<0.08	0.10	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784493	BH11 3.50	0.14	0.15	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784494	CRM	2.96	4.08	4.48	2.94	3.73	3.47	2.38
CL1784495	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	< 0.08
CL1784496	Reference Material (% Recovery)	113	111	111	113	108	107	113

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18_0837
QC Batch Number: 170016
Directory: 041217.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:21-Nov-17Date Extracted:01-Dec-17Date Analysed:05-Dec-17UKAS Accredited:No

Compounds marked * are not UKAS or MCerts accredited

Sample ID:	CL1784492	CL1784493	CL1784494	CL1784495	CL1784496
					Reference Material (%
Client ID:	BH11 1.50	BH11 3.50	CRM	QC Blank	Recovery)

Compound	Concentration (μg/kg)									
alpha-HCH	<0.10	<0.10	<0.10	<0.10	88					
Hexachlorobenzene	<0.10	<0.10	7.92	<0.10	98					
gamma-HCH	<0.10	<0.10	<0.10	<0.10	93					
p,p'-DDE	<0.10	<0.10	2.80	<0.10	84					
Dieldrin	<0.10	<0.10	0.29	<0.10	91					
p,p'-DDD	<0.10	<0.10	3.39	<0.10	86					
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	96					

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18 0837

Directory: D:\TES\DATA\Y2017\1204HSA_GC12\171204 2017-12-04 17-22-19\043F4301.D

Method: Headspace GCFID

Matrix: Soil

Date Booked in: 21-Nov-17

Date Booked in: 21-Nov-17
Date extracted: 04-Dec-17

Date Analysed: 05-Dec-17, 07:06:37

* Sample data with an asterisk are not UKAS accredited.

		Co		on, (mg/kg) - a					Aliphatics		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene			C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
* CL1784492	BH11 1.50	< 0.010	<0.010	< 0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784493	BH11 3.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784495	QC BLANK	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784496	Reference Material (% recovery)	102	101	98	99	96	120	117	110	88	114
			_		_				_	_	

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall Gl Matrix: Soil

 Job Number:
 S18_0837
 Separation:
 Silica gel
 Date Booked ir
 21-Nov-17

 QC Batch Number:
 171296
 Eluents:
 Hexane, DCM
 Date Extracted
 04-Dec-17

 Directory:
 C:\CHEM32\1\DATA\120517TPH_GC15\120517 2017-12-05 18-17-42\066B2001.D
 Date Analysed: 05-Dec-17, 22:20:07

Method: Ultra Sonic

					Conce	entration, (mg	/kg) - as wet	weight					
* This sample data is not U	KAS accredited.	>C8 - C10 >C10 - C12				- C16		- C21	>C21	- C35	>C8	- C40	
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
* CL1784492	BH11 1.50	<4.04	<4	<4.04	<4	<4.04	<4	<4.04	6.7	<8.85	10.8	<20.2	<20
* CL1784493	BH11 3.50	<4	<4	<4	<4	12.9	<4	<4	<4	<8.76	<8.76	<20	<20
* CL1784495	QC Blank	<4.08	<4	<4.08	<4	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1784496	Reference Material (% Recovery)	103	97	108	111	102	109	100	102	101	102	101	105

Sample Descriptions

	Sample Descriptions							
Client :	Causeway Geotech Ltd							
Site :	Arklow Sewerage Scheme Marin	e Outfall GI						
Report Number :	S18_0837							
neport Number .		Note: major constituent in upper case						
Lab ID Number	Client ID							
		Description						
CL/1784492	BH11 1.50	MARINE SEDIMENTS						
CL/1784493 CL/1784494	BH11 3.50 CRM	MAKINE SEDIMEN I S						
CL/1784494	OC Blank	QUALITY CONTROL SAMPLE						
CL/1784495 CL/1784496	QC Blank Reference Material (% Recovery)	MARINE SEDIMENTS QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE						

Appendix A Page 1 of 1 12/12/2017

ESG Environmental Chemistry - Requested Analysis

Customer Causeway Geotech Ltd Site Arklow Sewerage Scher

Arklow Sewerage Scheme Marine Outfall GI

Report No S178705

Consignment No S68870 Date Logged 14-Sep-2017

Report Due 02-Oct-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS			02-0						ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	^DibutyItin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	S Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
CL/1775353	BH12 1.50	24/08/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775354	BH12 3.50	24/08/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775355	BH12 5.50	24/08/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775356	CRM	24/08/17		R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1775357	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1775358	Reference Material (% Recovery	')	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ID Number	Description	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Copper (MS) Sediment	Lead (MS) Sediments
	BH12 1.50	12.8	0.14	17.4	20.9	10.2
S1775354	BH12 3.50	11.2	0.28	28.8	20.8	18.5
S1775355	BH12 5.50	10.8	0.32	30.3	25.6	17.3
S1775356	CRM	16.65	1.475	58.67	57.83	73.36
S1775357	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
S1775358	Reference Material (% Recovery)	105	107	107	95	109

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL	
	Detection Limit	0.5	0.015	0.5	2	36	
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
ID Numbor	Description	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	
	BH12 1.50	503.8	0.02	14.9	50.7	32600	
	BH12 3.50	554.8	0.05	30.3	57.3	31500	
S1775355	BH12 5.50	550.8	0.07	31.3	55.8	30900	
S1775356	CRM	1117	0.707	31.16	306.6	27700	
S1775357	QC Blank	<0.5	<0.015	<0.5	<2	<36	
S1775358	Reference Material (% Recovery)	103	102	106	105	105	

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12		
	Units	%	% M/M	%	mg/kg	mg/kg
		Tat Maiatura @	Total Organic		^Dibutyltin	
		Tot.Moisture @	Carbon	Carbonate %		^Tributyltin
ID Number	Description	105C	(Sediment)			
S1775353	BH12 1.50	7	0.1	4.32	<0.02	< 0.05
S1775354	BH12 3.50	21.8	0.43	6.72	< 0.02	< 0.05
S1775355	BH12 5.50	20.8	0.46	10.32	<0.02	< 0.05
S1775356	CRM		2.8645			
S1775357	QC Blank		<0.02		<0.02	< 0.05
	Reference Material					
S1775358	(% Recovery)		91	102	100	107

Sample ID	Client ID	Moisture (%)
CL/1775353	BH12 1.50	16.5
CL/1775354	BH12 3.50	21.9
CL/1775355	BH12 5.50	20

		Sample ID :	CL1775357	CL1775358	CL1775353	CL1775354	CL1775355	CL1775356
		•		Reference				
		Station :	QC Blank	Material (%	BH12 1.50	BH12 3.50	BH12 5.50	CRM
				Recovery)				
PAH Fraction	# PAH	Mass						
Naphthalene *	1	128	<1	114.7	<1	5.2	5.7	605.0
C1 Naphthalenes *	2	142	<1	114.6	<1	22.5	22.3	345.0
C2 Naphthalenes *		156	<1	N.D	1.2	28.7	27.5	227.8
C3 Naphthalenes *		170	<1	N.D	<1	29.5	30.7	166.2
C4 Naphthalenes *		184	<1	N.D	<1	22.9	21.9	124.4
Sum Naphthalenes *			0	115	1	109	108	1468
Phenanthrene / Anthracene	2	178	<1	103.0	<1	22.2	22.1	520.2
C1 178 *		192	<1	N.D	<1	35.0	32.9	303.2
C2 178 *		206	<1	N.D	<1	32.8	31.9	269.4
C3 178 *		220	<1	N.D	<1	24.0	23.0	179.1
Sum 178 *			0	103	0.0	114.0	109.9	1271.9
Dibenzothiophene		184	<1	103	<1	4.3	4.1	43.7
C1 Dibenzothiophenes *		198	<1	N.D	<1	7.9	7.1	86.6
C2 Dibenzothiophenes *		212	<1	N.D	<1	8.2	7.0	117.8
C3 Dibenzothiophenes *		226	<1	N.D	<1	4.8	6.2	73.4
Sum Dibenzothiophenes *			0	103	0.0	25.2	24.3	321.5
Fluoranthene / pyrene	2	202	<1	99	<1	17.2	15.9	1047.1
C1 202 *		216	<1	N.D	<1	26.4	24.7	291.8
C2 202 *		230	<1	N.D	<1	29.2	27.9	211.3
C3 202 *		244	<1	N.D	<1	19.0	19.6	136.6
Sum 202 *			0	99	0.0	91.8	88.0	1686.8
Benzoanthracene / Chrysene	2	228	<1	98	<1	17.6	16.3	654.5
C1 228 *		242	<1	N.D	<1	19.7	19.9	283.0
C2 228 *		256	<1	N.D	<1	18.4	18.2	150.5
Sum 228 *			0	98	0.0	55.8	54.4	1088.0
Benzofluoranthenes / benzopyrenes	4	252	<1	96	<1	29.4	29.0	1177.0
C1 252 *		266	<1	N.D	<1	32.7	33.1	337.4
C2 252 *		280	<1	N.D	<1	27.2	27.5	199.5
Sum 252 *			0	96	0.0	89.4	89.6	1713.9
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	92	<1	18.3	17.3	558.5
C1 276 *		290	<1	N.D	<1	18.5	10.5	90.7
C2 276 *		304	<1	N.D	<1	8.3	8.1	62.5
Sum 276 *		00 1	0	92	0.0	45.0	35.9	711.6
Sum of all fractions *			0	101	1.2	530.2	510.1	8261.9
Sum of NPD fraction *	1		0	107	1.2	248.1	242.2	3061.7
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.28	#DIV/0!	0.88	0.90	0.59

N.D = Not Determined as these compounds are not in the reference material spike.
 As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1775357	CL1775358	CL1775353	CL1775354	CL1775355	CL1775356
	Station :	QC Blank	Reference Material (% Recovery)	BH12 1.50	BH12 3.50	BH12 5.50	CRM
PAH	Mass						
Naphthalene *	128	<1	114.7	<1	5.2	5.7	605.0
Acenaphthylene	152	<1	117.2	<1	<1	<1	51.1
Acenaphthene	154	<1	116.9	<1	1.9	1.7	33.0
Fluorene	166	<1	115.9	<1	5.3	5.1	53.9
Phenanthrene	178	<1	106.6	<1	22.2	21.0	379.2
Dibenzothiophene	184	<1	103.1	<1	4.3	4.1	43.7
Anthracene	178	<1	99.4	<1	<1	1.1	141.0
Fluoranthene	202	<1	99.6	<1	7.0	6.3	588.4
Pyrene	202	<1	97.6	<1	10.2	9.5	458.7
Benzo[a]anthracene	228	<1	96.4	<1	3.2	3.2	260.7
Chrysene	228	<1	99.1	<1	14.4	13.0	393.8
Benzo[b]fluoranthene	252	<1	94.9	<1	10.6	10.7	423.9
Benzo[k]fluoranthene	252	<1	92.6	<1	1.3	1.2	211.1
Benzo[e]pyrene	252	<1	103.8	<1	13.8	13.5	320.6
Benzo[a]pyrene	252	<1	94.4	<1	3.7	3.6	221.3
Indeno[123,cd]pyrene	276	<1	95.1	<1	3.4	3.1	276.8
Dibenzo[a,h]anthracene	278	<1	80.9	<1	1.6	1.5	63.2
Benzo[ghi]perylene	276	<1	101.1	<1	13.3	12.7	218.4

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$17_8705
 Date Booked in:
 14-Sep-17

 QC Batch Number:
 170006
 Date Extracted:
 21-Sep-17

 Directory:
 290917PCB.TQ1
 Date Analysed:
 28-Sep-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

		Concentration, (μg/kg)						
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1775353	BH12 1.50	<0.08	0.1	<0.08	0.1	0.1	<0.08	<0.08
CL1775354	BH12 3.50	0.2	0.2	<0.08	0.3	0.1	<0.08	<0.08
CL1775355	BH12 5.50	0.2	0.2	<0.08	0.2	0.1	0.1	<0.08
CL1775356	CRM	2.5	5.0	5.1	4.5	4.4	5.4	2.8
CL1775357	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1775358	Reference Material (% Recovery)	105.0	117.6	114.9	153.7	108.2	114.9	114.2
·							,	
·							,	

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_8705
QC Batch Number: 170006
Directory: 270917.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:14-Sep-17Date Extracted:27-Sep-17

Date Analysed: 28-Sep-17 UKAS Accredited: No

Compounds marked * are not UKAS or MCerts accredited

Sample ID :	CL1775353	CL1775354	CL1775355	CL1775356	CL1775357	CL1775358				
						Reference Material (%				
Client ID:	BH12 1.50	BH12 3.50	BH12 5.50	CRM	QC Blank	Recovery)				
•										

Compound		Concentration (μg/kg)								
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	168				
Hexachlorobenzene	<0.10	<0.10	<0.10	6.6	<0.10	98				
gamma-HCH	<0.10	<0.10	<0.10	6.6	<0.10	244				
p,p'-DDE	<0.10	<0.10	0.17	3.6	<0.10	82				
Dieldrin	<0.10	<0.10	<0.10	0.6	<0.10	97				
p,p'-DDD	<0.10	<0.10	<0.10	5.0	<0.10	108				
p,p'-DDT	<0.10	<0.10	<0.10	0.1	<0.10	130				

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17 8705

Directory: E:\TES\DATA\2017\0921HSA GC9\092117 2017-09-21 11-30-37\118B1801.D

Method: Headspace GCFID

Matrix: Soil

Date Booked in: 14-Sep

Date Booked in:14-Sep-17Date extracted:21-Sep-17

Date Analysed: 21-Sep-17, 1

* Sample data with an asterisk are not UKAS accredited.

		С	Concentration, (mg/kg) - as wet weight					Aliphatics			
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
CL1775353	BH12 1.50	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775354	BH12 3.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775355	BH12 5.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775357	QC Blank	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775358	Reference Material (% Recovery)	103	105	103	104	101	109	104	108	110	107

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI

 Job Number:
 \$17_8705
 Separation:
 Silica gel

 QC Batch Number:
 171031
 Eluents:
 Hexane, DCM

Directory: D:\TES\DATA\2017\092717\092717 2017-09-27 09-53-19\B-025-62-RMS171031ARO.D

lethod:	Ultra Sonic		00 = 00 00 .0						27 COP 17, 10.	. 0.0 .			
					Conce	entration, (mg	/kg) - as wet	weight					
* This sample data is not U	IKAS accredited.	>C8	- C10	>C10	- C12	>C12 - C16 >C16 - C21		- C21	>C21 - C35		>C8 - C40		
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
CL1775353	BH12 1.50	<4.12	<4*	<4.12*	<4	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
CL1775354	BH12 3.50	<4	<4*	<4*	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
CL1775355	BH12 5.50	<4.08	<4*	<4.08*	<4	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
CL1775357	QC Blank	<4.16	<4*	<4.16*	<4	<4.16	<4	<4.16	<4	<9.1	<8.76	<20.8	<20
CL1775358	Reference Material (% Recovery)	98	126*	89*	97	94	91	92	92	89	93	91	93
												1	

Matrix:

Date Booked ir

Date Extracted 25-Sep-17

Date Analysed 27-Sep-17, 15:15:31

14-Sep-17

Report Number: EFS/178705

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
TPHUSSI	TO CL1775355, CL1775357 TO CL1775358	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Banding C10-C12 on the Aliphatic fraction and C8-C10 on the Aromatic fraction) . These circumstances should be taken into consideration when utilising the data.
PAHSED	GL1775358	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Naphthalene) . These circumstances should be taken into consideration when utilising the data.
PAHSED		Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine (Dutfall GI
Report Number :	S17_8705	
port Humber .		Note: major constituent in upper case
Lab ID Number	Client ID	Description
	BH12 1.50	
CL/1775353 CL/1775354	BH12 1.50 BH12 3.50	MARINE SEDIMENT MARINE SEDIMENT
CL/1775354	BH12 5.50	MARINE SEDIMENT
CL/1775356	BH12 5.50 CRM	QUALITY CONTROL SAMPLE
CL/1775357	OC Blank	QUALITY CONTROL SAMPLE
CL/1775355 CL/1775356 CL/1775357 CL/1775358	QC Blank Reference Material (% Recovery)	MARINE SEDIMENT QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
	-	
	+	
<u> </u>		

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-65411-2

Issue No.: 2

Date of Issue 04/10/2017

Customer Details: ESG Environmental Chemistry, P O Box 100, Bretby Business Park, Burton-on-

Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: \$178705

Quotation Reference: 170504/08

Description: 3 soil samples

Date Received: 22/09/2017

Date Started: 26/09/2017

Date Completed: 03/10/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: This report replaces issue 1 in its entirety

Approved By: Matthew Hickson, Laboratory Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

CAS No

1002-53-5

56573-85-4

Codes

N

N

Results Summary

Determinand

dibutyltin (DBT)

tributyltin (TBT)

Report No.: 17-65411-2Customer Reference: S178705
Customer Order No: 42062 BEC

	Customer S	Sample No	S1775353	S1775354	S1775355
	Custome	r Sample ID	BH12 1.50	BH12 3.50	BH12 5.50
	RPS	Sample No	340620	340621	340622
	Sa	mple Type	SOIL	SOIL	SOIL
	Sample	e Depth (m)	1.50m	3.50m	5.50m
	Sai	mpling Date	24/08/2017	24/08/2017	24/08/2017
SOP	Units	RL			
in house	mg/kg as cation	0.02	< 0.02	< 0.02	< 0.02
in house	mg/kg as cation	0.05	< 0.05	< 0.05	< 0.05

Report No.: 17-65411-2Customer Reference: S178705
Customer Order No: 42062 BEC

Comments

Job	Description	Job Comments
17-65411	3 soil samples	Blank: <rl &="" aqc:<="" dbt="" for="" tbt="" td=""></rl>
		DBT - 100% TBT - 107%

Deviating Samples

Report No.: 17-65411-2Customer Reference: S178705
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63).

RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below. Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed. Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating Sample	Reason for Sample Deviation
340620	S1775353		24/08/2017	60ml amber glass jar	No	
340621	S1775354		24/08/2017	60ml amber glass jar	No	
340622	S1775355		24/08/2017	60ml amber glass jar	No	

Report Information

Key to Report Codes

U	UKAS Accredited
M	MCERTS Accredited
N	Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units) Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1	Clay - Brown
Type 2	Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

ESG Environmental Chemistry - Requested Analysis

S178717

Customer Site

Report No

Causeway Geotech Ltd

Arklow Sewerage Scheme Marine Outfall GI

S178717

Consignment No S68871 Date Logged 14-Sep-2017

Report Due 02-Oct-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB-7 Congeners (Marine Sediments)	^DibutyItin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	S Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
CL/1775425	BH13 2.50	23/08/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775426	BH13 5.50	23/08/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775427	CRM	23/08/17		R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	·	R	R
CL/1775428	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1775429	Reference Material (% Recovery	/)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1775425	BH13 2.50	9.2	0.12	18.2	11.3	10.9
S1775426	BH13 5.50	10.1	0.28	30.9	21.2	16.2
S1775427	CRM	16.65	1.475	58.67	57.83	73.36
S1775428	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
0.1777	Reference Material					
S1775429	(% Recovery)	105	107	107	95	109

N	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
D	Detection Limit	0.5	0.015	0.5	2	36
U	Jnits	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Manganese	Mercury (MS)	Nickel (MS)	Zinc (MS)	Iron
ID Number D	Description	(MS) Sediments	Sediments	Sediments	Sediments	(Sediments)
S1775425 B	3H13 2.50	370.5	0.05	15.5	35.6	20600
S1775426 B	3H13 5.50	590	0.06	32	56.3	28500
S1775427 C	CRM	1117	0.707	31.16	306.6	27700
S1775428 C	QC Blank	<0.5	<0.015	<0.5	<2	<36
	Reference Material					
S1775429 (9	% Recovery)	103	102	106	105	105

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12		
	Units	%	% M/M	%	mg/kg	mg/kg
		Tot.Moisture @	Total Organic Carbon	Carbonate %	^Dibutyltin	^Tributyltin
ID Number	Description	105C	(Sediment)	Carbonate 76	Dibutyitiii	Tributyitiii
S1775425	BH13 2.50	5.5	0.12	1.68	<0.02	<0.05
S1775426	BH13 5.50	20.8	0.49	5.76	<0.02	<0.05
S1775427	CRM		3.2083			
S1775428	QC Blank		<0.02		<0.02	<0.05
S1775429	Reference Material (% Recovery)		101	102	100	107

Sample ID	Client ID	Moisture (%)
CL/1775425	BH13 2.50	12.3
CL/1775426	BH13 5.50	19.9

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

		Sample ID :	CL1775428	CL1775429	CL1775425	CL1775426	CL1775427
		Station :	QC Blank	Reference Material (% Recovery)	BH13 2.50	BH13 5.50	CRM
PAH Fraction	# PAH	Mass					
Naphthalene *	1	128	<1	114.7	<1	5.2	605.0
C1 Naphthalenes *	2	142	<1	114.6	5.8	21.0	345.0
C2 Naphthalenes *		156	<1	N.D	9.3	25.8	227.8
C3 Naphthalenes *		170	<1	N.D	11.0	27.4	166.2
C4 Naphthalenes *		184	<1	N.D	7.4	22.3	124.4
Sum Naphthalenes *			0	115	34	102	1468
Phenanthrene / Anthracene	2	178	<1	103.0	6.0	20.6	520.2
C1 178 *		192	<1	N.D	8.8	29.6	303.2
C2 178 *		206	<1	N.D	8.3	28.5	269.4
C3 178 *		220	<1	N.D	5.5	21.3	179.1
Sum 178 *			0	103	28.6	100.1	1271.9
Dibenzothiophene		184	<1	103	<1	4.0	43.7
C1 Dibenzothiophenes *		198	<1	N.D	1.3	6.6	86.6
C2 Dibenzothiophenes *		212	<1	N.D	1.2	7.2	117.8
C3 Dibenzothiophenes *		226	<1	N.D	<1	5.6	73.4
Sum Dibenzothiophenes *			0	103	2.6	23.4	321.5
Fluoranthene / pyrene	2	202	<1	99	3.2	14.5	1047.1
C1 202 *		216	<1	N.D	5.7	22.1	291.8
C2 202 *		230	<1	N.D	6.6	24.2	211.3
C3 202 *		244	<1	N.D	5.3	17.2	136.6
Sum 202 *			0	99	20.8	78.0	1686.8
Benzoanthracene / Chrysene	2	228	<1	98	3.2	15.0	654.5
C1 228 *		242	<1	N.D	4.9	16.4	283.0
C2 228 *		256	<1	N.D	3.9	15.6	150.5
Sum 228 *			0	98	12.0	46.9	1088.0
Benzofluoranthenes / benzopyrenes	4	252	<1	96	2.9	25.6	1177.0
C1 252 *		266	<1	N.D	4.6	29.1	337.4
C2 252 *		280	<1	N.D	5.0	23.5	199.5
Sum 252 *			0	96	12.6	78.2	1713.9
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	92	1.3	16.2	558.5
C1 276 *		290	<1	N.D	<1	9.6	90.7
C2 276 *		304	<1	N.D N.D	<1	9.0 9.1	62.5
Sum 276 *		304	0	92	1.3	35.0	711.6
Sum of all fractions *			0	101	111.4	463.2	8261.9
Sum of NPD fraction *			0	107	64.6	225.1	3061.7
NPD / 4-6 ring PAH ratio *	 		#DIV/0!	0.28	1.38	0.95	0.59
NPD / 4-6 ring PAH ratio			#DIV/U!	∪.∠δ	1.38	0.95	0.59

N.D = Not Determined as these compounds are not in the reference material spike.As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1775428	CL1775429	CL1775425	CL1775426	CL1775427
	Station :	QC Blank	Reference Material (% Recovery)	BH13 2.50	BH13 5.50	CRM
PAH	Mass					
Naphthalene *	128	<1	114.7	<1	5.2	605.0
Acenaphthylene	152	<1	117.2	<1	<1	51.1
Acenaphthene	154	<1	116.9	<1	1.5	33.0
Fluorene	166	<1	115.9	<1	4.9	53.9
Phenanthrene	178	<1	106.6	6.0	19.4	379.2
Dibenzothiophene	184	<1	103.1	<1	4.0	43.7
Anthracene	178	<1	99.4	<1	1.2	141.0
Fluoranthene	202	<1	99.6	1.3	5.8	588.4
Pyrene	202	<1	97.6	1.9	8.7	458.7
Benzo[a]anthracene	228	<1	96.4	1.1	2.7	260.7
Chrysene	228	<1	99.1	2.1	12.2	393.8
Benzo[b]fluoranthene	252	<1	94.9	1.2	9.0	423.9
Benzo[k]fluoranthene	252	<1	92.6	<1	1.7	211.1
Benzo[e]pyrene	252	<1	103.8	1.8	11.6	320.6
Benzo[a]pyrene	252	<1	94.4	<1	3.2	221.3
Indeno[123,cd]pyrene	276	<1	95.1	<1	2.9	276.8
Dibenzo[a,h]anthracene	278	<1	80.9	<1	1.7	63.2
Benzo[ghi]perylene	276	<1	101.1	1.3	11.6	218.4

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$17_8717
 Date Booked in:
 14-Sep-17

 QC Batch Number:
 170007
 Date Extracted:
 21-Sep-17

 Directory:
 290917PCB.TQ1
 Date Analysed:
 28-Sep-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

		Concentration, (μg/kg)						
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1775425	BH13 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1775426	BH13 5.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1775427	CRM	2.2	4.0	4.2	3.4	3.3	4.2	2.0
CL1775428	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1775429	Reference Material (% Recovery)	99.4	115.7	115.0	104.4	117.8	116.0	117.1
·								

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_8717
QC Batch Number: 170007
Directory: 270917.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:14-Sep-17Date Extracted:27-Sep-17Date Analysed:28-Sep-17UKAS Accredited:No

Compounds marked * are not UKAS or MCerts accredited

Sample ID:	CL1775425	CL1775426	CL1775427	CL1775428	CL1775429
					Reference Material (%
Client ID:	BH13 2.50	BH13 5.50	CRM	QC Blank	Recovery)

Compound		Concentration (μg/kg)										
alpha-HCH	<0.10	<0.10	<0.10	<0.10	108							
Hexachlorobenzene	<0.10	<0.10	5.57	<0.10	100							
gamma-HCH	<0.10	<0.10	<0.10	<0.10	120							
p,p'-DDE	<0.10	<0.10	2.22	<0.10	114							
Dieldrin	<0.10	<0.10	0.36	<0.10	127							
p,p'-DDD	<0.10	<0.10	2.99	<0.10	109							
p,p'-DDT	<0.10	<0.10	0.38	<0.10	106							

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17 8717

Directory: E:\TES\DATA\2017\0921HSA GC9\092117 2017-09-21 11-30-37\137B3701.D

Method: Headspace GCFID

Matrix: Soil

Date Booked in:14-Sep-17Date extracted:21-Sep-17

Date Analysed: 21-Sep-17, 2

* Sample data with an asterisk are not UKAS accredited.

		С	oncentration	on, (mg/kg) - a	s wet weig	ht			Aliphatics		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
CL1775425	BH13 2.50	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775426	BH13 5.50	<0.010	<0.010	<0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775428	QC Blank	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775429	Reference Material (% Recovery)	99	99	98	98	97	114	110	107	98	108

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9. Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

 Customer and Site Details:
 Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI

Job Number:\$17_8717Separation:Slica gelQC Batch Number:171031Eluents:Hexane, DCM

Directory: D:\TES\DATA\2017\092717\092717 2017-09-27 09-53-19\B-025-62-RMS171031ARO.D

Method: Ultra Sonic

Matrix: Soil

Date Booked ir 14-Sep-17
Date Extracted 25-Sep-17
Date Analysed 27-Sep-17, 15:15:31

					Conce	entration, (mg	/kg) - as wet	weight					
* This sample data is not Uk	(AS accredited.	>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8 ·	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
CL1775425	BH13 2.50	<4.12	<4*	<4.12*	<4	<4.12	<4	<4.12	<4	<9	9.2	<20.6	20.3
CL1775426	BH13 5.50	<4.12	<4*	<4.12*	<4	<4.12	<4	<4.12	<4	15.4	8.88	<20.6	<20
CL1775428	QC Blank	<4.16	<4*	<4.16*	<4	<4.16	<4	<4.16	<4	<9.1	<8.76	<20.8	<20
CL1775429	Reference Material (% Recovery)	98	126*	89*	97	94	91	92	92	89	93	91	93

Report Number: EFS/178717

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	I t∩	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Naphthalene) . These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1775425 to CL1775427	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.
TPHUSSI	TO CL1775426, CL1775428 TO CL1775429	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Banding C8-C10 on the Aromatic fraction and C10-C12 on the Aliphatic fraction). These circumstances should be taken into consideration when utilising the data.

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine Outl	fall GI
Report Number :	S17_8717	
	0.7_0.7.	Note: major constituent in upper case
Lab ID Number	Client ID	Description
		Description
CL/1775425	BH13 2.50	MARINE SEDIMENTS MARINE SEDIMENTS QUALITY CONTROL SAMPLE
CL/1775426 CL/1775427	BH13 5.50	MARINE SEDIMENTS
CL/17/5427	CRM QC Blank	QUALITY CONTROL SAMPLE
CL/1775428 CL/1775429	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
GL/17/5429	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
	1	
	+	
	1	

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-65414-2

Issue No.: 2

Date of Issue 04/10/2017

Customer Details: ESG Environmental Chemistry, P O Box 100, Bretby Business Park, Burton-on-

Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: S178717

Quotation Reference: 170504/08

Description: 2 soil samples

Date Received: 22/09/2017

Date Started: 26/09/2017

Date Completed: 03/10/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: This report replaces issue 1 in its entirety

Approved By: Matthew Hickson, Laboratory Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

Results Summary

Report No.: 17-65414-2

Customer Reference: S178717 Customer Order No: 42062 BEC

				Customer S	Sample No	S1775425	S1775426
				Custome	r Sample ID	BH13 2.50	BH13 5.50
				RPS	Sample No	340628	340629
				Sa	mple Type	SOIL	SOIL
				Sample	e Depth (m)	2.50m	5.50m
				Sai	mpling Date	23/08/2017	23/08/2017
Determinand	CAS No	Codes	SOP	Units	RL		
butyltin (DBT)	1002-53-5	N	in house	mg/kg as cation	0.02	< 0.02	< 0.02
ibutyltin (TBT)	56573-85-4	N	in house	mg/kg as cation	0.05	< 0.05	< 0.05

Report No.: 17-65414-2Customer Reference: S178717
Customer Order No: 42062 BEC

Comments

Job	Description	Job Comments
17-65414	2 soil samples	Blank: <rl &="" dbt="" for="" tbt<="" td=""></rl>
		AQC: DBT - 100% TBT - 107%

Deviating Samples

Report No.: 17-65414-2Customer Reference: S178717
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63). RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below. Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed. Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating Sample	Reason for Sample Deviation
340628	S1775425		23/08/2017	60ml amber glass jar	No	
340629	S1775426		23/08/2017	60ml amber glass jar	No	

Report Information

Key to Report Codes

U	UKAS Accredited
M	MCERTS Accredited
N	Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units) Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1	Clay - Brown
Type 2	Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

ESG Environmental Chemistry - Requested Analysis

Customer Cause Site Arklo

Report No

Causeway Geotech Ltd Arklow Sewerage Scheme Marine Outfall GI

S178712

Consignment No S68872 Date Logged 14-Sep-2017

Report Due 02-Oct-2017

							пере	i c D a c	02-0	CC 201	.,												
		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	^DibutyItin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
CL/1775392	BH14 0.75	22/08/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775393	BH14 1.75	22/08/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775394	BH14 4.00	22/08/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775395	CRM	22/08/17		R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1775396	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1775397	Reference Material (% Recovery	<i>'</i>)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ID Number	Description	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Copper (MS) Sediment	Lead (MS) Sediments
	BH14 0.75	12.6	1.67	17.7	181	197.5
S1775393	BH14 1.75	12	0.61	16.9	110.4	194.7
S1775394	BH14 4.00	11.5	0.28	27.6	20.4	16.6
S1775395	CRM	16.65	1.475	58.67	57.83	73.36
S1775396	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
S1775397	Reference Material (% Recovery)	105	107	107	95	109

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL	
	Detection Limit	0.5	0.015	0.5	2	36	
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
ID Number	Description	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	
	BH14 0.75	417	0.43	18.9	451.4	28900	
S1775393	BH14 1.75	455.4	0.17	14.9	287.1	33500	
S1775394	BH14 4.00	519.4	0.07	30.3	56.9	27600	
S1775395	CRM	1117	0.707	31.16	306.6	27700	
S1775396	QC Blank	<0.5	<0.015	<0.5	<2	<36	
S1775397	Reference Material (% Recovery)	103	102	106	105	105	

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005	
	Detection Limit	0.1	0.02	0.12			
	Units	%	% M/M	%	mg/kg	mg/kg	
		Tot.Moisture @	Total Organic				
		_	Carbon	Carbonate %	^Dibutyltin	^Tributyltin	
ID Number	Description	105C	(Sediment)				
S1775392	BH14 0.75	64.6	8.3	6.48	<0.02	< 0.05	
S1775393	BH14 1.75	23	4.7	2.64	<0.02	< 0.05	
S1775394	BH14 4.00	18.3	0.51	7.2	<0.02	< 0.05	
S1775395	CRM		3.0609				
S1775396	QC Blank		<0.02		<0.02	< 0.05	
	Reference Material						
S1775397	(% Recovery)		97	102	100	107	

Sample ID	Client ID	Moisture (%)
CL/1775392	BH14 0.75	58
CL/1775393	BH14 1.75	12.5
CL/1775394	BH14 4.00	19.9

UKAS accredited?: Yes

		Sample ID :	CL1775396	CL1775397	CL1775392	CL1775393	CL1775394	CL1775395
		Station :	QC Blank	e Material (% F		BH14 1.75	BH14 4.00	CRM
PAH Fraction	# PAH	Mass	-,					
Naphthalene *	1	128	<1	114.7	861.4	57.5	3.0	605.0
C1 Naphthalenes *	2	142	<1	114.6	1725.0	98.5	13.3	345.0
C2 Naphthalenes *		156	<1	N.D	2599.0	106.3	15.4	227.8
C3 Naphthalenes *		170	<1	N.D	2781.0	116.8	15.8	166.2
C4 Naphthalenes *		184	<1	N.D	1454.8	67.6	12.1	124.4
Sum Naphthalenes *			0	115	9421	447	60	1468
Phenanthrene / Anthracene	2	178	<1	103.0	24882.2	735.2	11.8	520.2
C1 178 *		192	<1	N.D	9795.9	392.7	16.4	303.2
C2 178 *		206	<1	N.D	6355.5	272.4	15.8	269.4
C3 178 *		220	<1	N.D	4098.5	158.1	10.7	179.1
Sum 178 *			0	103	45132.1	1558.4	54.8	1271.9
Dibenzothiophene		184	<1	103	1575.8	44.2	2.3	43.7
C1 Dibenzothiophenes *		198	<1	N.D	1499.3	44.8	3.9	86.6
C2 Dibenzothiophenes *		212	<1	N.D	1277.8	44.4	3.9	117.8
C3 Dibenzothiophenes *		226	<1	N.D	712.2	1.9	3.2	73.4
Sum Dibenzothiophenes *			0	103	5065.1	135.4	13.2	321.5
Fluoranthene / pyrene	2	202	<1	99	56503.7	2084.7	12.7	1047.1
C1 202 *		216	<1	N.D	12824.8	533.0	13.5	291.8
C2 202 *		230	<1	N.D	7265.8	229.3	14.0	211.3
C3 202 *		244	<1	N.D	3403.2	101.6	10.6	136.6
Sum 202 *			0	99	79997.5	2948.5	50.8	1686.8
Benzoanthracene / Chrysene	2	228	<1	98	26088.3	1019.4	10.5	654.5
C1 228 *		242	<1	N.D	7866.9	305.0	9.7	283.0
C2 228 *		256	<1	N.D	5611.9	220.3	9.1	150.5
Sum 228 *			0	98	39567.1	1544.7	29.3	1088.0
Benzofluoranthenes /	4	252	<1	96	33593.0	1362.6	15.1	1177.0
benzopyrenes	4		<1	90	33393.0			1177.0
C1 252 *		266	<1	N.D	8901.1	352.7	15.1	337.4
C2 252 *		280	<1	N.D	4821.7	166.7	12.7	199.5
Sum 252 *			0	96	47315.8	1882.0	42.9	1713.9
Dibenzoanthracene / Indenopyrene /								
Benzoperylene	3	276	<1	92	15104.2	495.3	8.2	558.5
, ,								
C1 276 *		290	<1	N.D	3902.9	133.4	5.5	90.7
C2 276 *		304	<1	N.D	910.4	54.1	4.2	62.5
Sum 276 *			0	92	19917.5	682.7	17.9	711.6
Sum of all fractions *			0	101	246416.4	9198.4	268.4	8261.9
Sum of NPD fraction *			0	107	59618.5	2140.5	127.5	3061.7
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.28	0.32	0.30	0.91	0.59

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

* Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

EPA 16 PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1775396	CL1775397	CL1775392	CL1775393	CL1775394	CL1775395
	Station :	QC Blank	Reference Material (% Recovery)	BH14 0.75	BH14 1.75	BH14 4.00	CRM
PAH	Mass	QO Blank	110001019)	BI114 0.75	BITT4 1.73	B1114 4.00	OTTIVI
Naphthalene *	128	<1	114.7	861.4	57.5	3.0	605.0
Acenaphthylene	152	<1	117.2	1865.4	52.9	<1	51.1
Acenaphthene	154	<1	116.9	752.7	43.4	<1	33.0
Fluorene	166	<1	115.9	2336.7	86.6	3.0	53.9
Phenanthrene	178	<1	106.6	20067.7	547.0	11.8	379.2
Dibenzothiophene	184	<1	103.1	1575.8	44.2	2.3	43.7
Anthracene	178	<1	99.4	4814.5	188.2	<1	141.0
Fluoranthene	202	<1	99.6	31874.8	1149.1	6.0	588.4
Pyrene	202	<1	97.6	24628.8	935.6	6.6	458.7
Benzo[a]anthracene	228	<1	96.4	12216.7	503.4	2.9	260.7
Chrysene	228	<1	99.1	13871.7	516.0	7.6	393.8
Benzo[b]fluoranthene	252	<1	94.9	10007.4	329.1	4.8	423.9
Benzo[k]fluoranthene	252	<1	92.6	4891.3	360.1	1.1	211.1
Benzo[e]pyrene	252	<1	103.8	7712.6	284.3	6.7	320.6
Benzo[a]pyrene	252	<1	94.4	10981.6	389.1	2.6	221.3
Indeno[123,cd]pyrene	276	<1	95.1	7237.7	227.1	2.1	276.8
Dibenzo[a,h]anthracene	278	<1	80.9	1771.6	54.6	<1	63.2
Benzo[ghi]perylene	276	<1	101.1	6095.0	213.5	6.1	218.4

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$17_8712
 Date Booked in:
 14-Sep-17

 QC Batch Number:
 170007
 Date Extracted:
 21-Sep-17

 Directory:
 290917PCB.TQ1
 Date Analysed:
 28-Sep-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

				Con	centration,	(μg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1775392	BH14 0.75	1.1	0.9	0.6	0.5	0.9	1.0	1.1
CL1775393	BH14 1.75	0.2	0.1	0.1	0.1	0.1	0.1	0.1
CL1775394	BH14 4.00	0.1	0.1	<0.08	<0.08	0.1	<0.08	<0.08
CL1775395	CRM	2.2	4.0	4.2	3.4	3.3	4.2	2.0
CL1775396	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1775397	Reference Material (% Recovery)	99.4	115.7	115.0	104.4	117.8	116.0	117.1
·								
·								
·								

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17_8712
QC Batch Number: 170007
Directory: 270917.TQ1
Method: Ultrasonic

Matrix:

Date Booked in:
Date Extracted:
Date Analysed:
UKAS Accredited:

Compounds marked * are not UKAS or MCerts accredited

Sample ID :	CL1775392	CL1775393	CL1775394	CL1775395	CL1775396			
Client ID :	BH14 0.75	BH14 1.75	BH14 4.00	CRM	QC Blank			

Compound			Concentra	tion (μg/kg)	
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10
Hexachlorobenzene	0.14	<0.10	<0.10	5.57	<0.10
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10
p,p'-DDE	1.90	0.31	0.16	2.22	<0.10
Dieldrin	0.57	0.14	<0.10	0.36	<0.10
p,p'-DDD	0.67	0.16	<0.10	2.99	<0.10
p,p'-DDT	0.39	<0.10	<0.10	0.38	<0.10

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17 8712

Directory: E:\TES\DATA\2017\0921HSA GC9\092117 2017-09-21 11-30-37\133B3301.D

Method: Headspace GCFID

Matrix: Soil

Date Booked in: 14-Sep-17
Date extracted: 21-Sep-17

Date Analysed: 21-Sep-17, 2

* Sample data with an asterisk are not UKAS accredited.

		C	oncentratio	on, (mg/kg) - a	s wet weig	ht			Aliphatics		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
CL1775392	BH14 0.75	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775393	BH14 1.75	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775394	BH14 4.00	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775396	QC Blank	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775397	Reference Material (% Recovery)	99	99	98	98	97	114	110	107	98	108

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI **Customer and Site Details:**

Job Number: s17_8712 Separation: Silica gel 171031 Eluents: Hexane, DCM QC Batch Number:

D:\TES\DATA\2017\092717\092717 2017-09-27 09-53-19\B-025-62-RMS171031ARO.D Directory:

Method: Ultra Sonic

Matrix: Soil Date Booked ir

14-Sep-17 Date Extracted 25-Sep-01 Date Analysed 27-Sep-17, 15:15:31

		Concentration, (mg/kg) - as wet weight													
* This sample data is not UP	(AS accredited.	>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8 ·	- C40		
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics		
CL1775392	BH14 0.75	<4.16	<4*	<4.16*	<4	5.17	14.2	10.7	73.2	40.6	247	57.8	355		
CL1775393	BH14 1.75	<4.12	<4*	<4.12*	<4	<4.12	<4	<4.12	8.94	14.5	24.8	<20.6	38.7		
CL1775394	BH14 4.00	<4.2	<4*	<4.2*	<4	<4.2	<4	<4.2	<4	<9.2	11	<21	20.2		
CL1775396	QC Blank	<4.16	<4*	<4.16*	<4	<4.16	<4	<4.16	<4	<9.1	<8.76	<20.8	<20		
CL1775397	Reference Material (% Recovery)	98	126*	89*	97	94	91	92	92	89	93	91	93		

Report Number: EFS/178712

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	CL1775392 to CL1775395	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Naphthalene). These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1775392 to CL1775395	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.
TPHUSSI		The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Banding C10-C12 on the Aliphatic fraction and C8-C10 on the Aromatic fraction). These circumstances should be taken into consideration when utilising the data.

Sample Descriptions

lient :	Causeway Geotech Ltd	
ite :	Arklow Sewerage Scheme Marine C	Outfall GI
eport Number :	S17_8712	
		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1775392	BH14 0.75	MARINE SEDIMENT MARINE SEDIMENT MARINE SEDIMENT
CL/1775393 CL/1775394	BH14 1.75	MARINE SEDIMENT
CL/1775394	BH14 4.00	MARINE SEDIMENT
CL/1775395	CRM QC Blank	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1775396 CL/1775397	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
021110001	rtoloronoo matemar (xo rtobovery)	QOALITY GOVERNOOL OF MAIL EL
	·	

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-65413-2

Issue No.: 2

Date of Issue 04/10/2017

Customer Details: ESG Environmental Chemistry, P O Box 100, Bretby Business Park, Burton-on-

Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: S178712

Quotation Reference: 170504/08

Description: 3 soil samples

Date Received: 22/09/2017

Date Started: 26/09/2017

Date Completed: 03/10/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: This report replaces issue 1 in its entirety

Approved By: Matthew Hickson, Laboratory Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

CAS No

1002-53-5

56573-85-4

Codes

N

Results Summary

Determinand

dibutyltin (DBT)

tributyltin (TBT)

Report No.: 17-65413-2 Customer Reference: S178712 Customer Order No: 42062 BEC

	Customer S	Sample No	S1775392	S1775393	S1775394
	Custome	r Sample ID	BH14 0.75	BH14 1.75	BH14 4.00
	RPS	Sample No	340625	340626	340627
	Sa	mple Type	SOIL	SOIL	SOIL
	Sample	e Depth (m)	0.75m	1.75m	4.00m
	Sai	mpling Date	22/08/2017	22/08/2017	22/08/2017
SOP	Units	RL			
in house	mg/kg as cation	0.02	< 0.02	< 0.02	< 0.02
in house	mg/kg as cation	0.05	< 0.05	< 0.05	< 0.05

Report No.: 17-65413-2Customer Reference: S178712
Customer Order No: 42062 BEC

Comments

Job	Description	Job Comments
17-65413	3 soil samples	Blank: <rl &="" -="" 100%="" 107%<="" aqc:="" dbt="" for="" tbt="" td=""></rl>

Deviating Samples

Report No.: 17-65413-2Customer Reference: S178712
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63).

RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below. Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed. Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating Sample	Reason for Sample Deviation
340625	S1775392		22/08/2017	60ml amber glass jar	No	
340626	S1775393		22/08/2017	60ml amber glass jar	No	
340627	S1775394		22/08/2017	60ml amber glass jar	No	

Report Information

Key to Report Codes

U	UKAS Accredited
M	MCERTS Accredited
N	Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units) Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1	Clay - Brown
Type 2	Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

ESG Environmental Chemistry - Requested Analysis

S178708

Customer Causeway Geotech Ltd Site Arklow Sewerage Scher

Arklow Sewerage Scheme Marine Outfall GI

Report No S178708

Consignment No S68873
Date Logged 14-Sep-2017

Report Due 02-Oct-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	PAHSED	PCBMS3Q		Sub005		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB-7 Congeners (Marine Sediments)	^DibutyItin	^TributyItin	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
CL/1775381	BH15 0.50	25/08/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775382	BH15 2.50	25/08/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1775383	CRM	25/08/17		R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1775384	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1775385	Reference Material (% Recovery	/)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ID Number	Description	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Copper (MS) Sediment	Lead (MS) Sediments
S1775381	BH15 0.50	11.6	0.47	14.2	44.8	53.4
S1775382	BH15 2.50	8.9	0.13	8.1	17.8	20.8
S1775383	CRM	16.65	1.475	58.67	57.83	73.36
S1775384	QC Blank	<0.5	<0.04	<0.5	< 0.5	<0.5
S1775385	Reference Material (% Recovery)	105	107	107	95	109

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Manganese	Mercury (MS)	Nickel (MS)	Zinc (MS)	Iron
ID Number	Description	(MS) Sediments	Sediments	Sediments	Sediments	(Sediments)
S1775381	BH15 0.50	592.8	0.06	15.2	147.9	26100
S1775382	BH15 2.50	227.9	0.06	7.2	53	12500
S1775383	CRM	1117	0.707	31.16	306.6	27700
S1775384	QC Blank	<0.5	<0.015	<0.5	<2	<36
	Reference Material					
S1775385	(% Recovery)	103	102	106	105	105

	Method Codes	TMSS	WSLM59	ANC	Sub005	Sub005
	Detection Limit	0.1	0.02	0.12		
	Units	%	% M/M	%	mg/kg	mg/kg
		Tot.Moisture @	Total Organic			
			Carbon	Carbonate %	^Dibutyltin	^Tributyltin
ID Number	Description	105C	(Sediment)			
S1775381	BH15 0.50	10.7	0.31	7.44	<0.02	<0.05
S1775382	BH15 2.50	15.9	0.08	2.88	<0.02	<0.05
S1775383	CRM		2.8645			
S1775384	QC Blank		<0.02		<0.02	< 0.05
	Reference Material					
S1775385	(% Recovery)		91	102	100	107

Sample ID	Sample ID Client ID				
CL/1775381	BH15 0.50	20.7			
CL/1775382	BH15 2.50	19.1			

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

		Sample ID :	CL1775384	CL1775385	CL1775381	CL1775382	CL1775383
		Station :	QC Blank	e Material (% F		BH15 2.50	CRM
PAH Fraction	# PAH	Mass	-,				
Naphthalene *	1	128	<1	114.7	19.2	1.7	605.0
C1 Naphthalenes *	2	142	<1	114.6	10.3	2.1	345.0
C2 Naphthalenes *		156	<1	N.D	13.8	3.0	227.8
C3 Naphthalenes *		170	<1	N.D	11.2	3.1	166.2
C4 Naphthalenes *		184	<1	N.D	9.3	2.3	124.4
Sum Naphthalenes *			0	115	64	12	1468
Phenanthrene / Anthracene	2	178	<1	103.0	34.0	30.6	520.2
C1 178 *		192	<1	N.D	27.3	13.9	303.2
C2 178 *		206	<1	N.D	31.8	11.0	269.4
C3 178 *		220	<1	N.D	24.2	4.8	179.1
Sum 178 *			0	103	117.3	60.4	1271.9
Dibenzothiophene		184	<1	103	5.6	1.9	43.7
C1 Dibenzothiophenes *		198	<1	N.D	7.7	1.7	86.6
C2 Dibenzothiophenes *		212	<1	N.D	17.1	1.6	117.8
C3 Dibenzothiophenes *		226	<1	N.D	19.1	<1	73.4
Sum Dibenzothiophenes *			0	103	49.5	5.2	321.5
Fluoranthene / pyrene	2	202	<1	99	190.1	73.7	1047.1
C1 202 *		216	<1	N.D	65.3	16.7	291.8
C2 202 *		230	<1	N.D	34.6	10.4	211.3
C3 202 *		244	<1	N.D	20.9	4.7	136.6
Sum 202 *			0	99	311.0	105.4	1686.8
Benzoanthracene / Chrysene	2	228	<1	98	91.3	32.8	654.5
C1 228 *		242	<1	N.D	51.8	11.0	283.0
C2 228 *		256	<1	N.D	28.2	7.6	150.5
Sum 228 *			0	98	171.2	51.4	1088.0
Benzofluoranthenes / benzopyrenes	4	252	<1	96	114.9	47.3	1177.0
C1 252 *		266	<1	N.D	46.9	14.0	337.4
C2 252 *		280	<1	N.D	29.8	8.6	199.5
Sum 252 *			0	96	191.6	69.9	1713.9
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	92	42.9	19.9	558.5
C1 276 *		290	<1	N.D	19.4	5.6	90.7
C2 276 *		304	<1 <1	N.D N.D	5.8	1.2	62.5
Sum 276 *		30 4	0	92	68.1	26.7	62.5 711.6
Sum of all fractions *			0	101	972.4	331.4	8261.9
Sum of NPD fraction *	 		0	107	230.7	77.9	3061.7
	 		#DIV/0!	0.28	0.31	0.31	
NPD / 4-6 ring PAH ratio *					U.J I	U.31	0.59

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

* Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1775384	CL1775385	CL1775381	CL1775382	CL1775383
	Station :	QC Blank	Reference Material (% Recovery)	BH15 0.50	BH15 2.50	CRM
PAH	Mass					
Naphthalene *	128	<1	114.7	19.2	1.7	605.0
Acenaphthylene	152	<1	117.2	7.3	2.1	51.1
Acenaphthene	154	<1	116.9	5.8	<1	33.0
Fluorene	166	<1	115.9	10.5	2.7	53.9
Phenanthrene	178	<1	106.6	20.1	24.0	379.2
Dibenzothiophene	184	<1	103.1	5.6	1.9	43.7
Anthracene	178	<1	99.4	13.8	6.6	141.0
Fluoranthene	202	<1	99.6	81.8	39.1	588.4
Pyrene	202	<1	97.6	108.3	34.6	458.7
Benzo[a]anthracene	228	<1	96.4	45.0	15.8	260.7
Chrysene	228	<1	99.1	46.3	16.9	393.8
Benzo[b]fluoranthene	252	<1	94.9	30.7	13.4	423.9
Benzo[k]fluoranthene	252	<1	92.6	19.2	8.1	211.1
Benzo[e]pyrene	252	<1	103.8	29.0	10.8	320.6
Benzo[a]pyrene	252	<1	94.4	36.0	15.0	221.3
Indeno[123,cd]pyrene	276	<1	95.1	19.0	9.2	276.8
Dibenzo[a,h]anthracene	278	<1	80.9	4.7	1.8	63.2
Benzo[ghi]perylene	276	<1	101.1	19.2	8.9	218.4

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$17_8708
 Date Booked in:
 14-Sep-17

 QC Batch Number:
 170007
 Date Extracted:
 21-Sep-17

 Directory:
 290917PCB.TQ1
 Date Analysed:
 28-Sep-17

 Method:
 Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

				Con	centration,	(μg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1775381	BH15 0.50	<0.08	<0.08	0.2	0.2	0.1	0.1	<0.08
CL1775382	BH15 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1775383	CRM	2.2	4.0	4.2	3.4	3.3	4.2	2.0
CL1775384	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	< 0.08
CL1775385	Reference Material (% Recovery)	99.4	115.7	115.0	104.4	117.8	116.0	117.1

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$17_8708
QC Batch Number: 170007
Directory: 270917.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:14-Sep-17Date Extracted:27-Sep-17Date Analysed:28-Sep-17UKAS Accredited:No

Compounds marked * are not UKAS or MCerts accredited

Sample ID:	CL1775381	CL1775382	CL1775383	CL1775384	CL1775385
					Reference Material (%
Client ID:	BH15 0.50	BH15 2.50	CRM	QC Blank	Recovery)

Compound		Concentration (µg/kg)										
alpha-HCH	<0.10	<0.10	<0.10	<0.10	108							
Hexachlorobenzene	<0.10	<0.10	5.57	<0.10	100							
gamma-HCH	<0.10	<0.10	<0.10	<0.10	120							
p,p'-DDE	<0.10	<0.10	2.22	<0.10	114							
Dieldrin	<0.10	<0.10	0.36	<0.10	127							
p,p'-DDD	<0.10	<0.10	2.99	<0.10	109							
p,p'-DDT	<0.10	<0.10	0.38	<0.10	106							

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17 8708

Directory:

E:\TES\DATA\2017\0921HSA GC9\092117 2017-09-21 11-30-37\123B2301.D

Method: Headspace GCFID

Matrix: Soil

Date Booked in: 14-Sep-17
Date extracted: 21-Sep-17

Date Analysed: 21-Sep-17, 1

* Sample data with an asterisk are not UKAS accredited.

		С	oncentration	on, (mg/kg) - a	s wet weig	ht			Aliphatics		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
CL1775381	BH15 0.50	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775382	BH15 2.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775384	QC Blank	< 0.010	<0.010	<0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1775385	Reference Material (% Recovery)	103	105	103	104	101	109	104	108	110	107

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: s17_8708 Separation: Silica gel 171031 QC Batch Number: Eluents: Hexane, DCM D:\TES\DATA\2017\092717\092717 2017-09-27 09-53-19\B-025-62-RMS171031ARO.D Directory:

Method: Ultra Sonic

Matrix: Soil Date Booked ir

14-Sep-17 Date Extracted 25-Sep-17 Date Analysed 27-Sep-17, 15:15:31

		Concentration, (mg/kg) - as wet weight											
* This sample data is not U	KAS accredited.	>C8 - C10 >C10 - C12		- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8	- C40	
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
CL1775381	BH15 0.50	<4.08	<4*	<4.08*	<4	<4.08	<4	<4.08	<4	9.4	<8.76	<20.4	<20
CL1775382	BH15 2.50	<4.12	<4*	<4.12*	<4	<4.12	4.21	<4.12	<4	<9	9.3	<20.6	<20
CL1775384	QC Blank	<4.16	<4*	<4.16*	<4	<4.16	<4	<4.16	<4	<9.1	<8.76	<20.8	<20
CL1775385	Reference Material (% Recovery)	98	126*	89*	97	94	91	92	92	89	93	91	93

Report Number: EFS/178708

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	I t∩	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Naphthalene) . These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1775381 to CL1775383	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.
TPHUSSI		The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Banding C10-C12 on the Aliphatic fraction and C8-C10 on the Aromatic fraction) . These circumstances should be taken into consideration when utilising the data.

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine Ou	utfall GI
Report Number :	S17_8708	
		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1775381	BH15 0.50	MARINE SEDIMENT MARINE SEDIMENT
CL/1775381 CL/1775382	BH15 0.50 BH15 2.50	MARINE SEDIMENT
CL/1775383	CRM	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1775384	QC Blank	QUALITY CONTROL SAMPLE
CL/1775383 CL/1775384 CL/1775385	CRM QC Blank Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
	1	
	+	
	1	
	1	
	1	

Appendix A Page 1 of 1 12/12/2017

Certificate of Analysis

Report No.: 17-65412-2

Issue No.: 2

Date of Issue 04/10/2017

Customer Details: ESG Environmental Chemistry, P O Box 100, Bretby Business Park, Burton-on-

Trent, Staffordshire, DE15 0XD

Customer Contact: Catherine Goodwin

Customer Order No.: 42062 BEC

Customer Reference: S178708

Quotation Reference: 170504/08

Description: 2 soil samples

Date Received: 22/09/2017

Date Started: 26/09/2017

Date Completed: 03/10/2017

Test Methods: Details available on request (refer to SOP code against relevant result/s)

Notes: This report replaces issue 1 in its entirety

Approved By: Matthew Hickson, Laboratory Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

RPS Mountainheath Limited, Registered in England No. 2772276, a wholly-owned subsidiary of RPS Consulting Services Ltd.

A member of the RPS Group plc. Terms and conditions apply - copy on request

Page 1 of 5

Results Summary

Report No.: 17-65412-2

Customer Reference: S178708 Customer Order No: 42062 BEC

					_		
				Customer	Sample No	S1775381	S1775382
				Custome	r Sample ID	BH15 0.50	BH15 2.50
				RPS	Sample No	340623	340624
				Sa	mple Type	SOIL	SOIL
				Sample	e Depth (m)	0.50m	2.50m
				Sai	mpling Date	25/08/2017	25/08/2017
Determinand	CAS No	Codes	SOP	Units	RL		
butyltin (DBT)	1002-53-5	N	in house	mg/kg as cation	0.02	< 0.02	< 0.02
ibutyltin (TBT)	56573-85-4	N	in house	mg/kg as cation	0.05	< 0.05	< 0.05

Report No.: 17-65412-2Customer Reference: S178708
Customer Order No: 42062 BEC

Comments

Job	Description	Job Comments
17-65412	2 soil samples	Blank: <rl &="" -="" 100%<="" aqc:="" dbt="" for="" tbt="" td=""></rl>
		TBT - 107%

Deviating Samples

Report No.: 17-65412-2Customer Reference: S178708
Customer Order No: 42062 BEC

Our policy on Deviating Samples and reference list of Holding Times applied can be supplied on request. These have been implemented in accordance with UKAS Policy on Deviating Samples (TPS63).

RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling, and it is possible that samples submitted may be declared to be deviating.

Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be invalid. The reason for a sample being declared to be deviating is indicated below.

Where no sampling date was supplied, samples have been declared to be deviating. However, if a date of sampling can be supplied, the results may be reissued with the deviating sample status removed.

Where the sample container used was unsuitable, the appropriate Holding Time was exceeded, or the sample is flagged as deviating for some other reason, re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating Sample	Reason for Sample Deviation
340623	S1775381		25/08/2017	60ml amber glass jar	No	
340624	S1775382		25/08/2017	60ml amber glass jar	No	

Report Information

Key to Report Codes

U	UKAS Accredited
M	MCERTS Accredited
N	Not accredited

S Subcontracted to approved laboratory

US Subcontracted to approved laboratory UKAS Accredited for the test

MS Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test

SI Subcontracted to internal RPS Group laboratory

USI Subcontracted to internal RPS Group laboratory UKAS Accredited for the test

MSI Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test

I/S (in results)
U/S (in results)
S/C (in results)
ND (in results)
Insufficient Sample
Unsuitable Sample
See Comments
Not Detected

DW (in units) Results are expressed on a dry weight basis

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an asreceived basis.

Soil Typing

Type 1	Clay - Brown
Type 2	Clay - Grey/Black

Type 3 Sand

Type 4 Top Soil (Standard)
Type 5 Top Soil (High Peat)
Type 6 Made Ground (>50% Clay)
Type 7 Made Ground (>50% Sand)
Type 8 Made Ground (>50% Top Soil)

Type X Other

Sample Retention and Disposal

Samples will generally* be retained for the following times prior to disposal:

Perishables, e.g. foodstuffs 1 month (if frozen) from the issue date of this report

Waters 2 weeks from the issue date of this report
Other Liquids 1 month from the issue date of this report
Solids (including Soils) 1 month from the issue date of this report

^{*}Sample retention may be subject to agreement with the customer for particular projects

Customer Causeway Geotech Ltd

Site Arklow Sewerage Scheme Marine Outfall GI

Report No S180841

Consignment No S70512
Date Logged 21-Nov-2017

Report Due 11-Dec-2017

		MethodID	ANC	CustSe	GROHSA	ICPMSS	пере			ec-20.				OGSNSED				PAHSED	PCBMS:		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	∾ Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	₁∟ Iron (Sediments)	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	S Tot.Moisture @ 105C	SI TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	No	Yes	Yes	Yes
CL/1784512	BH16 0.50	05/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784513	BH16 2.50	05/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784514	BH16 4.50	05/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784515	CRM	05/11/17		R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			R
CL/1784516	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1784517	Reference Material (% Recovery	<i>'</i>)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)	1	Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1784512	BH16 0.50	26.4	0.19	16.4	52.2	45
S1784513	BH16 2.50	8.8	0.85	19.2	17.9	19.3
S1784514	BH16 4.50	13.1	0.98	30.9	29.1	25.7
S1784515	CRM	17.77	1.611	62.77	56.42	81.22
S1784516	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
S1784517	Reference Material (% Recovery)	99	98	100	97	99

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)
ID Number	Description	. ,				(3.2.7
S1784512	BH16 0.50	639.3	0.05	13.6	113.9	26400
S1784513	BH16 2.50	417.5	0.02	20.8	104.7	23300
S1784514	BH16 4.50	828.4	0.04	35.1	146.2	34700
S1784515	CRM	1200	0.761	33.1	327.2	28200
S1784516	QC Blank	<0.5	<0.015	<0.5	<2	<36
	Reference Material					
S1784517	(% Recovery)	96	95	99	99	99

	Method Codes	TMSS	WSLM59	ANC	OGSNSED	OGSNSED
	Detection Limit	0.1	0.02	0.12	1	1
	Units	%	% M/M	%	ug Sn/kg	ug Sn/kg
		Tot.Moisture @	Total Organic		Dibutul Tip	Tuiburtud Tim
			Carbon	Carbonate %	Dibutyl Tin	Tributyl Tin
ID Number	Description	105C	(Sediment)		(Sediments)	(Sediments)
S1784512	BH16 0.50	2.2	0.15	2.64	<1	<1
S1784513	BH16 2.50	59.8	9.2	3.12	<1	<1
S1784514	BH16 4.50	60	8.8	2.88	<1	<1
S1784515	CRM		3.1073		12	94
S1784516	QC Blank		<0.02		<1	<1
	Reference Material					
S1784517	(% Recovery)		98	98	93	91

Sample ID	Client ID	Moisture (%)
CL/1784512	BH16 0.50	16.2
CL/1784513	BH16 2.50	60.9
CL/1784514	BH16 4.50	60.7

		Sample ID :	CL1784516	CL1784517	CL1784515	CL1784512	CL1784513	CL1784514
		Station :	QC Blank	Reference Material (% Recovery)	1941b	BH16 0.50	BH16 2.50	BH16 4.50
PAH Fraction	# PAH	Mass						
Naphthalene	1	128	<1	104	582	<1	4	3
C1 Naphthalenes *	2	142	<1	100	326	<1	11	13
C2 Naphthalenes *		156	<1	N.D	219	<1	84	123
C3 Naphthalenes *		170	<1	N.D	179	<1	22	36
C4 Naphthalenes *		184	<1	N.D	120	<1	21	34
Sum Naphthalenes *			0	102	1427	0	142	209
Phenanthrene / Anthracene	2	178	<1	105	519	<1	12	16
C1 178 *		192	<1	N.D	310	<1	21	26
C2 178 *		206	<1	N.D	244	<1	17	27
C3 178 *		220	<1	N.D	171	<1	9	14
Sum 178 *			0	105	1243	0	59	83
Dibenzothiophene		184	<1	105	47	<1	4	5
C1 Dibenzothiophenes *		198	<1	N.D	72	<1	5	7
C2 Dibenzothiophenes *		212	<1	N.D	105	<1	5	7
C3 Dibenzothiophenes *		226	<1	N.D	67	<1	3	5
Sum Dibenzothiophenes *			0	105	291	0	17	24
Fluoranthene / pyrene	2	202	<1	105	1062	<1	11	13
C1 202 *		216	<1	N.D	292	<1	22	25
C2 202 *		230	<1	N.D	248	<1	35	85
C3 202 *		244	<1	N.D	112	<1	15	20
Sum 202 *			0	105	1713	0	84	143
Benzoanthracene / Chrysene	2	228	<1	104	679	<1	11	14
C1 228 *		242	<1	N.D	272	<1	16	15
C2 228 *		256	<1	N.D	147	<1	21	23
Sum 228 *			0	104	1098	0	48	52
Benzofluoranthenes / benzopyrenes	4	252	<1	99	1224	<1	16	21
C1 252 *		266	<1	N.D	320	<1	99	43
C2 252 *		280	<1	N.D	231	<1	14	19
Sum 252 *			0	99	1775	0	129	84
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	97	604	<1	9	14
C1 276 *		290	<1	N.D	89	<1	11	7
C2 276 *		304	<1	N.D N.D	38	<1	3	4
Sum 276 *		JU 4	0	97	731	0	23	25
Sum of all fractions *	 		0	103	8278.6	0.0	502.3	621.2
	 							
Sum of NPD fraction *	 		0	104	2961.2	0.0	217.7	316.7
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.26	0.56	#DIV/0!	0.77	1.04

N.D = Not Determined as these compounds are not in the reference material spike.
 As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1784516	CL1784517	CL1784515	CL1784512	CL1784513	CL1784514
	Station :	QC Blank	Reference Material (% Recovery)	1941b	BH16 0.50	BH16 2.50	BH16 4.50
PAH	Mass						
Naphthalene	128	<1	104.4	582.4	<1	3.7	3.3
Acenaphthylene	152	<1	103.2	59.8	<1	1.0	1.2
Acenaphthene	154	<1	105.0	32.9	<1	4.1	3.1
Fluorene	166	<1	104.7	50.4	<1	4.2	5.7
Phenanthrene	178	<1	107.9	372.7	<1	10.6	14.2
Dibenzothiophene	184	<1	105.5	46.9	<1	4.1	5.0
Anthracene	178	<1	102.5	146.5	<1	1.5	2.0
Fluoranthene	202	<1	104.7	596.8	<1	4.5	5.4
Pyrene	202	<1	105.9	464.8	<1	6.4	7.9
Benzo[a]anthracene	228	<1	101.7	269.7	<1	3.2	3.7
Chrysene	228	<1	106.4	409.7	<1	7.4	10.4
Benzo[b]fluoranthene	252	<1	97.6	449.7	<1	6.7	8.4
Benzo[k]fluoranthene	252	<1	94.8	213.0	<1	1.3	1.7
Benzo[e]pyrene	252	<1	103.4	326.8	<1	6.6	9.1
Benzo[a]pyrene	252	<1	99.4	234.4	<1	1.6	2.2
Perylene *	252	<1	102.8	257.0	1.5	2331	1219
Indeno[123,cd]pyrene	276	<1	94.7	295.9	<1	2.4	3.0
Dibenzo[a,h]anthracene	278	<1	97.3	57.4	<1	<1	1.4
Benzo[ghi]perylene	276	<1	99.9	250.4	<1	7.1	10.0

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$18_0841
 21-Nov-17

 QC Batch Number:
 170016
 Date Extracted:
 01-Dec-17

 Directory:
 041217PCB.TQ1
 Date Analysed:
 05-Dec-17

 Method:
 Ultrasonic
 05-Dec-17

Compounds marked * are not UKAS or MCerts accredited

		Concentration, (μg/kg)										
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*				
CL1784512	BH16 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				
CL1784513	BH16 2.50	0.28	0.28	<0.08	<0.08	<0.08	<0.08	<0.08				
CL1784514	BH16 4.50	0.18	0.18	<0.08	<0.08	<0.08	<0.08	<0.08				
CL1784515	CRM	2.96	4.08	4.48	2.94	3.73	3.47	2.38				
CL1784516	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				
CL1784517	Reference Material (% Recovery)	113	111	111	113	108	107	113				
					,							
·												

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18_0841
QC Batch Number: 170016
Directory: 041217.TQ1
Method: Ultrasonic

Matrix: Sediment
Date Booked in: 21-Nov-17
Date Extracted: 01-Dec-17
Date Analysed: 05-Dec-17

Date Analysed: 05-Dec-UKAS Accredited: No

Compounds marked * are not UKAS or MCerts accredited

Sample ID:	CL1784512	CL1784513	CL1784514	CL1784515	CL1784516	CL1784517
						Reference Material
Client ID:	BH16 0.50	BH16 2.50	BH16 4.50	CRM	QC Blank	(% Recovery)

Compound		Concentration (μg/kg)									
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	88					
Hexachlorobenzene	<0.10	<0.10	<0.10	7.92	<0.10	98					
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	93					
p,p'-DDE	<0.10	<0.10	<0.10	2.80	<0.10	84					
Dieldrin	<0.10	<0.10	<0.10	0.29	<0.10	91					
p,p'-DDD	<0.10	<0.10	<0.10	3.39	<0.10	86					
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10	96					

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18 0841

Directory: D:\TES\DATA\Y2017\1204HSA_GC12\\171204 2017-12-04 17-22-19\049F4901.D

Method: Headspace GCFID

Matrix: Soil
Date Booked in: 21-Nov-17

Date extracted: 04-Dec-17

Date Analysed: 05-Dec-17, 09:01:14

* Sample data with an asterisk are not UKAS accredited.

		Co	Concentration, (mg/kg) - as wet weight						Aliphatics	,	
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene			C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
* CL1784512	BH16 0.50	<0.010	<0.010	< 0.010	<0.010	<0.010*	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784513	BH16 2.50	<0.010	<0.010	< 0.010	<0.010	<0.010*	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784514	BH16 4.50	<0.010	<0.010	< 0.010	<0.010	<0.010*	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784516	QC BLANK	< 0.010	<0.010	< 0.010	< 0.010	<0.010*	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784517	Reference Material (% recovery)	102	101	98	99	96*	120	117	110	88	114

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI Job Number: S18 0841

Separation: Silica gel Eluents: Hexane, DCM Date Booked ir 21-Nov-17 Date Extracted 05-Dec-17 Date Analysed: 06-Dec-17, 17:50:19

Soil

Matrix:

Directory: Method:

QC Batch Number:

C:\CHEM32\1\DATA\120617TPH GC15\120617 2017-12-06 12-58-48\OnlineEdited--024B.D

Ultra Sonic

171301

						Conce	entration, (mg	/kg) - as wet	weight					
* This sample data is not UKAS accredited.		>C8 - C10 >C10 - C12		>C12 - C16		>C16 - C21		>C21 - C35		>C8 - C40				
	Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
*	CL1784512	BH16 0.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
ł .	CL1784513	BH16 2.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
•	CL1784514	BH16 4.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	8.91	<20	<20
ł .	CL1784516	QC Blank	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
*	CL1784517	Reference Material (% Recovery)	99	99	99	102	97	91	96	96	99	97	97	94
														-
			_											

Sample Descriptions

Client :	Causeway Geotech Ltd									
Site :	Arklow Sewerage Scheme Marine Outfall GI									
Report Number :	S18_0841									
	0.0_00	Note: major constituent in upper case								
Lab ID Nombar	Olient ID	Description								
Lab ID Number	Client ID									
CL/1784512	BH16 0.50	MARINE SEDIMENTS								
CL/1784513	BH16 2.50	MARINE SEDIMENTS MARINE SEDIMENTS								
CL/1784514	BH16 4.50	MARINE SEDIMENTS								
CL/1784515	CRM QC Blank	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE								
CL/1784516 CL/1784517	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE								
CL/1/8451/	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE								
<u> </u>										
		<u> </u>								

Appendix A Page 1 of 1 12/12/2017

Customer Causeway Geotech Ltd

Site Arklow Sewerage Scheme Marine Outfall GI

Report No S180843

Consignment No S70498
Date Logged 21-Nov-2017

Report Due 11-Dec-2017

		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	OGSNSED		PAHSED	PCBMS3Q		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	No	Yes	Yes	Yes
CL/1784522	BH17 1.50	03/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784523	BH17 3.50	03/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784524	CRM	03/11/17		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			R
CL/1784525	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1784526	Reference Material (% Recovery	<i>(</i>)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)
ID Number	Description	Sediments	Sediments	Sediments	Sediment	Sediments
S1784522	BH17 1.50	8.8	0.38	16.7	19	9.1
S1784523	BH17 3.50	10.4	0.07	13.9	26.1	10.9
S1784524	CRM	17.77	1.611	62.77	56.42	81.22
S1784525	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
S1784526	Reference Material (% Recovery)	99	98	100	97	99

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Manganese	Mercury (MS)	Nickel (MS)	Zinc (MS)	Iron
ID Number	Description	(MS) Sediments	Sediments	Sediments	Sediments	(Sediments)
S1784522	BH17 1.50	631	<0.015	12.9	80.2	26500
S1784523	BH17 3.50	663	<0.015	12.4	111	26300
S1784524	CRM	1200	0.761	33.1	327.2	28200
S1784525	QC Blank	<0.5	<0.015	<0.5	<2	<36
S1784526	Reference Material (% Recovery)	96	95	99	99	99

	Method Codes	TMSS	WSLM59	ANC	OGSNSED	OGSNSED
	Detection Limit	0.1	0.02	0.12	1	1
	Units	%	% M/M	%	ug Sn/kg	ug Sn/kg
		Tot.Moisture @	Total Organic		Dibutul Tin	Tributed Tip
		_	Carbon	Carbonate %	Dibutyl Tin	Tributyl Tin (Sediments)
ID Number	Description	105C	(Sediment)		(Sediments)	(Seaiments)
S1784522	BH17 1.50	7	0.12	1.2	<1	<1
S1784523	BH17 3.50	5.6	0.14	0.72	<1	<1
S1784524	CRM		3.1073		120	94
S1784525	QC Blank		< 0.02		<1	<1
	Reference Material					
S1784526	(% Recovery)		98	98	93	91

Sample ID	Client ID	Moisture (%)
CL/1784522	BH17 1.50	3.6
CL/1784523	BH17 3.50	16.2

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAH Fraction			Sample ID :	CL1784525	CL1784526	CL1784524	CL1784522	CL1784523
PAH Fraction								
Recovery Recovery			Station :	QC Blank		1941b	BH17 1.50	BH17 3.50
Naphthalene					,			
C1 Naphthalenes * 2 142	PAH Fraction	# PAH	Mass					
C2 Naphthalenes *	Naphthalene	1	128	<1	104	582	<1	1.3
C3 Naphthalenes * C4 Naphthalenes * C5 Naphthalenes * C5 Naphthalenes * C6 Naphthalenes * C6 Naphthalenes * C6 Naphthalenes * C7 Naphthalenes * C8 Naphthalenes * C8 Naphthalenes * C8 Naphthalenes * C9 Naphthale	C1 Naphthalenes *	2	142	<1			<1	1.1
C4 Naphthalenes *	C2 Naphthalenes *			<1	N.D	219	<1	<1
Sum Naphthalenes	C3 Naphthalenes *		170	<1	N.D	179	<1	<1
Phenanthrene Anthracene 2	C4 Naphthalenes *		184	<1	N.D	120	<1	<1
C1 178 *	Sum Naphthalenes *			0	102	1427	0	2
C2 178 * 206	Phenanthrene / Anthracene	2	178	<1	105	519	<1	3.3
C3 178 * 220	C1 178 *		192	<1	N.D	310	<1	1.5
Sum 178 * 0 105 1243 0.0 5.9 Dibenzothiophene 184 <1	C2 178 *		206	<1	N.D	244	<1	1.1
Dibenzothiophene	C3 178 *		220	<1	N.D	171	<1	<1
C1 Dibenzothiophenes * 198	Sum 178 *			0	105	1243	0.0	5.9
C2 Dibenzothiophenes * C3 Dibenzothiophenes * C3 Dibenzothiophenes * C4 Dibenzothiophenes * C5 Dibenzothiophenes * C5 Dibenzothiophenes * C5 Dibenzothiophenes * C6 Dibenzothiophenes * C6 Dibenzothiophenes * C7 Dibenzothiophenes * C8 Dibenzothiophenes * C8 Dibenzothiophenes * C9 Dibenzothiophenes * C1 Dibenzothiophenes *	Dibenzothiophene		184	<1	105	47	<1	<1
C3 Dibenzothiophenes * 226 <1			198	<1	N.D	72	<1	<1
Sum Dibenzothiophenes* 0 105 291 0.0 0.0 Fluoranthene / pyrene 2 202 <1	C2 Dibenzothiophenes *		212	<1	N.D	105	<1	<1
Fluoranthene / pyrene 2 202 <1 105 1062 <1 6.2 C1 202* C1 216 <1 N.D 292 <1 1.7 C2 202* C2 202* C1 N.D 248 <1 <1 C1 C2 202* C1 N.D 248 <1 <1 C1 C2 202* C1 N.D 248 <1 <1 C1 C2 202* C1 N.D 112 <1 <1 <1 C1 C2 202* C1 N.D 112 <1 <1 <1 C1 C2 202* C1 N.D 112 <1 <1 <1 C1 C2 202* C1 N.D 112 <1 <1 <1 <1 C2 C2 C2* C1 N.D 272 <1 1.1 C2 C2 C28* C1 N.D 272 <1 1.1 C228* C228* C242 <1 N.D 272 <1 1.1 C228* C228* C242 <1 N.D 147 2.1 4.2 Sum 228* C1 N.D 147 2.1 4.2 Sum 228* C1 N.D 147 2.1 4.2 Sum 228* C1 N.D 144 1098 2.1 8.0 Benzofluoranthenes / benzopyrenes C1 252* C1 99 1224 <1 <1 <1 C1 252* C1 S22* C1 N.D 320 <1 1.3 C2 252* C280 <1 N.D 231 <1 <1 Sum 252* C252* C280 <1 N.D 231 <1 <1 Sum 252* C252* C280 <1 N.D 231 <1 <1 Sum 252* C252* C266 <1 N.D 231 <1 <1 <1 Sum 252* C252* C266 <1 N.D 231 <1 <1 <1 Sum 252* C252* C276* C280 <1 N.D 231 <1 <1 <1 Sum 252* C276	C3 Dibenzothiophenes *		226	<1	N.D	67	<1	<1
C1 202 *	Sum Dibenzothiophenes *			0	105	291	0.0	0.0
C2 202 * 230 <1		2		<1			<1	
C3 202 * 244 <1	C1 202 *		216	<1		292	<1	1.7
Sum 202 * 0 105 1713 0.0 8.0 Benzoanthracene / Chrysene 2 228 <1							<1	
Benzoanthracene / Chrysene 2 228 <1 104 679 <1 2.7	C3 202 *		244	<1	N.D	112	<1	
C1 228 *	Sum 202 *						0.0	
C2 228 * 256 <1	Benzoanthracene / Chrysene	2	228	<1		679	<1	2.7
Sum 228 * 0 104 1098 2.1 8.0 Benzofluoranthenes / benzopyrenes 4 252 <1				<1			· ·	
Benzofluoranthenes / benzopyrenes 4 252 <1	C2 228 *		256	<1				
benzopyrenes C1 252 *	Sum 228 *			0	104	1098	2.1	8.0
C1 252 * 266 <1		4	252	<1	99	1224	<1	<1
C2 252 * Sum 252 * Sum 252 * 280 <1 N.D 231	C1 252 *		266	<1	N.D	320	<1	1.3
Dibenzoanthracene / Indenopyrene / Benzoperylene 3 276 <1	C2 252 *			<1	N.D	231	<1	<1
Benzoperylene 3 276 <1	Sum 252 *			0	99	1775	0.0	1.3
C1 276 * 290 <1	Dibenzoanthracene / Indenopyrene /	2	276	.1	97	604	<i>-</i> 1	<i>-</i> 1
C2 276 * 304 <1	Benzoperylene		210		31	004	<u> </u>	< 1
Sum 276 * 0 97 731 0.0 0.0 Sum of all fractions * 0 103 8279 2.1 25.5 Sum of NPD fraction * 0 104 2961 0.0 8.3	C1 276 *		290	<1	N.D	89	<1	<1
Sum of all fractions * 0 103 8279 2.1 25.5 Sum of NPD fraction * 0 104 2961 0.0 8.3	C2 276 *		304	<1	N.D		<1	<1
Sum of NPD fraction * 0 104 2961 0.0 8.3	Sum 276 *			0		731	0.0	
Sum of NPD fraction * 0 104 2961 0.0 8.3	Sum of all fractions *			0	103	8279	2.1	25.5
	Sum of NPD fraction *			0	104	2961	0.0	8.3
	NPD / 4-6 ring PAH ratio *			#DIV/0!	0.26		0.00	

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1784525	CL1784526	CL1784524	CL1784522	CL1784523
	Station :	QC Blank	Reference Material (% Recovery)	1941b	BH17 1.50	BH17 3.50
PAH	Mass					
Naphthalene	128	<1	104.4	582.4	<1	1.3
Acenaphthylene	152	<1	103.2	59.8	<1	<1
Acenaphthene	154	<1	105.0	32.9	<1	<1
Fluorene	166	<1	104.7	50.4	<1	<1
Phenanthrene	178	<1	107.9	372.7	<1	3.3
Dibenzothiophene	184	<1	105.5	46.9	<1	<1
Anthracene	178	<1	102.5	146.5	<1	<1
Fluoranthene	202	<1	104.7	596.8	<1	3.3
Pyrene	202	<1	105.9	464.8	<1	3.0
Benzo[a]anthracene	228	<1	101.7	269.7	<1	1.3
Chrysene	228	<1	106.4	409.7	<1	1.4
Benzo[b]fluoranthene	252	<1	97.6	449.7	<1	<1
Benzo[k]fluoranthene	252	<1	94.8	213.0	<1	<1
Benzo[e]pyrene	252	<1	103.4	326.8	<1	<1
Benzo[a]pyrene	252	<1	99.4	234.4	<1	<1
Perylene *	252	<1	102.8	257.0	2.4	1.0
Indeno[123,cd]pyrene	276	<1	94.7	295.9	<1	<1
Dibenzo[a,h]anthracene	278	<1	97.3	57.4	<1	<1
Benzo[ghi]perylene	276	<1	99.9	250.4	<1	<1

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$18_0843
 Date Booked in:
 21-Nov-17

 QC Batch Number:
 170016
 Date Extracted:
 01-Dec-17

 Directory:
 041217PCB.TQ1
 Date Analysed:
 05-Dec-17

 Method:
 Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1784522	BH17 1.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784523	BH17 3.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784524	CRM	2.96	4.08	4.48	2.94	3.73	3.47	2.38
CL1784525	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784526	Reference Material (% Recovery)	113	111	111	113	108	107	113

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18_0843
QC Batch Number: 170016
Directory: 041217.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:21-Nov-17Date Extracted:01-Dec-17Date Analysed:05-Dec-17UKAS Accredited:No

Compounds marked * are not UKAS or MCerts accredited

Sample ID :	CL1784522	CL1784523	CL1784524	CL1784525	CL1784526
					Reference Material (%
Client ID:	BH17 1.50	BH17 3.50	CRM	QC Blank	Recovery)

Compound			Concentration (µg/kg)		
alpha-HCH	<0.10	<0.10	<0.10	<0.10	88
Hexachlorobenzene	<0.10	<0.10	7.92	<0.10	98
gamma-HCH	<0.10	<0.10	<0.10	<0.10	93
p,p'-DDE	<0.10	<0.10	2.80	<0.10	84
Dieldrin	<0.10	<0.10	0.29	<0.10	91
p,p'-DDD	<0.10	<0.10	3.39	<0.10	86
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	96

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18 0843

Directory: D:\TES\DATA\2017\1206HSA_GC9\120617 2017-12-06 14-49-22\035F3501.D

Method: Headspace GCFID

Matrix: Soil

Date Booked in: 21-Nov-17
Date extracted: 06-Dec-17

Date Analysed: 07-Dec-17, 00:49:54

* Sample data with an asterisk are not UKAS accredited.

		Co		on, (mg/kg) - a					Aliphatics	,	
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene			C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
* CL1784522	BH17 1.50	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784523	BH17 3.50	< 0.010	<0.010	<0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784525	QC Blank	< 0.010	<0.010	<0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784526	Reference Material (% Recovery)	98	96	105	107	102	116	94	124	118*	113

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 S18_0843
 Separation:
 Silica gel
 Date Booked ir
 21-Nov-17

 QC Batch Number:
 171297
 Eluents:
 Hexane, DCM
 Date Extracted
 04-Dec-17

 Directory:
 D:\TES\DATA\Y2017\120117TPH_GC3\120117C 2017-12-04 16-20-01\047B5701.D
 Date Analysed:05-Dec-17, 04:05:51

Method: Ultra Sonic

					Conce	entration, (mg	/kg) - as wet v	weight					
* This sample data is not U	KAS accredited.	>C8	- C10	>C10	- C12		- C16		- C21	>C21	- C35	>C8	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
* CL1784522	BH17 1.50	<4.08	<4	<4.08	<4	<4.08	<4	5.49	<4	<8.94	<8.76	<20.4	<20
* CL1784523	BH17 3.50	<4.08	<4	<4.08	<4	<4.08	<4	12.5	<4	11.3	9.6	26.4	<20
* CL1784525	QC Blank	<4.12	<4	<4.12	<4	<4.12	<4	<4.12	<4	<9	<8.76	<20.6	<20
* CL1784526	Reference Material (% Recovery)	92	90	85	109	82	85	86	82	95	93	87	87

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marine	Outfall GI
Report Number :	S18_0843	
Tioport Nambor .	0.10_00.10	Note: major constituent in upper case
Lab ID Number	Client ID	Description
CI /1784522		MARINE SEDIMENTS
CL/1784522 CL/1784523 CL/1784524 CL/1784525	BH17 1.50 BH17 3.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1784524	CRM QC Blank	QUALITY CONTROL SAMPLE
CL/1784525	QC Blank	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1784526	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
	1	

Appendix A Page 1 of 1 12/12/2017

Customer Causeway Geotech Ltd

Site Arklow Sewerage Scheme Marine Outfall GI

Report No S180834

Consignment No S70514
Date Logged 21-Nov-2017

Report Due 11-Dec-2017

							перо			ec-20.	- /												
		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	OGSNSED		PAHSED	PCBMS3Q		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	No	Yes	Yes	Yes
CL/1784477	BH18 0.50	06/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784478	BH18 2.50	06/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784479	BH18 4.50	06/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784480	CRM	06/11/17		R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			R
CL/1784481	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1784482	Reference Material (% Recovery	/)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Copper (MS) Sediment	Lead (MS) Sediments
	Description	000	ocumento.	••••••	ocuc.ii	000
S1784477	BH18 0.50	19.1	0.14	15.2	36.1	26.8
S1784478	BH18 2.50	7.2	0.11	16.4	14.6	7.6
S1784479	BH18 4.50	6.8	0.18	16.9	19	9.7
S1784480	CRM	18.28	1.56	61.38	59.16	82.15
S1784481	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
	Reference Material					
S1784482	(% Recovery)	96	101	102	93	98

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Manganese	Mercury (MS)	Nickel (MS)	Zinc (MS)	Iron
ID Number	Description	(MS) Sediments	Seaiments	Sediments	Sediments	(Sediments)
S1784477	BH18 0.50	584	0.49	13.4	143	26300
S1784478	BH18 2.50	615	0.03	15.4	55.3	26100
S1784479	BH18 4.50	587	0.03	15.5	60.4	25800
S1784480	CRM	1174	0.802	32.24	334.7	27100
S1784481	QC Blank	<0.5	<0.015	<0.5	<2	<36
_	Reference Material					
S1784482	(% Recovery)	98	90	102	96	99

	Method Codes	TMSS	WSLM59	ANC	OGSNSED	OGSNSED
	Detection Limit	0.1	0.02	0.12	1	1
	Units	%	% M/M	%	ug Sn/kg	ug Sn/kg
		Tot.Moisture @	Total Organic		Dibutul Tip	Tributal Tip
		_	Carbon	Carbonate %	Dibutyl Tin	Tributyl Tin
ID Number	Description	105C	(Sediment)		(Sediments)	(Sediments)
S1784477	BH18 0.50	11.1	0.11	4.8	<1	<1
S1784478	BH18 2.50	4.7	0.1	2.16	<1	<1
S1784479	BH18 4.50	6.8	0.1	0.96	<1	<1
S1784480	CRM		3.1073		120	94
S1784481	QC Blank		<0.02		<1	<1
	Reference Material					
S1784482	(% Recovery)		98	98	93	91

Sample ID	Client ID	Moisture (%)
CL/1784477	BH18 0.50	13.8
CL/1784478	BH18 2.50	13.6
CL/1784479	BH18 4.50	11.4

		Sample ID :	CL1784481	CL1784482	CL1784480	CL1784477	CL1784478	CL1784479
				Reference				
		Station :	QC Blank	Material (% Recovery)	1941b	BH18 0.50	BH18 2.50	BH18 4.50
PAH Fraction	# PAH	Mass						
Naphthalene	1	128	<1	104	582	1.7	<1	<1
C1 Naphthalenes *	2	142	<1	100	326	1.3	<1	<1
C2 Naphthalenes *		156	<1	N.D	219	1.3	2.1	<1
C3 Naphthalenes *		170	<1	N.D	179	1.0	4.2	1.0
C4 Naphthalenes *		184	<1	N.D	120	<1	2.3	<1
Sum Naphthalenes *			0	102	1427	5	9	1
Phenanthrene / Anthracene	2	178	<1	105	519	20.7	21.6	5.0
C1 178 *		192	<1	N.D	310	8.3	9.3	2.7
C2 178 *		206	<1	N.D	244	3.5	4.9	1.6
C3 178 *		220	<1	N.D	171	1.0	2.5	1.1
Sum 178 *			0	105	1243	33.5	38.3	10.3
Dibenzothiophene		184	<1	105	47	<1	1.1	<1
C1 Dibenzothiophenes *		198	<1	N.D	72	<1	1.2	<1
C2 Dibenzothiophenes *		212	<1	N.D	105	<1	<1	<1
C3 Dibenzothiophenes *		226	<1	N.D	67	<1	<1	<1
Sum Dibenzothiophenes *			0	105	291	0.0	2.3	0.0
Fluoranthene / pyrene	2	202	<1	105	1062	19.8	27.0	6.4
C1 202 *		216	<1	N.D	292	4.5	9.1	1.7
C2 202 *		230	<1	N.D	248	1.8	3.6	<1
C3 202 *		244	<1	N.D	112	<1	1.3	<1
Sum 202 *			0	105	1713	26.1	41.0	8.1
Benzoanthracene / Chrysene	2	228	<1	104	679	8.4	13.6	2.8
C1 228 *		242	<1	N.D	272	2.5	4.0	1.2
C2 228 *		256	<1	N.D	147	1.1	1.8	<1
Sum 228 *			0	104	1098	11.9	19.5	4.0
Benzofluoranthenes / benzopyrenes	4	252	<1	99	1224	8.7	13.4	<1
C1 252 *		266	<1	N.D	320	2.7	5.4	1.3
C2 252 *		280	<1	N.D	231	<1	2.1	<1
Sum 252 *			0	99	1775	11.3	20.9	1.3
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	<1	97	604	2.4	3.4	<1
C1 276 *		290	<1	N.D	89	1.2	<1	<1
C2 276 *		304	<1	N.D N.D	38	1.2 <1	<1	<1 <1
Sum 276 *		JU 4	0	97	731	3.6	3.4	0.0
Sum of all fractions *				103		91.8		24.8
			0		8279		134.0	
Sum of NPD fraction *			0	104	2961	38.9	49.1	11.4
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.26	0.56	0.73	0.58	0.85

N.D = Not Determined as these compounds are not in the reference material spike.
 As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1784481	CL1784482	CL1784480	CL1784477	CL1784478	CL1784479
	Station :	QC Blank	Reference Material (% Recovery)	1941b	BH18 0.50	BH18 2.50	BH18 4.50
PAH	Mass						
Naphthalene	128	<1	104.4	582.4	1.7	<1	<1
Acenaphthylene	152	<1	103.2	59.8	<1	<1	<1
Acenaphthene	154	<1	105.0	32.9	1.3	<1	<1
Fluorene	166	<1	104.7	50.4	1.5	1.6	<1
Phenanthrene	178	<1	107.9	372.7	16.9	13.9	3.9
Dibenzothiophene	184	<1	105.5	46.9	<1	1.1	<1
Anthracene	178	<1	102.5	146.5	3.8	7.7	1.0
Fluoranthene	202	<1	104.7	596.8	9.7	16.0	3.3
Pyrene	202	<1	105.9	464.8	10.1	11.1	3.1
Benzo[a]anthracene	228	<1	101.7	269.7	4.1	6.9	1.4
Chrysene	228	<1	106.4	409.7	4.3	6.7	1.4
Benzo[b]fluoranthene	252	<1	97.6	449.7	2.1	3.6	<1
Benzo[k]fluoranthene	252	<1	94.8	213.0	1.7	2.4	<1
Benzo[e]pyrene	252	<1	103.4	326.8	2.0	2.9	<1
Benzo[a]pyrene	252	<1	99.4	234.4	2.8	4.5	<1
Perylene *	252	<1	102.8	257.0	1.7	4.3	3.8
Indeno[123,cd]pyrene	276	<1	94.7	295.9	1.2	1.9	<1
Dibenzo[a,h]anthracene	278	<1	97.3	57.4	<1	<1	<1
Benzo[ghi]perylene	276	<1	99.9	250.4	1.2	1.6	<1

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$18_0834
 Date Booked in:
 21-Nov-17

 QC Batch Number:
 170016
 Date Extracted:
 01-Dec-17

 Directory:
 041217PCB.TQ1
 Date Analysed:
 05-Dec-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

				Con	centration,	(μg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1784477	BH18 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784478	BH18 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784479	BH18 4.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784480	CRM	2.96	4.08	4.48	2.94	3.73	3.47	2.38
CL1784481	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784482	Reference Material (% Recovery)	113	111	111	113	108	107	113

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18_0834
QC Batch Number: 170016
Directory: 041217.TQ1
Method: Ultrasonic

Matrix:SedimentDate Booked in:21-Nov-17Date Extracted:01-Dec-17

Date Analysed: 05-Dec-17
UKAS Accredited: No

Compounds marked * are not UKAS or MCerts accredited

Sample ID:	CL1784477	CL1784478	CL1784479	CL1784480	CL1784481	CL1784482
						Reference Material
Client ID:	BH18 0.50	BH18 2.50	BH18 4.50	CRM	QC Blank	(% Recovery)

Compound			Concentrat	tion (μg/kg)		
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	88
Hexachlorobenzene	<0.10	<0.10	<0.10	7.92	<0.10	98
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	93
p,p'-DDE	<0.10	<0.10	<0.10	2.80	<0.10	84
Dieldrin	<0.10	<0.10	<0.10	0.29	<0.10	91
p,p'-DDD	<0.10	<0.10	<0.10	3.39	<0.10	86
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10	96

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S18 0834

Directory: D:\TES\DATA\Y2017\1204HSA GC12\171204 2017-12-04 17-22-19\041F4101.D

Method: Headspace GCFID

Matrix: Soil

Date Booked in: 21-Nov-17
Date extracted: 04-Dec-17

Date Analysed: 05-Dec-17, 06:28:32

* Sample data with an asterisk are not UKAS accredited.

		С	oncentration	on, (mg/kg) - a	s wet weigl	nt			Aliphatics		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
* CL1784477	BH18 0.50	< 0.010	<0.010	<0.010	<0.010	<0.010*	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784478	BH18 2.50	<0.010	<0.010	<0.010	<0.010	<0.010*	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784479	BH18 4.50	<0.010	<0.010	<0.010	<0.010	<0.010*	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784481	QC Blank	<0.010	<0.010	<0.010	<0.010	<0.010*	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784482	Reference Material (% Recovery)	102	101	98	99	96*	120	117	110	88	114

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

S18_0834 Separation: Silica gel Job Number: QC Batch Number: 171296 Eluents: Hexane, DCM

C:\CHEM32\1\DATA\120517TPH_GC15\120517 2017-12-05 18-17-42\066B2001.D Method: Ultra Sonic

Directory:

Date Booked ir 21-Nov-17

Matrix:

Date Extracted 04-Dec-17 Date Analysed:05-Dec-17, 22:20:07

						Conce	centration, (mg/kg) - as wet weight							
* Th	is sample data is not U	KAS accredited.	>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8	- C40
	Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
*	CL1784477	BH18 0.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
*	CL1784478	BH18 2.50	<4.04	<4	<4.04	<4	<4.04	<4	<4.04	<4	<8.85	<8.76	<20.2	<20
*	CL1784479	BH18 4.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
*	CL1784481	QC Blank	<4.08	<4	<4.08	<4	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
*	CL1784482	Reference Material (% Recovery)	103	97	108	111	102	109	100	102	101	102	101	105
-														

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site:	Arklow Sewerage Scheme Marine	Outfall GI
		Outidii Gi
Report Number :	S18_0834	<u></u>
		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1784477	BH18 0.50	MARINE SEDIMENTS
CL/1784478 CL/1784479	BH18 2.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1784479	BH18 4.50	MARINE SEDIMENTS
CL/1784480	CRM	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1784480 CL/1784481 CL/1784482	QC Blank	QUALITY CONTROL SAMPLE
CL/1784482	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
		<u> </u>

Appendix A Page 1 of 1 12/12/2017

Customer Causeway Geotech Ltd Site Arklow Sewerage Scher

Arklow Sewerage Scheme Marine Outfall GI

Report No S180839

Consignment No S70515
Date Logged 21-Nov-2017

Report Due 11-Dec-2017

	1						перо	· · ·		ec-20.													
		MethodID	ANC	CustServ	GROHSA	ICPMSS									ICPSOIL	OGSNSED		PAHSED	PCBMS3Q		TMSS	TPHUSSI	WSLM59
ID Number	Description	Sampled	Carbonate %	Report C	GRO (AA) by HSA GC-FID	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)	Dibutyl Tin (Sediments)	Tributyl Tin (Sediments)	PAH by MS Dti	Organochlorine Pesticides (Marine Sediments)	PCB- 7 Congeners (Marine Sediments)	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	Total Organic Carbon (Sediment)
	UKA	AS Accredited	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	No	Yes	Yes	Yes
CL/1784501	BH19 0.50	07/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784502	BH19 2.50	07/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784503	BH19 4.50	07/11/17	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
CL/1784504	CRM	07/11/17		R		R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			R
CL/1784505	QC Blank			R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R
CL/1784506	Reference Material (% Recovery	/)	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R		R	R

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS
	Detection Limit	0.5	0.04	0.5	0.5	0.5
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Copper (MS) Sediment	Lead (MS) Sediments
ID Number	Description	Seuments	Sedifficits	Sediments	Sediment	Sediments
S1784501	BH19 0.50	18.2	0.11	17.3	43.1	37.6
S1784502	BH19 2.50	16.4	0.11	19	34.2	39.8
S1784503	BH19 4.50	16.2	1.14	30.5	32.1	33.7
S1784504	CRM	17.77	1.611	62.77	56.42	81.22
S1784505	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.5
S1784506	Reference Material (% Recovery)	99	98	100	97	99

	Method Codes	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL
	Detection Limit	0.5	0.015	0.5	2	36
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ID Number	Description	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Iron (Sediments)
	BH19 0.50	829.9	0.02	16.3	102.2	38900
S1784502	BH19 2.50	945.3	0.02	17.3	117.7	38700
S1784503	BH19 4.50	801.5	0.04	33.6	151	39300
S1784504	CRM	1200	0.761	33.1	327.2	28200
S1784505	QC Blank	<0.5	<0.015	<0.5	<2	<36
S1784506	Reference Material (% Recovery)	96	95	99	99	99

	Method Codes	TMSS	WSLM59	ANC	OGSNSED	OGSNSED
	Detection Limit	0.1	0.02	0.12	1	1
	Units	%	% M/M	%	ug Sn/kg	ug Sn/kg
		Tot.Moisture @	Total Organic		Dibutul Tip	Taibutud Tip
		_	Carbon	Carbonate %	Dibutyl Tin	Tributyl Tin
ID Number	Description	105C	(Sediment)		(Sediments)	(Sediments)
S1784501	BH19 0.50	3.4	0.14	2.16	<1	<1
S1784502	BH19 2.50	3.7	0.15	4.32	<1	<1
S1784503	BH19 4.50	63.8	8.9	3.36	<1	<1
S1784504	CRM		3.36		120	94
S1784505	QC Blank		<0.05		<1	<1
	Reference Material					
S1784506	(% Recovery)		101	98	93	91

Sample ID	Client ID	Moisture (%)
CL/1784501	BH19 0.50	8.4
CL/1784502	BH19 2.50	5.8
CL/1784503	BH19 4.50	60.5

UKAS accredited?: Yes

		Sample ID :	CL1784505	CL1784506	CL1784504	CL1784501	CL1784502	CL1784503
		-		Reference				
		Station :	QC Blank	Material (% Recovery)	1941b	BH19 0.50	BH19 2.50	BH19 4.50
PAH Fraction	# PAH	Mass						
Naphthalene	1	128	<1	104	582	<1	<1	2.5
C1 Naphthalenes *	2	142	<1	100	326	<1	<1	9.0
C2 Naphthalenes *		156	<1	N.D	219	<1	<1	59.2
C3 Naphthalenes *		170	<1	N.D	179	<1	<1	18.9
C4 Naphthalenes *		184	<1	N.D	120	<1	<1	13.4
Sum Naphthalenes *			0	102	1427	0	0	103
Phenanthrene / Anthracene	2	178	<1	105	519	<1	<1	11.2
C1 178 *		192	<1	N.D	310	<1	1.5	18.1
C2 178 *		206	<1	N.D	244	<1	1.6	16.6
C3 178 *		220	<1	N.D	171	<1	<1	11.0
Sum 178 *			0	105	1243	0.0	3.1	56.8
Dibenzothiophene		184	<1	105	47	<1	<1	4.2
C1 Dibenzothiophenes *		198	<1	N.D	72	<1	<1	6.1
C2 Dibenzothiophenes *		212	<1	N.D	105	<1	<1	4.6
C3 Dibenzothiophenes *		226	<1	N.D	67	<1	<1	2.0
Sum Dibenzothiophenes *			0	105	291	0.0	0.0	16.9
Fluoranthene / pyrene	2	202	<1	105	1062	<1	12.1	11.6
C1 202 *		216	<1	N.D	292	<1	4.2	13.5
C2 202 *		230	<1	N.D	248	<1	2.2	39.6
C3 202 *		244	<1	N.D	112	<1	<1	13.2
Sum 202 *			0	105	1713	0.0	18.5	77.9
Benzoanthracene / Chrysene	2	228	<1	104	679	<1	8.2	10.2
C1 228 *		242	<1	N.D	272	<1	3.0	14.0
C2 228 *		256	<1	N.D	147	<1	1.6	19.2
Sum 228 *			0	104	1098	0.0	12.8	43.4
Benzofluoranthenes /	4	050	4	00		_		
benzopyrenes	4	252	<1	99	1224	<1	11.6	14.8
C1 252 *		266	<1	N.D	320	<1	4.0	44.1
C2 252 *		280	<1	N.D	231	<1	1.4	13.2
Sum 252 *			0	99	1775	0.0	17.0	72.1
Dibenzoanthracene / Indenopyrene /								
Benzoperylene	3	276	<1	97	604	<1	3.9	8.6
C1 276 *		290	.4	N.D	89	.4	1.1	3.7
C1 276 * C2 276 *		290 304	<1	N.D N.D	38	<1		3.7 2.5
C2 276 * Sum 276 *		304	<1 0	N.D 97	38 731	<1 0.0	<1 5.0	2.5 14.8
Sum of all fractions *			0	103	8278.6	0.0	56.5	384.9
Sum of NPD fraction *			0	104	2961.2	0.0	3.1	176.7
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.26	0.56	#DIV/0!	0.06	0.85

N.D = Not Determined as these compounds are not in the reference material spike.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*} Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

PAHs Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1784505	CL1784506	CL1784504	CL1784501	CL1784502	CL1784503
	Station :	QC Blank	Reference Material (% Recovery)	1941b	BH19 0.50	BH19 2.50	BH19 4.50
PAH	Mass						
Naphthalene	128	<1	104.4	582.4	<1	<1	2.5
Acenaphthylene	152	<1	103.2	59.8	<1	<1	<1
Acenaphthene	154	<1	105.0	32.9	<1	<1	4.2
Fluorene	166	<1	104.7	50.4	<1	<1	3.7
Phenanthrene	178	<1	107.9	372.7	<1	<1	9.8
Dibenzothiophene	184	<1	105.5	46.9	<1	<1	4.2
Anthracene	178	<1	102.5	146.5	<1	<1	1.4
Fluoranthene	202	<1	104.7	596.8	<1	6.7	4.3
Pyrene	202	<1	105.9	464.8	<1	5.4	7.3
Benzo[a]anthracene	228	<1	101.7	269.7	<1	3.9	2.4
Chrysene	228	<1	106.4	409.7	<1	4.3	7.8
Benzo[b]fluoranthene	252	<1	97.6	449.7	<1	3.5	5.8
Benzo[k]fluoranthene	252	<1	94.8	213.0	<1	1.9	1.2
Benzo[e]pyrene	252	<1	103.4	326.8	<1	2.7	5.8
Benzo[a]pyrene	252	<1	99.4	234.4	<1	3.5	2.0
Perylene *	252	<1	102.8	257.0	<1	9.4	941.8
Indeno[123,cd]pyrene	276	<1	94.7	295.9	<1	2.1	1.9
Dibenzo[a,h]anthracene	278	<1	97.3	57.4	<1	<1	<1
Benzo[ghi]perylene	276	<1	99.9	250.4	<1	1.8	6.6

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 \$18_0839
 Date Booked in:
 21-Nov-17

 QC Batch Number:
 170016
 Date Extracted:
 01-Dec-17

 Directory:
 041217PCB.TQ1
 Date Analysed:
 05-Dec-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

		Concentration, (μg/kg)						
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1784501	BH19 0.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784502	BH19 2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784503	BH19 4.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784504	CRM	2.96	4.08	4.48	2.94	3.73	3.47	2.38
CL1784505	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1784506	Reference Material (% Recovery)	113	111	111	113	108	107	113

Organochlorine Pesticides

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: \$18_0839

QC Batch Number: 170016

Directory: 041217.TQ1

Method: Ultrasonic

Matrix:SedimentDate Booked in:21-Nov-17Date Extracted:01-Dec-17

Date Analysed: 05-Dec-17
UKAS Accredited: No

Compounds marked * are not UKAS or MCerts accredited

Sample ID:	CL1784501	CL1784502	CL1784503	CL1784504	CL1784505	CL1784506
						Reference Material
Client ID:	BH19 0.50	BH19 2.50	BH19 4.50	CRM	QC Blank	(% Recovery)

Compound			Concentrat	tion (μg/kg)		
alpha-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	88
Hexachlorobenzene	<0.10	<0.10	<0.10	7.92	<0.10	98
gamma-HCH	<0.10	<0.10	<0.10	<0.10	<0.10	93
p,p'-DDE	<0.10	<0.10	<0.10	2.80	<0.10	84
Dieldrin	<0.10	<0.10	<0.10	0.29	<0.10	91
p,p'-DDD	<0.10	<0.10	<0.10	3.39	<0.10	86
p,p'-DDT	<0.10	<0.10	<0.10	<0.10	<0.10	96

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S18 0839

D:\TES\DATA\Y2017\1204HSA_GC12\171204 2017-12-04 17-22-19\046F4601.D Directory:

Method: Headspace GCFID Matrix: Soil Date Booked in: 21-Nov-17

Date extracted: 04-Dec-17

Date Analysed: 05-Dec-17, 08:04:00

* Sample data with an asterisk are not UKAS accredited.

		Concentration, (mg/kg) - as wet weight			ht			Aliphatics	1		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
* CL1784501	BH19 0.50	< 0.010	<0.010	<0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784502	BH19 2.50	< 0.010	<0.010	<0.010	<0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784503	BH19 4.50	< 0.010	<0.010	<0.010	<0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784505	QC BLANK	< 0.010	<0.010	<0.010	< 0.010	< 0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1784506	Reference Material (% recovery)	102	101	98	99	96	120	117	110	88	114

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Causeway Geotech Ltd : Arklow Sewerage Scheme Marine Outfall GI Matrix: Soil

 Job Number:
 S18_0839
 Separation:
 Silica gel
 Date Booked ir
 21-Nov-17

 QC Batch Number:
 171296
 Eluents:
 Hexane, DCM
 Date Extracted
 04-Dec-17

 Directory:
 C:\CHEM32\1\DATA\120517TPH_GC15\120517 2017-12-05 18-17-42\066B2001.D
 Date Analysed: 05-Dec-17, 22:20:07

Method: Ultra Sonic

		Concentration, (mg/kg) - as wet weight											
* This sample data is not l	JKAS accredited.	>C8 - C10		>C12 - C16		>C16 - C21		>C21 - C35		>C8	- C40		
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
* CL1784501	BH19 0.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
* CL1784502	BH19 2.50	<4	<4	<4	<4	<4	<4	<4	<4	<8.76	<8.76	<20	<20
* CL1784503	BH19 4.50	<4.04	<4	<4.04	<4	<4.04	<4	<4.04	5.49	<8.85	<8.76	<20.2	<20
* CL1784505	QC Blank	<4.08	<4	<4.08	<4	<4.08	<4	<4.08	<4	<8.94	<8.76	<20.4	<20
* CL1784506	Reference Material (% Recovery)	103	97	108	111	102	109	100	102	101	102	101	105

Sample Descriptions

Client :	Causeway Geotech Ltd	
Site :	Arklow Sewerage Scheme Marin	e Outfall GI
Report Number :	S18_0839	
		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1784501	BH19 0.50	
CL/1784502	BH19 2.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1784503	BH19 4.50	MARINE SEDIMENTS QUALITY CONTROL SAMPLE
CL/1784504	CRM QC Blank	QUALITY CONTROL SAMPLE
CL/1784505 CL/1784506	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
OL/1704000	ricicience waterial (70 riccovery)	QONENT CONTINUE ON WILL EL

Appendix A Page 1 of 1 12/12/2017

Our Ref: EFS/179334 (Ver. 1)

Your Ref: 17-0167 October 23, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom **BT53 7QL**

Environmental Chemistry SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

THEOLOGINE

J Colbourne

Project Co-ordinator 01283 554547

TEST REPORT

Report No. EFS/179334 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 4 samples described in this report were registered for analysis by SOCOTEC UK Limited on 05-Oct-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 23-Oct-2017

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)

Table of PAH (MS-SIM) (80) Results (Pages 3 to 6)

Table of PCB Congener Results (Page 7)

Table of WAC Analysis Results (Pages 8 to 9)

Analytical and Deviating Sample Overview (Page 10)

Table of Additional Report Notes (Page 11)

Table of Method Descriptions (Page 12)

Table of Report Notes (Page 13)

Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim

Tim Barnes Operations Director Energy & Waste Services

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 23-Oct-2017

		Units :	μg/kg	pH Units	%	mg/kg	mg/kg	% M/M	Mol/kg	%	μg/kg	mg/kg						
	Metho Method Reporti	od Codes :	PCBECD 5	PHSOIL	TMSS 0.1	TPHFIDUS 10	TPHFIDUS 10	WSLM59 0.02	ANC 0.04	LOI(%MM) 0.2	BTEXHSA 10	BTEXHSA 10	BTEXHSA 10	BTEXHSA 20	BTEXHSA 30	BTEXHSA 20	BTEXHSA 10	PAHMSUS
		ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes							
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	LO.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1777957	BH01 1.50	21-Sep-17	Req	7.9	10.9	64	65	0.47	1.20	5.1	<10	<10*	<10	<20	<30	<20	<10	Req
1777958	BH01 3.50	21-Sep-17	Req	8.4	15.6	22	22	0.10	0.80	0.8	<25	<25	<25	<50	<75	<50	<25	Req
1777959	QC Blank		Req §			<10 §	<10 §	<0.02 §			<10 §	<10* §	<10 §	<20 §	<30 §	<20 §	<10 §	Req §
1777960	Reference Material (% Recovery)		Req §	100 §		106 §	106 §	100 §	101	4.0	106 §	111* §	106 §	103 §	106 §	108 §	104 §	Req §
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ	Contact Neil Haggan Business Park, Ashby Road on-Trent, Staffordshire, DE15 0YZ Arklow Sewerage Scheme Marine Outfall GI Report Number EFS/17933																

Page 2 of 13 Where individual results are flagged see report notes for status.

EFS/179334 Ver. 1

Fax +44 (0) 1283 554422

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH01 1.50 Job Number: S17_9334 LIMS ID Number: CL1777957 Date Booked in: 05-Oct-17 **QC Batch Number:** 171103 **Date Extracted:** 15-Oct-17 **Quantitation File:** Initial Calibration Date Analysed: 16-Oct-17 Matrix: **Directory:** 101617.MS17\ Soil Dilution: **Ext Method:** 1.0 Ultrasonic

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	1	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	6.36	0.15	91
Pyrene	129-00-0	6.62	0.12	90
Benzo[a]anthracene	56-55-3	8.25	0.24	90
Chrysene	218-01-9	8.29	0.24	95
Benzo[b]fluoranthene	205-99-2	9.74	0.30	91
Benzo[k]fluoranthene	207-08-9	9.77	0.13	91
Benzo[a]pyrene	50-32-8	10.15	0.23	96
Indeno[1,2,3-cd]pyrene	193-39-5	11.51	0.13	89
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	11.79	0.12	93
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 2.22	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	94
Phenanthrene-d10	96
Chrysene-d12	104
Perylene-d12	105

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	111
Terphenyl-d14	86

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH01 3.50 Job Number: s17_9334 LIMS ID Number: CL1777958 Date Booked in: 05-Oct-17 **QC Batch Number:** 171103 15-Oct-17 Date Extracted: **Quantitation File:** Initial Calibration Date Analysed: 16-Oct-17 Matrix: **Directory:** 101617.MS17\ Soil Dilution: Ext Method: 1.0 Ultrasonic

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	1	< 0.08	ı
Acenaphthene	83-32-9	-	< 0.08	1
Fluorene	86-73-7	1	< 0.08	ı
Phenanthrene	85-01-8	-	< 0.08	1
Anthracene	120-12-7	1	< 0.08	ı
Fluoranthene	206-44-0	-	< 0.08	1
Pyrene	129-00-0	1	< 0.08	ı
Benzo[a]anthracene	56-55-3	-	< 0.08	1
Chrysene	218-01-9	1	< 0.08	ı
Benzo[b]fluoranthene	205-99-2	9.74	0.12	91
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	1	< 0.08	1
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	ı
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	* D	< 1.32	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	107
Acenaphthene-d10	102
Phenanthrene-d10	105
Chrysene-d12	120
Perylene-d12	121

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	86

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: QC Blank Job Number: S17_9334 LIMS ID Number: CL1777959 Date Booked in: 05-Oct-17 **QC Batch Number:** 171103 15-Oct-17 **Date Extracted: Quantitation File: Initial Calibration** Date Analysed: 17-Oct-17 Matrix: **Directory:** 101617.MS17\ Soil Dilution: **Ext Method:** 1.0 Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	ı
Acenaphthylene	208-96-8	-	< 0.08	ı
Acenaphthene	83-32-9	-	< 0.08	1
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	ı
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	1
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	1
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	1
Benzo[k]fluoranthene	207-08-9	-	< 0.08	1
Benzo[a]pyrene	50-32-8	-	< 0.08	ı
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

[&]quot;M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	92
Phenanthrene-d10	96
Chrysene-d12	120
Perylene-d12	120

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	113
Terphenyl-d14	97

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: Sample Details: s17_9334 LIMS ID Number: CL1777960 Date Booked in: 05-Oct-17 **QC Batch Number:** 171103 **Date Extracted:** 15-Oct-17 **Quantitation File:** Initial Calibration Date Analysed: 16-Oct-17 Matrix: **Directory:** 101617.MS17\ Soil Dilution: **Ext Method:** 1.0 Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	2.88	106	100
Acenaphthylene	208-96-8	3.91	103	99
Acenaphthene	83-32-9	4.02	104	97
Fluorene	86-73-7	4.36	101	96
Phenanthrene	85-01-8	5.12	99	99
Anthracene	120-12-7	5.17	99	99
Fluoranthene	206-44-0	6.36	103	91
Pyrene	129-00-0	6.62	103	90
Benzo[a]anthracene	56-55-3	8.25	107	99
Chrysene	218-01-9	8.29	110	100
Benzo[b]fluoranthene	205-99-2	9.74	102	96
Benzo[k]fluoranthene	207-08-9	9.78	101	97
Benzo[a]pyrene	50-32-8	10.15	110	96
Indeno[1,2,3-cd]pyrene	193-39-5	11.51	109	92
Dibenzo[a,h]anthracene	53-70-3	11.55	102	97
Benzo[g,h,i]perylene	191-24-2	11.79	96	96
Coronene	191-07-1	13.50	108	66
Total (USEPA16) PAHs	-	-	104	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	96
Phenanthrene-d10	93
Chrysene-d12	99
Perylene-d12	111

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

 Job Number:
 \$17_9334

 QC Batch Number:
 171103

Directory: 100917PCB.GC70

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

Soil

05-Oct-17

15-Oct-17

17-Oct-17

		Concentration, (µg/kg)							
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180	
CL1777957	BH01 1.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
CL1777958	BH01 3.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
CL1777959	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
CL1777960	Reference Material (% Recovery)	101.0	112.5	90.2	122.8	112.1	110.4	100.5	

Page 7 of 13 EFS/179334 Ver. 1

Client	Causaway Caataah	l td			Leaching Data				
Ciletit	Causeway Geotech	Liu		Weight of sample (kg) 0					
Contact	Noil Hoggon			Moisture content @ 105°C (% of Wet Weight)					
Contact	Neil Haggan			Equivalent Weight based on drying at 105°C (kg) 0.					
Site	Arklow Sewerage So	homo Marino Ou	#all CI	Volume of water required to carry out 10:1 stage (litres)					
Site	Alkiow Sewerage Sc	nieme manne Ou	liali Gi	Fraction of sample above 4 mm %					
Sam	Sample Description		Sample No	Issue Date	Fraction of non-crushable material %	0.000			
BH01 1.50		s17_9334	CL/1777957 23-Oct-17						
			1	l					

note:	rne >4mm rra	ction is crusned	i using a disc mili

		on is crushed using a disc mili		Landfill Waste Acceptance Criteria Limit Values				
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill		
U	WSLM59	Total Organic Carbon (% M/M)	0.44	3	5	6		
N	LOI450	Loss on Ignition (%)	4.8			10		
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.06	6				
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1				
U	TPHFIDUS	Mineral Oil (mg/kg)	72	500				
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.6	100				
Ū	PHSOIL	pH (pH units)	7.9		>6			
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.12		To be evaluated	To be evaluated		

Accreditatio	10:1 Single Stage Leachate		Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1					
Accı	Method		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)				
U	WSLM3	pH (pH units) 00	7.6	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	606	Calculated data not UKAS Accredited					
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25		
U	ICPWATVAR	Barium	0.07	0.7	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	0.003	0.03	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.005	0.05	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.026	0.26	4	50	200		
U	KONENS	Chloride	138	1380	800	15000	25000		
U	ISEF	Fluoride	0.4	4	10	150	500		
U	ICPWATVAR	Sulphate as SO4	26	260	1000	20000	50000		
Ν	WSLM27	Total Dissolved Solids	473	4730	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	5.5	55	500	800	1000		

Template Ver. 1 Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009. Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Client	Causeway Geotech Ltd			Leaching Data				
Ciletti	Causeway Geolech Llu			Weight of sample (kg)				
Contact	Noil Hoggon			Moisture content @ 105°C (% of Wet Weight)	15.6			
Contact	Neil Haggan			Equivalent Weight based on drying at 105°C (kg) 0				
Site	Arklow Sewerage Schem	o Marina Ou	tfall GI	Volume of water required to carry out 10:1 stage (litres)				
Site	Arkiow Sewerage Scrien	ie Marine Ou	tiali Gi	Fraction of sample above 4 mm %				
Samp	ole Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
BH01 3.50		s17 9334	CL/1777958	23-Oct-17				
		\$17_9334 CL/1777938		23-06-17				

_	ø.			Landfill Waste Acceptance Criteria Limit Values				
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill		
U	WSLM59	Total Organic Carbon (% M/M)	0.1	3	5	6		
Ν	LOI450	Loss on Ignition (%)	0.8			10		
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.179	6				
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1				
U		Mineral Oil (mg/kg)	26	500				
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.7	100				

8.4

>6

To be evaluated

To be evaluated

Accreditatio	hod Coc	10:1 Single Stage Leachate		Calculated cumulative amount leached @ 10:1		Acceptance Criter 1 12457/2 @ L/S 10	ia Limit Values for litre kg-1		
Acc	Method		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)				
U	WSLM3	pH (pH units) 00	7.3	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	880	Calculated data not OKAS Accredited					
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25		
U	ICPWATVAR	Barium	0.06	0.6	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	0.004	0.04	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.03	0.3	4	50	200		
U	KONENS	Chloride	224	2240	800	15000	25000		
U	ISEF	Fluoride	0.2	2	10	150	500		
U	ICPWATVAR	Sulphate as SO4	35	350	1000	20000	50000		
Ν	WSLM27	Total Dissolved Solids	686	6860	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	4.1	41	500	800	1000		

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Note: The >4mm fraction is crushed using a disc mill

pH (pH units)

Acid Neutralisation Capacity (mol/kg) @pH 7

U

Ν

PHSOIL

ANC

ESG Environmental Chemistry S179334

Analytical and Deviating Sample Overview

Customer Causeway Geotech Ltd
Site Arklow Sewerage Scheme Marine Outfall GI
Report No S179334

Consignment No S69456

Date Logged 05-Oct-2017

In-House Report Due 18-Oct-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

	-														
		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report B	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
CL/1777957 BH01 1.50 21/09/17			Е	Е				Е		Е	✓	Е	Е		
CL/1777958	BH01 3.50	21/09/17		Ē	Ē				E		E		E	E	
CL/1777959	QC Blank	21/09/17		_					_		_		_		
CL/1777960	Reference Material (% Recover	у)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- B The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number : EFS/179334

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
BTEXHSA	CL1777958	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
BTEXHSA	CL1777957 CL1777959 CL1777960	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation from the affected analytes (Toluene). These circumstances should be taken into consideration when utilising the data"

Report Number: EFS/179334

Method Descriptions

Matrix MethodID Analysis		Analysis	Method Description			
		Basis	·			
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M			
		@ < 35°C	Sodium Hydroxide to pH 7			
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes			
			(BTEX) by Headspace GCFID			
Soil	LOI(%MM)	Oven Dried	Determination of loss on ignition for soil samples at specified			
		@ < 35°C	temperature by gravimetry			
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by			
			hexane/acetone extraction followed by GCMS detection			
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB)			
			congeners/aroclors by hexane/acetone extraction followed by			
			GCECD detection			
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using			
			pH probe.			
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on			
			oven drying gravimetric analysis (% based upon wet weight)			
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil			
			with GCFID detection.			
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid			
		@ < 35°C	digestion followed by high temperature combustion and IR			
			detection			
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS			
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using			
			ICPOES			
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective			
			Electrode (ISE)			
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis			
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection			
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non-			
			dispersive IR detection			
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical			
			conductivity probe.			
Water	WSLM27	As Received	Gravimetric Determination			
Water	WSLM3		Determination of the pH of water samples by pH probe			

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 13 of 13 EFS/179334 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S17_9334

Note: major constituent in upper case

Lab 15 M ·		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1777957	BH01 1.50	Grey/Black Stone SILT
CL/1777958	BH01 3.50 QC Blank	Grey SAND
CL/1777959	QC Blank	QUALITY CONTROL SAMPLE
CL/1777958 CL/1777959 CL/1777960	Reference Material (% Recovery)	Grey/Black Stone SILT Grey SAND QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
	+	
	+	

Appendix A Page 1 of 1 23/10/2017EFS/179334 Ver. 1

Our Ref: EFS/178702 (Ver. 1)

Your Ref: 17-0167 September 29, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom

Environmental Chemistry

ESC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

BT53 7QL

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554458 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

J Chislett
Project Co-ordinator
01283 554458

TEST REPORT

Report No. EFS/178702 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 5 samples described in this report were registered for analysis by ESG on 14-Sep-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 29-Sep-2017

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 7)
Table of PCB Congener Results (Page 8)
Table of WAC Analysis Results (Pages 9 to 11)
Analytical and Deviating Sample Overview (Page 12)
Table of Additional Report Notes (Page 13)
Table of Method Descriptions (Page 14)
Table of Report Notes (Page 15)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:

Tim Barnes

Operations Director Energy & Waste Services Date of Issue: 29-Sep-2017

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	μg/kg	pH Units	%	mg/kg	mg/kg	% M/M	Mol/kg	%	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
	Meth Method Reporti	od Codes :	PCBECD 5	PHSOIL	TMSS 0.1	TPHFIDUS 10	TPHFIDUS 10	WSLM59 0.02	ANC 0.04	LOI(%MM) 0.2	BTEXHSA 10	BTEXHSA 10	BTEXHSA 10	BTEXHSA 20	BTEXHSA 30	BTEXHSA 20	BTEXHSA 10	PAHMSUS
	wethod Reporti	ng Lillius :	5		0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	
LABID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot. Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1775339	BH02 0.50	29-Aug-17	Req	8.2	12.4	40	51	0.22	0.40	1.0	<10	<10	<10	<20	<30	<20	<10	Req
1775340	BH02 2.50	29-Aug-17	Req	8.1	20.2	95	106	0.94	0.48	2.9	<10	<10	<10	<20	<30	<20	<10	Req
1775341	BH02 5.50	29-Aug-17	Req	8.6	24.0	<10	20	0.50	2.96	3.1	<10	<10	<10	<20	<30	<20	<10	Req
1775342	QC Blank		Req §			<10 §	<10 §	<0.02 §			<10 §	<10 §	<10 §	<20 §	<30 §	<20 §	<10 §	Req §
1775343	Reference Material (% Recovery)		Req §	102.4 §		92 §	92 §	91 §	102	98.3	103 §	105 §	103 §	101 §	103 §	104 §	101 §	Req §
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Client N Contact	<u> </u>	Neil Hag	eway Geot		ne Ma	rine (Outfal	l Gl	Date Prin Report N	nted lumber	ple Ana	29	-Sep-2017 FS/178702		

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17_8702 **Sample Details:** BH02 0.50 LIMS ID Number: CL1775339 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.26	0.36	99
Acenaphthylene	208-96-8	ı	< 0.08	-
Acenaphthene	83-32-9	ı	< 0.08	-
Fluorene	86-73-7	ı	< 0.08	-
Phenanthrene	85-01-8	ı	< 0.08	-
Anthracene	120-12-7	ı	< 0.08	-
Fluoranthene	206-44-0	ı	< 0.08	-
Pyrene	129-00-0	ı	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	ı	< 0.08	-
Benzo[b]fluoranthene	205-99-2	ı	< 0.08	-
Benzo[k]fluoranthene	207-08-9	ı	< 0.08	-
Benzo[a]pyrene	50-32-8	ı	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	ı	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	ı	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.56	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	93
Phenanthrene-d10	86
Chrysene-d12	79
Perylene-d12	74

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	96
Terphenyl-d14	72

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

s17_8702 **Sample Details:** BH02 2.50 **Job Number:** LIMS ID Number: CL1775340 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	7.00	0.37	76
Pyrene	129-00-0	7.29	0.33	75
Benzo[a]anthracene	56-55-3	8.98	0.44	95
Chrysene	218-01-9	9.03	0.41	98
Benzo[b]fluoranthene	205-99-2	10.51	0.47	80
Benzo[k]fluoranthene	207-08-9	10.54	0.24	80
Benzo[a]pyrene	50-32-8	10.93	0.37	96
Indeno[1,2,3-cd]pyrene	193-39-5	12.31	0.22	67
Dibenzo[a,h]anthracene	53-70-3	1	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	12.60	0.20	80
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 3.61	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	90
Phenanthrene-d10	84
Chrysene-d12	78
Perylene-d12	73

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	75

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

S17_8702 **Sample Details:** BH02 5.50 **Job Number:** LIMS ID Number: CL1775341 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	1	< 0.08	-
Benzo[b]fluoranthene	205-99-2	1	< 0.08	-
Benzo[k]fluoranthene	207-08-9	1	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	1	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	94
Acenaphthene-d10	90
Phenanthrene-d10	83
Chrysene-d12	75
Perylene-d12	64

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	78

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

QC Blank Job Number: S17_8702 **Sample Details:** LIMS ID Number: CL1775342 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	1	< 0.08	-
Acenaphthene	83-32-9	1	< 0.08	-
Fluorene	86-73-7	1	< 0.08	-
Phenanthrene	85-01-8	1	< 0.08	-
Anthracene	120-12-7	1	< 0.08	-
Fluoranthene	206-44-0	1	< 0.08	-
Pyrene	129-00-0	1	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	1	< 0.08	-
Benzo[k]fluoranthene	207-08-9	1	< 0.08	-
Benzo[a]pyrene	50-32-8	1	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	1	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	86
Acenaphthene-d10	82
Phenanthrene-d10	74
Chrysene-d12	57
Perylene-d12	43

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	108
Terphenyl-d14	76

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: S17_8702 **Sample Details:** LIMS ID Number: CL1775343 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Sep-17 Directory: 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.26	101	100
Acenaphthylene	208-96-8	4.30	99	99
Acenaphthene	83-32-9	4.42	107	97
Fluorene	86-73-7	4.81	103	98
Phenanthrene	85-01-8	5.65	106	99
Anthracene	120-12-7	5.70	103	100
Fluoranthene	206-44-0	7.00	111	91
Pyrene	129-00-0	7.29	109	90
Benzo[a]anthracene	56-55-3	8.97	108	99
Chrysene	218-01-9	9.02	112	99
Benzo[b]fluoranthene	205-99-2	10.50	101	96
Benzo[k]fluoranthene	207-08-9	10.54	103	97
Benzo[a]pyrene	50-32-8	10.93	109	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.30	109	91
Dibenzo[a,h]anthracene	53-70-3	12.34	107	97
Benzo[g,h,i]perylene	191-24-2	12.60	103	95
Coronene	191-07-1	14.74	112	67
Total (USEPA16) PAHs	-	-	106	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	90
Acenaphthene-d10	92
Phenanthrene-d10	87
Chrysene-d12	96
Perylene-d12	100

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	85

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall Gl

 Job Number:
 \$17_8702

 QC Batch Number:
 171030

Directory: 092517PCB.GC70

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

		Concentration, (μg/kg)						
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1775339	BH02 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775340	BH02 2.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775341	BH02 5.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
CL1775342	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
CL1775343	Reference Material (% Recovery)	87.6	93.2	80.4	91.5	87.9	92.5	83.4

Soil

14-Sep-17

22-Sep-17

25-Sep-17

Client	t Causeway Geotech Ltd			Leaching Data			
Ciletit	Causeway Geolech Llu				Weight of sample (kg)		
Contact Neil Haggan			Moisture content @ 105°C (% of Wet Weight)	12.4			
Contact Neil Haggan				Equivalent Weight based on drying at 105°C (kg)	0.090		
Site	Arklow Sewerage Scheme Marine Outfall GI				Volume of water required to carry out 10:1 stage (litres)		
Site	Arkiow Sewerage Schem	ie ivianne Ou	liali Gi		Fraction of sample above 4 mm %		
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
E	BH02 0.50	s17_8702	s17_8702 CL/1775339 29-Sep-17				
Note: The >4mm fract	ion is crushed using a disc mill					•	

_		O C		Landfill Waste Acceptance Criteria Limit Values			
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill	
Ν	WSLM59	Total Organic Carbon (% M/M)	0.22	3	5	6	
Ν	LOI450	Loss on Ignition (%)	1			10	
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6			
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1			
Ν	TPHFIDUS	Mineral Oil (mg/kg)	46	500			
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.87	100			

8.2

0.4

>6

To be evaluated

To be evaluated

itation	Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1		Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
Accreditation	Method	mg/l except ⁰⁰		mg/kg (dry weight)	mg/kg (dry weight)		ht)	
U	WSLM3	pH (pH units) ⁰⁰	7.3	Calculated data not UKAS Accredited				
U	WSLM2	Conductivity (µs/cm) 00	1060	Calculated data not UKAS Accredited				
U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25	
U	ICPWATVAR	Barium	0.05	0.5	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U	ICPMSW	Copper	0.003	0.03	2	50	100	
U		Mercury	<0.0001	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.012	0.12	0.5	10	30	
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50	
U	ICPMSW	Antimony	0.003	0.03	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.032	0.32	4	50	200	
U	KONENS	Chloride	258	2580	800	15000	25000	
Ū	ISEF	Fluoride	0.6	6	10	150	500	
Ū	ICPWATVAR	Sulphate as SO4	41	410	1000	20000	50000	
Ν	WSLM27	Total Dissolved Solids	827	8270	4000	60000	100000	
U	SFAPI	Phenol Index	<0.05	<0.5	1			
Ν	WSLM13	Dissolved Organic Carbon	2.9	29	500	800	1000	

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Ν

PHSOIL

ANC

pH (pH units)

Acid Neutralisation Capacity (mol/kg) @pH 7

Client	Causeway Geotech Ltd		Leaching Data				
Ciletit	Causeway Geolech Llu			Weight of sample (kg)	0.114		
Contact Neil Haggan					Moisture content @ 105°C (% of Wet Weight)	20.2	
Contact	Contact Neil Haggan				Equivalent Weight based on drying at 105°C (kg)	0.090	
Site	te Arklow Sewerage Scheme Marine Outfall GI				Volume of water required to carry out 10:1 stage (litres)	0.876	
Site	Arklow Sewerage Schen	ie ivianne Ou	liali Gi		Fraction of sample above 4 mm %		
Sam	ple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
	BH02 2.50	s17_8702 CL/1775340 29-Sep-17		29-Sep-17			
Note: The >4mm frac	tion is crushed using a disc mill	•	•				

	40			Landfill Was	te Acceptance Crit	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	0.99	3	5	6
N	LOI450	Loss on Ignition (%)	3			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	119	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<4.62	100		

>6

To be evaluated

To be evaluated

8.1

0.5

itation	Code	Leachate Analysis	10:1 Single Stage Leachate Calculated cumulative amoleached @ 10:1		Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1				
Accreditation	Method	-	mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)				
U	WSLM3	pH (pH units) 00	7.3	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	1620	Calculated data not ONAS Accredited					
U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25		
U	ICPWATVAR	Barium	0.07	0.07 0.7		100	300		
U	ICPMSW	Cadmium	<0.0001 <0.001		0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	0.003	0.03	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.015	0.15	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	0.004	0.04	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.038	0.38	4	50	200		
U	KONENS	Chloride	414	4140	800	15000	25000		
U	_	Fluoride	0.8	8	10	150	500		
Ū	ICPWATVAR	Sulphate as SO4	36	360	1000	20000	50000		
Ν	WSLM27	Total Dissolved Solids	1260	12600	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	4.4	44	500	800	1000		

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Ν

PHSOIL

ANC

pH (pH units)

Acid Neutralisation Capacity (mol/kg) @pH 7

Cliant	Causaway Castash	1 +4	Client Causeway Geotech Ltd						
Cilent	Causeway Geolech	Llu	Weight of sample (kg)	0.117					
Contact	Noil Haggan				Moisture content @ 105°C (% of Wet Weight)				
Contact	Neil Haggan		Equivalent Weight based on drying at 105°C (kg)						
Site	Arklaw Cawaraga C	shama Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)				
Site	Arklow Sewerage S	cheme Manne Ou	iliali Gi		Fraction of sample above 4 mm %				
Sa	ample Description	Report No	Issue Date	Fraction of non-crushable material %	0.000				
	BH02 5.50	s17_8702	CL/1775341	29-Sep-17					

_	4			Landfill Was	te Acceptance Crit	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.56	3	5	6
Ν	LOI450	Loss on Ignition (%)	3.5			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.042	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<13	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.79	100		
Ν	PHSOIL	pH (pH units)	8.6		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	3.3		To be evaluated	To be evaluated

itation	Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1				
Accreditation	Method		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)				
U	WSLM3	pH (pH units) ⁰⁰	7.4	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	430	Calculated data flot OKAS Accredited					
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25		
U	ICPWATVAR	Barium	0.08	0.8	20	100	300		
U	ICPMSW	Cadmium	<0.0001 <0.001		0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	0.004	0.04	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5		
U	ICPMSW	Selenium	0.001	0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.014	0.14	4	50	200		
U	KONENS	Chloride	83	830	800	15000	25000		
U	ISEF	Fluoride	0.4	4	10	150	500		
U	ICPWATVAR	Sulphate as SO4	17	170	1000	20000	50000		
Ν	WSLM27	Total Dissolved Solids	336	3360	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	2	20	500	800	1000		

te Ver. 1 Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

S178702

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer Causeway Geotech Ltd
Site Arklow Sewerage Scheme Marine Outfall GI
Report No S178702

Consignment No S68869
Date Logged 14-Sep-2017
In-House Report Due 02-Oct-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

												· / ·			cu and
		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
01.44======	In			_	_										
CL/1775339	BH02 0.50	29/08/17		Е	Е				Е		Е		Е	Е	
CL/1775340	BH02 2.50	29/08/17		Е	Е				Е		Е		Е	Е	
CL/1775341	BH02 5.50	29/08/17		Е	Е				ш		ш		Е	Е	
CL/1775342	QC Blank														
CL/1775343	Reference Material (% Recovery	y)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number : EFS/178702

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report

Report Number: EFS/178702

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EFS/178702 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S17_8702

Note: major constituent in upper case

		Note: major constituent in upper case						
Lab ID Number	Client ID	Description						
CL/1775339	BH02 0.50	MARINE SEDIMENT						
CL/1775340	BH02 2.50	MARINE SEDIMENT						
CL/1775341	BH02 5.50	MARINE SEDIMENT						
CL/1775341 CL/1775342	QC Blank	QUALITY CONTROL SAMPLE						
CL/1775342 CL/1775343	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE						
CL/1773343	Reference Material (% Recovery)	QUALITY CONTINGE SAIVIF EE						

Appendix A Page 1 of 1 04/10/2017EFS/178702 Ver. 1

Our Ref: EFS/179799 (Ver. 1)

Your Ref: 17-0167 November 1, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom **BT53 7QL**

Environmental Chemistry SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

THOOLDOVINE

J Colbourne Project Co-ordinator 01283 554547

TEST REPORT

Report No. EFS/179799 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 5 samples described in this report were registered for analysis by SOCOTEC UK Limited on 17-Oct-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 01-Nov-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)

Table of PAH (MS-SIM) (80) Results (Pages 3 to 7)

Table of PCB Congener Results (Page 8)

Table of WAC Analysis Results (Pages 9 to 11)

Analytical and Deviating Sample Overview (Page 12)

Table of Additional Report Notes (Page 13)

Table of Method Descriptions (Page 14)

Table of Report Notes (Page 15)

Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim

Tim Barnes Operations Director
Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 01-Nov-2017

	Meth Method Report	Units :	μg/kg PCBECD 5	pH Units PHSOIL	% TMSS 0.1	mg/kg TPHFIDUS 10	mg/kg TPHFIDUS 10	% M/M WSLM59 0.02	Mol/kg ANC 0.04	% LOI(%MM) 0.2	μg/kg BTEXHSA 10	µg/kg BTEXHSA 10	μg/kg BTEXHSA 10	μg/kg BTEXHSA 20	μg/kg BTEXHSA 30	μg/kg BTEXHSA 20	μg/kg BTEXHSA 10	mg/kg PAHMSUS
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	LO.L. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1780166	BH06 0.50	29-Sep-17	Req	8.8	14.3	<10	<10	0.09	2.24	0.9	<10	<10	<10	<20*	<30	<20	<10	Req
1780167	BH06 1.50	29-Sep-17	Req	8.7	15.7	<10	<10	0.05	1.60	0.7	<10	<10	<10	<20	<30	<20	<10	Req
1780168	BH06 2.50	29-Sep-17	Req	8.6	16.1	<10	<10	0.03	1.52	0.7	<10	<10	<10	<20	<30	<20	<10	Req
1780169	QC Blank		Req			<10	<10	<0.02			<10	<10	<10	<20	<30	<20	<10	Req
1780170	Reference Material (% Recovery)		Req	101.5		99	99	103	97.6	98.7	103	101	100	100	100	101	98	Req
	SOCOTEC (3)			Client Name Causeway Geotech Ltd Contact Neil Haggan								Sample Analysis						
	Bretby Business Park, Ashby Road											Date Prir				Nov-2017		
	Burton-on-Trent, Staffordshire, DE15 0YZ		Δrl	Arklow Sewerage Scheme Marine Outfall Gl							GI	Report Number EFS/179799						
	Tel +44 (0) 1283 554400		AIRIUW Sewerage Scheine Marine Outrali Gi								Table Number 1							

Page 2 of 15 Where individual results are flagged see report notes for status.

EFS/179799 Ver. 1

Fax +44 (0) 1283 554422

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

S17_9799 Sample Details: BH06 0.50 Job Number: LIMS ID Number: CL1780166 Date Booked in: 17-Oct-17 171155 **QC Batch Number:** Date Extracted: 26-Oct-17 **Quantitation File: Initial Calibration** Date Analysed: 27-Oct-17 Matrix: **Directory:** 102617.MS17\ Soil Dilution: **Ext Method:** 1.0 Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	ı
Acenaphthylene	208-96-8	-	< 0.08	ı
Acenaphthene	83-32-9	-	< 0.08	1
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	ı
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	1
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	1
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	1
Benzo[k]fluoranthene	207-08-9	-	< 0.08	1
Benzo[a]pyrene	50-32-8	-	< 0.08	ı
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

[&]quot;M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	110
Acenaphthene-d10	115
Phenanthrene-d10	119
Chrysene-d12	134
Perylene-d12	139

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	88
Terphenyl-d14	75

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH06 1.50 Job Number: s17_9799 LIMS ID Number: CL1780167 Date Booked in: 17-Oct-17 171155 **QC Batch Number:** Date Extracted: 26-Oct-17 **Quantitation File:** Initial Calibration Date Analysed: 27-Oct-17 Matrix: **Directory:** 102617.MS17\ Soil Dilution: Ext Method: 1.0 Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	105
Acenaphthene-d10	107
Phenanthrene-d10	107
Chrysene-d12	109
Perylene-d12	106

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	95
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH06 2.50 Job Number: S17_9799 LIMS ID Number: CL1780168 Date Booked in: 17-Oct-17 171155 **QC Batch Number:** 26-Oct-17 **Date Extracted: Quantitation File: Initial Calibration** Date Analysed: 27-Oct-17 Matrix: **Directory:** 102617.MS17\ Soil Dilution: **Ext Method:** 1.0 Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	109
Acenaphthene-d10	111
Phenanthrene-d10	115
Chrysene-d12	129
Perylene-d12	129

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	94
Terphenyl-d14	81

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: QC Blank Job Number: s17_9799 LIMS ID Number: CL1780169 Date Booked in: 17-Oct-17 171155 **QC Batch Number:** 26-Oct-17 **Date Extracted: Quantitation File: Initial Calibration** Date Analysed: 27-Oct-17 Matrix: **Directory:** 102617.MS17\ Soil Dilution: **Ext Method:** 1.0 Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	ı
Acenaphthylene	208-96-8	-	< 0.08	ı
Acenaphthene	83-32-9	-	< 0.08	1
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	ı
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	1
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	1
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	1
Benzo[k]fluoranthene	207-08-9	-	< 0.08	1
Benzo[a]pyrene	50-32-8	-	< 0.08	ı
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

[&]quot;M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	107
Phenanthrene-d10	109
Chrysene-d12	123
Perylene-d12	130

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	101
Terphenyl-d14	86

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: Sample Details: S17_9799 LIMS ID Number: CL1780170 Date Booked in: 17-Oct-17 171155 **QC Batch Number: Date Extracted:** 26-Oct-17 **Quantitation File:** Initial Calibration Date Analysed: 27-Oct-17 **Directory:** 102617.MS17\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.33	106	99
Acenaphthylene	208-96-8	4.38	109	99
Acenaphthene	83-32-9	4.50	105	93
Fluorene	86-73-7	4.89	105	91
Phenanthrene	85-01-8	5.75	101	100
Anthracene	120-12-7	5.80	104	100
Fluoranthene	206-44-0	7.11	107	97
Pyrene	129-00-0	7.40	106	97
Benzo[a]anthracene	56-55-3	9.09	109	99
Chrysene	218-01-9	9.14	104	99
Benzo[b]fluoranthene	205-99-2	10.62	90	99
Benzo[k]fluoranthene	207-08-9	10.65	95	99
Benzo[a]pyrene	50-32-8	11.05	104	99
Indeno[1,2,3-cd]pyrene	193-39-5	12.42	116	92
Dibenzo[a,h]anthracene	53-70-3	12.46	105	95
Benzo[g,h,i]perylene	191-24-2	12.73	95	95
Coronene	191-07-1	14.95	105	51
Total (USEPA16) PAHs	-	-	104	-

^{*} Denotes compound is not UKAS accredited

[&]quot;M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	94
Acenaphthene-d10	104
Phenanthrene-d10	104
Chrysene-d12	135
Perylene-d12	166

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	88

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix:

 Job Number:
 \$17_9799

 QC Batch Number:
 171158

Directory: 102617PCB.GC22

Method: Ultrasonic

* This sample data is not UKAS or Mcerts accredited.

Soil

17-Oct-17

26-Oct-17

27-Oct-17

Date Booked in:

Date Extracted:

Date Analysed:

		Concentration, (μg/kg)						
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
CL1780166	BH06 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1780167	BH06 1.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1780168	BH06 2.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
CL1780169	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
CL1780170	Reference Material (% Recovery)	85.0	95.9	80.1	93.6	88.4	88.1	79.4

Page 8 of 15 EFS/179799 Ver. 1

Client	Causaway Caataah Ltd			Leaching Data			
Ciletit	Causeway Geotech Ltd				Weight of sample (kg)		
Contact	Noil Hoggan			Moisture content @ 105°C (% of Wet Weight)	14.3		
Contact	Neil Haggan				Equivalent Weight based on drying at 105°C (kg)		
Site	Arklaw Cawaraga Cahama Marina Outfall Cl			Volume of water required to carry out 10:1 stage (litres)			
Site	Arklow Sewerage Scheme Marine Outfall GI				Fraction of sample above 4 mm %	0.000	
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH06 0.50		s17 9799	CL/1780166	01-Nov-17			
	DI 100 0.30	511_3133	CL/1/60100	01-1100-17			

Note: The >4mm fraction is crushed using a disc mill

_	ø	-		Landfill Waste Acceptance Criteria Limit Values		
Accreditation	Method Code			Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.09	3	5	6
N	LOI450	Loss on Ignition (%)	0.9			10
N	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	<12	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.59	100		
N	PHSOIL	pH (pH units)	8.8		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.22		To be evaluated	To be evaluated

ccı	eth	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1			
Ψ	Š	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)	B3EN 1243/12 @ L/3 10 little		iitre kg-i	
U	WSLM3	pH (pH units) 00	8.6	Calculated data not UKAS Accredited				
U	WSLM2	Conductivity (µs/cm) 00	1220	Calculated data not onas accredited				
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25	
U	ICPWATVAR	Barium	0.07	0.7	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U	ICPMSW	Copper	<0.001	<0.01	2	50	100	
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30	
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U	ICPMSW	Lead	0.018	0.18	0.5	10	50	
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.01	0.1	4	50	200	
U	KONENS	Chloride	345	3450	800	15000	25000	
U	ISEF	Fluoride	0.2	2	10	150	500	
U	ICPWATVAR	Sulphate as SO4	55	550	1000	20000	50000	
N	WSLM27	Total Dissolved Solids	948	9480	4000	60000	100000	
U	SFAPI	Phenol Index	<0.05	<0.5	1			
N	WSLM13	Dissolved Organic Carbon	3.1	31	500	800	1000	

Template Ver. 1

ndfill Waste Acceptance Criteria limit values correct as of 11th March 2009

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Client	Causaway Caataah Ltd				Leaching Data			
Cilent	Causeway Geotech Ltd				Weight of sample (kg)	0.105		
Contact	Noil Hoggon				Moisture content @ 105°C (% of Wet Weight)	15.7		
Comaci	Neil Haggan			Equivalent Weight based on drying at 105°C (kg)				
Site	Arklaw Cawaraga Caham	a Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)	0.885		
Site	Arklow Sewerage Schem	ie Marine Ou	liali Gi		Fraction of sample above 4 mm %	0.000		
Sam	ple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
	BH06 1.50	s17 9799 CL/1780167 01		01-Nov-17				
	DI 100 1.50	311_9199	CL/1/6016/	01-INOV-17				

Note: The >4mm fraction is crushed using a disc mill

_				Landfill Waste	e Acceptance Crite	eria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	0.05	3	5	6
N	LOI450	Loss on Ignition (%)	0.7			10
N	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	<12	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.61	100		
N	PHSOIL	pH (pH units)	8.7		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.59		To be evaluated	To be evaluated

သ	it.	Lacabata Analysis	10:1 Single Stage Leachate	Calculated cumulative amount			a Limit Values for
ĕ	Met	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)	BSEN	12457/2 @ L/S 10	пте кд-1
U	WSLM3	pH (pH units) 00	7.6	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	1080	Calculated data not UKAS Accredited			
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25
U	ICPWATVAR	Barium	0.07	0.7	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	0.001	0.01	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.008	0.08	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.006	0.06	4	50	200
U	KONENS	Chloride	298	2980	800	15000	25000
U	ISEF	Fluoride	0.2	2	10	150	500
U	ICPWATVAR	Sulphate as SO4	44	440	1000	20000	50000
Ν	WSLM27	Total Dissolved Solids	843	8430	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	3.4	34	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causeway Geotech Ltd			Leaching Data					
Ciletti	Causeway Geolech Liu			Weight of sample (kg)	0.105				
Contact	Neil Haggan			Moisture content @ 105°C (% of Wet Weight)	16.1				
Contact	Neirriaggari			Equivalent Weight based on drying at 105°C (kg)					
Site	Arklow Sewerage Schem	o Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)	0.885			
Site	Arkiow Sewerage Schen	ie ivianne Ou	liali Gi		Fraction of sample above 4 mm %	0.000			
Sam	ple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000			
	BH06 2.50	s17 9799 CL/1780168 01-N		01-Nov-17					
	DI 100 2.30	511_9199	CL/1/00100	01-1100-17					

Note: The >4mm fraction is crushed using a disc mill

u	o)			Landfill Wast	e Acceptance Crite	eria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	0.03	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.7			10
N	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<12	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.62	100		
Ν	PHSOIL	pH (pH units)	8.6		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.52		To be evaluated	To be evaluated

Ö	Meth	Lacabata Analysia	10:1 Single Stage Leachate	Calculated cumulative amount	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1					
Acc	ž	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)	BSEN	1245//2 @ L/5 10	litre kg-1			
U	WSLM3	pH (pH units) 00	7.4	Calculated data not UKAS Accredited						
U	WSLM2	Conductivity (µs/cm) 00	1170	Calculated data flot OKAS Accredited						
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25			
U	ICPWATVAR	Barium	0.07	0.7	20	100	300			
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5			
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70			
U	ICPMSW	Copper	0.002	0.02	2	50	100			
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2			
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30			
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40			
U	ICPMSW	Lead	0.003	0.03	0.5	10	50			
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5			
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7			
U	ICPMSW	Zinc	0.008	0.08	4	50	200			
U	KONENS	Chloride	330	3300	800	15000	25000			
U	ISEF	Fluoride	0.2	2	10	150	500			
U	ICPWATVAR	Sulphate as SO4	51	510	1000	20000	50000			
Ν	WSLM27	Total Dissolved Solids	911	9110	4000	60000	100000			
U	SFAPI	Phenol Index	<0.05	<0.5	1					
Ν	WSLM13	Dissolved Organic Carbon	3	30	500	800	1000			
Templa	ate Ver. 1				te Acceptance Criter	ia limit values correct	as of 11th March 2009.			

Report No

Socotec Environmental Chemistry Analytical and Deviating Sample Overview

Causeway Geotech Ltd Customer Site **Arklow Sewerage Scheme Marine Outfall GI**

S179799

Consignment No S69781 Date Logged 17-Oct-2017

In-House Report Due 03-Nov-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working

		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
CL /1790166	BH06 0.50	29/09/17		E	E				Е		Е		Е	Е	Е
CL/1780166 CL/1780167	BH06 1.50	29/09/17		듣	듣				듵		E		E	E	E
CL/1780167 CL/1780168	BH06 2.50	29/09/17		늗	늗				늗		Ė		Ė	Ė	E
CL/1780169	QC Blank	23/03/17		<u> </u>					<u> </u>		_		_	_	_
CL/1780109 CL/1780170	Reference Material (% Recovery	y)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number : EFS/179799

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
BTEXHSA	CL1780166	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation from the affected analytes (MTBE) . These circumstances should be taken into consideration when utilising the data"

Report Number: EFS/179799

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI		Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3		Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite

TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- \P Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EFS/179799 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S17_9799

Note: major constituent in upper case

Lab ID Number CL1/780-167 B100 0.00 MARINE SEDMENTS CL1/780-167 B100 1.50 MARINE SEDMENTS CL1/780-179 Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recovery) Reference Material (% Recove			Note. Illajor constituent ili upper case
CL/1780167 BH06 1.50 MARINE SEDIMENTS CL/1780168 BH06 2.50 MARINE SEDIMENTS	Lab ID Number	Client ID	
CL/1780167 BH06 1.50 MARINE SEDIMENTS CL/1780168 BH06 2.50 MARINE SEDIMENTS	CI /1780166	BH06.0.50	MARINE SEDIMENTS
CL/1780168 BH06 2.50 MARINE SEDIMENTS	CL/1700100	DI 100 0.00	MADINE SEDIMENTS
CU1760170 Reference Meterial (% Recovery) GUALITY CONTROL SAMPLE GU1760170 Reference Meterial (% Recovery) GUALITY CONTROL SAMPLE	OL/1700107	DH00 1.30	MADINE OF DIMENTO
CU1780170 Reference Material (W. Recovery) OUALITY CONTROL SAMPLE OUALITY CONTROL SAMPLE	CL/1780168	BH06 2.50	MARINE SEDIMENTS
CL1780170 Reference Material (% Recovery OUALITY CONTROL SAMPLE	CL/1780169	QC Blank	QUALITY CONTROL SAMPLE
	CL/1780170	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
		+	
		+	
		+	
		-	
		+	
		+	
		-	
		<u> </u>	

Appendix A Page 1 of 1 01/11/2017EFS/179799 Ver. 1

Our Ref: EFS/179864 (Ver. 1)

Your Ref: 17-0167 November 2, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Environmental Chemistry

SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

THOUSOURE

J Colbourne
Project Co-ordinator
01283 554547

TEST REPORT

Report No. EFS/179864 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 5 samples described in this report were registered for analysis by SOCOTEC UK Limited on 19-Oct-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 02-Nov-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 7)
Table of PCB Congener Results (Page 8)
Table of WAC Analysis Results (Pages 9 to 11)
Analytical and Deviating Sample Overview (Page 12)
Table of Additional Report Notes (Page 13)
Table of Method Descriptions (Page 14)
Table of Report Notes (Page 15)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes Operations Director
Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 02-Nov-2017

	Meth	Units : od Codes :	μg/kg PCBECD	pH Units PHSOIL	% TMSS	mg/kg TPHFIDUS	mg/kg TPHFIDUS	% M/M WSLM59	Mol/kg ANC	% LOI(%MM)	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	µg/kg BTEXHSA	μg/kg BTEXHSA	mg/kg PAHMSUS
	Method Reporti		5		0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	. 7
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1780492	BH07 0.50	11-Oct-17	Req	9.2	1.7	<10	<10	0.08	1.68	0.7	<10	<10	<10	<20*	<30	<20	<10	Req
1780493	BH07 1.50	11-Oct-17	Req	8.8	11.9	12	12	0.14	3.92	1.2	<10	<10	<10	<20*	<30	<20	<10	Req
1780494	BH07 2.50	11-Oct-17	Req	8.2	19.0	13	14	0.37	2.16	3.0	<10	<10	<10	<20*	<30	<20	<10	Req
1780495	QC Blank		Req			<10	<10	<0.02			<10	<10	<10	<20*	<30	<20	<10	Req
1780496	Reference Material (% Recovery)		Req	98		106	106	108	100	97	94	90	102	103	100	102	97	Req
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Client N Contact		Neil Hag	eway Geot		пе Ма	rine (Outfal	I GI	Date Pri Report N	nted lumber	ple Ana	02-	Nov-2017 FS/179864 1		

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: s17_9864 **Sample Details:** BH07 0.50 LIMS ID Number: CL1780492 Date Booked in: 19-Oct-17 **QC Batch Number:** 171157 **Date Extracted:** 26-Oct-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Oct-17 **Directory:** a\102617GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	100
Acenaphthene-d10	99
Phenanthrene-d10	99
Chrysene-d12	97
Perylene-d12	95

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	89
Terphenyl-d14	74

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17_9864 **Sample Details:** BH07 1.50 LIMS ID Number: CL1780493 Date Booked in: 19-Oct-17 **QC Batch Number:** 171157 **Date Extracted:** 26-Oct-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Oct-17 **Directory:** a\102617GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	100
Acenaphthene-d10	99
Phenanthrene-d10	99
Chrysene-d12	103
Perylene-d12	104

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	98
Terphenyl-d14	84

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: s17_9864 **Sample Details:** BH07 2.50 LIMS ID Number: CL1780494 Date Booked in: 19-Oct-17 **QC Batch Number:** 171157 **Date Extracted:** 26-Oct-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Oct-17 **Directory:** a\102617GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	1	< 0.08	-
Chrysene	218-01-9	1	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	97
Acenaphthene-d10	95
Phenanthrene-d10	95
Chrysene-d12	91
Perylene-d12	85

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	87

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17_9864 **Sample Details:** QC Blank LIMS ID Number: CL1780495 Date Booked in: 19-Oct-17 **QC Batch Number:** 171157 **Date Extracted:** 26-Oct-17 **Quantitation File: Initial Calibration Date Analysed:** 27-Oct-17 **Directory:** a\102617GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	100
Acenaphthene-d10	102
Phenanthrene-d10	100
Chrysene-d12	98
Perylene-d12	109

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	96
Terphenyl-d14	81

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: s17_9864 **Sample Details:** LIMS ID Number: CL1780496 Date Booked in: 19-Oct-17 **QC Batch Number:** 171157 **Date Extracted:** 26-Oct-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Oct-17 **Directory:** a\102617GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.42	104	100
Acenaphthylene	208-96-8	4.49	106	100
Acenaphthene	83-32-9	4.61	104	97
Fluorene	86-73-7	5.01	103	97
Phenanthrene	85-01-8	5.90	101	99
Anthracene	120-12-7	5.95	102	99
Fluoranthene	206-44-0	7.29	100	98
Pyrene	129-00-0	7.58	99	97
Benzo[a]anthracene	56-55-3	9.29	103	99
Chrysene	218-01-9	9.34	103	99
Benzo[b]fluoranthene	205-99-2	10.83	88	100
Benzo[k]fluoranthene	207-08-9	10.87	94	99
Benzo[a]pyrene	50-32-8	11.27	98	99
Indeno[1,2,3-cd]pyrene	193-39-5	12.66	103	96
Dibenzo[a,h]anthracene	53-70-3	12.70	108	98
Benzo[g,h,i]perylene	191-24-2	12.99	89	73
Coronene	191-07-1	15.38	107	90
Total (USEPA16) PAHs	-	-	101	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	101
Acenaphthene-d10	102
Phenanthrene-d10	100
Chrysene-d12	107
Perylene-d12	119

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	83

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall Gl

Job Number: S17_9864
QC Batch Number: 171157

Directory: 102617PCB.GC22

Method: Ultrasonic

* This sample data is not UKAS or Mcerts accredited.

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
CL1780492	BH07 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1780493	BH07 1.50	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1780494	BH07 2.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1780495	QC Blank	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1780496	Reference Material (% Recovery)	88.5	99.7	80.1	101.2	101.0	95.3	84.0

Soil

19-Oct-17

26-Oct-17

27-Oct-17

Client	Causeway Geotech Ltd			Leaching Data			
Cilent	Causeway Geolech Llu				Weight of sample (kg)	0.092	
Contact	Noil Hoggon				Moisture content @ 105°C (% of Wet Weight)	1.7	
Contact Neil Haggan				Equivalent Weight based on drying at 105°C (kg) 0.			
Site	Arklow Cowere as Cohem	o Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)		
Site	Arklow Sewerage Schem	ie Marine Ou	liali Gi	Fraction of sample above 4 mm %	100.000		
Samp	ole Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH07 0.50		s17 9864	CL/1780492	02-Nov-17			
'	БП07 0.30	517_9004	CL/1700492	02-NOV-17			

Note: The >4mm fraction is crushed using a disc mill

	4			Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.08	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.7			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<10	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.38	100		
Ν	PHSOIL	pH (pH units)	9.2		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1 69		To be evaluated	To be evaluated

ou	g	10:1 Single Stage Leacha		Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for			
Accreditation	Method Co	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)	g (dry weight) BSEN 12457/2 @ L/S 10 mg/kg (dry weig		•	
U	WSLM3	pH (pH units) 00	7.6	Calculated data not UKAS Accredited				
U	WSLM2	Conductivity (µs/cm) 00	379	Calculated data flot OKAS Accredited				
U	ICPMSW	Arsenic	<0.001	<0.01	0.5	2	25	
U	ICPWATVAR	Barium	0.09	0.9	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U	ICPMSW	Copper	0.002	0.02	2	50	100	
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.006	0.06	0.5	10	30	
U	ICPMSW	Nickel	0.001	0.01	0.4	10	40	
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50	
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.019	0.19	4	50	200	
U	KONENS	Chloride	74	740	800	15000	25000	
U	ISEF	Fluoride	0.2	2	10 150 500		500	
U	ICPWATVAR	Sulphate as SO4	18	180	1000	20000	50000	
Ν	WSLM27	Total Dissolved Solids	295	2950	4000	60000	100000	
U	SFAPI	Phenol Index	<0.05	<0.5	1			
Ν	WSLM13	Dissolved Organic Carbon	1.1	11	500	800	1000	

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causeway Geotech Ltd			Leaching Data		
Ciletti	Causeway Geolech Llu				Weight of sample (kg)	0.100
Contact	Noil Hoggon				Moisture content @ 105°C (% of Wet Weight)	11.9
Contact Neil Haggan				Equivalent Weight based on drying at 105°C (kg) 0.0		
Site	Arklau Cawaraga Caham	o Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)	
Site	Arklow Sewerage Schem	ie ivianne Ou	liali Gi	Fraction of sample above 4 mm %	71.500	
Samp	ole Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
BH07 1.50		s17 9864	CL/1780493	02-Nov-17		
!	БП07 1.30	517_9004 CL/176049		02-NOV-17		

Note: The >4mm fraction is crushed using a disc mill

	4			Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.14	3	5	6
Ν	LOI450	Loss on Ignition (%)	1.2			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.06	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	14	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.54	100		
Ν	PHSOIL	pH (pH units)	8.8		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	3.97		To be evaluated	To be evaluated

tation	Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
Accreditation	Method	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mg/l except [∞]	mg/kg (dry weight)		mg/kg (dry weight)	
U	WSLM3	pH (pH units) ⁰⁰	7.7	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	885	Calculated data not onas accredited			
U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25
U	ICPWATVAR	Barium	0.08	0.8	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	0.001	0.01	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.007	0.07	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.003	0.03	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.018	0.18	4	50	200
U	KONENS	Chloride	211	2110	800	15000	25000
U	ISEF	Fluoride	0.3	3	10 150 500		500
U	ICPWATVAR	Sulphate as SO4	52	520	1000 20000 50000		50000
N	WSLM27	Total Dissolved Solids	690	6900	4000	4000 60000 100000	
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	1.3	13	500	800	1000

500 800 1000

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causeway Geotech Ltd				Leaching Data		
Ciletit	Causeway Geolech Llu			Weight of sample (kg)	0.106		
Contact	Noil Hoggon				Moisture content @ 105°C (% of Wet Weight)	19.0	
Contact Neil Haggan				Equivalent Weight based on drying at 105°C (kg)	0.090		
Site	Arklaw Cawaraga Caham	a Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)		
Site	Arklow Sewerage Schem	ie Marine Ou	liali Gi	Fraction of sample above 4 mm %	71.900		
Sam	ole Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH07 2.50		-17 0004 CL/4	CL/1780494	02-Nov-17			
	DI 107 2.30	s17_9864 CL/1780494		02-INUV-17			

Note: The >4mm fraction is crushed using a disc mill

				Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)		Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.37	3	5	6
Ν	LOI450	Loss on Ignition (%)	3			10
N	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	16	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.68	100		
Ν	PHSOIL	pH (pH units)	8.2		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.19		To be evaluated	To be evaluated

ation	Code			Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values i BSEN 12457/2 @ L/S 10 litre kg-1		
Accreditation	Method Code	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)		ht)
U	WSLM3	pH (pH units) ⁰⁰	7.8	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	1360	Calculated data not OKAS Accredited			
U	ICPMSW	Arsenic	0.009	0.09	0.5	2	25
U	ICPWATVAR	Barium	0.09	0.9	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	0.002	0.02	2	50	100
U		Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.014	0.14	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.007	0.07	0.06	0.7	5
U	ICPMSW	Selenium	0.001	0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.029	0.29	4	50	200
U	KONENS	Chloride	332	3320	800	15000	25000
U	ISEF	Fluoride	0.3	3	10	150	500
U	ICPWATVAR	Sulphate as SO4	78	780	1000	20000	50000
N	WSLM27	Total Dissolved Solids	1060	10600	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	2.7	27	500	800	1000

nplate Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Sample Analysis

Socotec Environmental Chemistry Analytical and Deviating Sample Overview

S179864

EFS/179864 Ver. 1

Customer Site Report No Causeway Geotech Ltd Arklow Sewerage Scheme Marine Outfall GI S179864 Consignment No S69782
Date Logged 19-Oct-2017

In-House Report Due 07-Nov-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

														iiii uc	
		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
01.//====	In														
CL/1780492	BH07 0.50	11/10/17		Е	Е						Е				
CL/1780493	BH07 1.50	11/10/17		Е	Е						Е				
CL/1780494	BH07 2.50	11/10/17		Е	Е						Е				
CL/1780495	QC Blank														
CL/1780496	Reference Material (% Recovery	y)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- B The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Report Number : EFS/179864

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
BTEXHSA	CL1780492 TO CL1780496	The Secondary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily (including the Primary Process Control) and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation from the affected analytes (MTBE) . These circumstances should be taken into consideration when utilising the data"
TPHFIDUS	CL1780492 TO CL1780496	The Secondary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily (including the Primary Process Control) and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation , where applicable, from the affected analytes (Banding C8-C10) . These circumstances should be taken into consideration when utilising the data.

Report Number: EFS/179864

Method Descriptions

Matrix MethodID		Analysis	Method Description
		Basis	·
Soil	ANC	Oven Dried @ < 35°C	Quantitative digestion with Hydrochloric Acid back titration with 1M Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EFS/179864 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S17_9864

Note: major constituent in upper case

Lab ID Number Client ID Description CL/1780492 BH07 0.50 MARINE SEDIMENTS CL/1780493 BH07 1.50 MARINE SEDIMENTS CL/1780494 BH07 2.50 MARINE SEDIMENTS CL/1780495 QC Blank QUALITY CONTROL SAMPLE CL/1780496 Reference Material (% Recovery) QUALITY CONTROL SAMPLE	
CL/1780493 BH07 1.50 MARINE SEDIMENTS CL/1780494 BH07 2.50 MARINE SEDIMENTS CL/1780495 QC Blank QUALITY CONTROL SAMPLE	
CL/1780493 BH07 1.50 MARINE SEDIMENTS CL/1780494 BH07 2.50 MARINE SEDIMENTS CL/1780495 QC Blank QUALITY CONTROL SAMPLE	
CL/1780494 BH07 2.50 MARINE SEDIMENTS CL/1780495 QC Blank QUALITY CONTROL SAMPLE	
CL/1780495 QC Blank QUALITY CONTROL SAMPLE	
CL/1780495 QC Blank QUALITY CONTROL SAMPLE CL/1780496 Reference Material (% Recovery) QUALITY CONTROL SAMPLE	
CL/1780496 Reference Material (% Recovery) QUALITY CONTROL SAMPLE	

Our Ref: EFS/179861 (Ver. 1)

Your Ref: 17-0167 November 2, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Environmental Chemistry

SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

THOUSOURE

J Colbourne
Project Co-ordinator
01283 554547

TEST REPORT

Report No. EFS/179861 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 5 samples described in this report were registered for analysis by SOCOTEC UK Limited on 19-Oct-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 02-Nov-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 7)
Table of PCB Congener Results (Page 8)
Table of WAC Analysis Results (Pages 9 to 11)
Analytical and Deviating Sample Overview (Page 12)
Table of Additional Report Notes (Page 13)
Table of Method Descriptions (Page 14)
Table of Report Notes (Page 15)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes Operations Director
Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 02-Nov-2017

		Units : od Codes :	μg/kg PCBECD	pH Units PHSOIL	% TMSS		mg/kg TPHFIDUS	% M/M WSLM59	Mol/kg ANC		μg/kg BTEXHSA		μg/kg BTEXHSA		μg/kg BTEXHSA			mg/kg PAHMSUS
	Method Reporti	ing Limits :	5		0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	
LABID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1780480	BH08 0.50	10-Oct-17	Req	8.6	13.3	16	16	0.17	1.92	1.1	<10	<10	<10	<20	<30	<20	<10	Req
1780481	BH08 1.50	10-Oct-17	Req	8.5	11.5	<10	<10	0.09	1.84	0.9	<10	<10	<10	<20*	<30	<20	<10	Req
1780482	BH08 2.50	10-Oct-17	Req	8.5	16.7	11	12	0.06	1.60	0.8	<10	<10	<10	<20	<30	<20	<10	Req
1780483	QC Blank		Req			<10	<10	<0.02			<10	<10	<10	<20	<30	<20	<10	Req
1780484	Reference Material (% Recovery)		Req	98		106	106	108	102	102	103	101	100	100	100	101	98	Req
	SOCOTEC (Client N		Causev Neil Hagg	vay Geot	ech Ltd					Sample Analysis						
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400		Ark	dow S	Sewer	age S	chem	ne Ma	rine (Dutfal	l GI	Date Prin Report N Table Nu	lumber			Nov-2017 FS/179861 1		
	Fax +44 (0) 1283 554422																	

Where individual results are flagged see report notes for status.

Page 2 of 15

EFS/179861 Ver. 1

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: s17_9861 **Sample Details:** BH08 0.50 LIMS ID Number: CL1780480 Date Booked in: 19-Oct-17 **QC Batch Number:** 171157 **Date Extracted:** 26-Oct-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Oct-17 **Directory:** a\102617GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	104
Acenaphthene-d10	104
Phenanthrene-d10	103
Chrysene-d12	109
Perylene-d12	118

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	91
Terphenyl-d14	78

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: S17_9861 **Sample Details:** BH08 1.50 LIMS ID Number: CL1780481 Date Booked in: 19-Oct-17 **QC Batch Number:** 171157 **Date Extracted:** 26-Oct-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Oct-17 **Directory:** a\102617GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	1	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	104
Acenaphthene-d10	103
Phenanthrene-d10	104
Chrysene-d12	105
Perylene-d12	108

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	84

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

s17_9861 **Sample Details:** BH08 2.50 **Job Number:** LIMS ID Number: CL1780482 Date Booked in: 19-Oct-17 **QC Batch Number:** 171157 **Date Extracted:** 26-Oct-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Oct-17 **Directory:** a\102617GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	104
Acenaphthene-d10	104
Phenanthrene-d10	104
Chrysene-d12	102
Perylene-d12	98

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	95
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

QC Blank Job Number: S17_9861 **Sample Details:** LIMS ID Number: CL1780483 Date Booked in: 19-Oct-17 **QC Batch Number:** 171157 **Date Extracted:** 26-Oct-17 **Quantitation File: Initial Calibration Date Analysed:** 27-Oct-17 **Directory:** a\102617GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	1	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	100
Acenaphthene-d10	102
Phenanthrene-d10	100
Chrysene-d12	98
Perylene-d12	109

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	96
Terphenyl-d14	81

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: S17_9861 **Sample Details:** LIMS ID Number: CL1780484 Date Booked in: 19-Oct-17 **QC Batch Number:** 171157 **Date Extracted:** 26-Oct-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Oct-17 **Directory:** a\102617GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.42	104	100
Acenaphthylene	208-96-8	4.49	106	100
Acenaphthene	83-32-9	4.61	104	97
Fluorene	86-73-7	5.01	103	97
Phenanthrene	85-01-8	5.90	101	99
Anthracene	120-12-7	5.95	102	99
Fluoranthene	206-44-0	7.29	100	98
Pyrene	129-00-0	7.58	99	97
Benzo[a]anthracene	56-55-3	9.29	103	99
Chrysene	218-01-9	9.34	103	99
Benzo[b]fluoranthene	205-99-2	10.83	88	100
Benzo[k]fluoranthene	207-08-9	10.87	94	99
Benzo[a]pyrene	50-32-8	11.27	98	99
Indeno[1,2,3-cd]pyrene	193-39-5	12.66	103	96
Dibenzo[a,h]anthracene	53-70-3	12.70	108	98
Benzo[g,h,i]perylene	191-24-2	12.99	89	73
Coronene	191-07-1	15.38	107	90
Total (USEPA16) PAHs	-	-	101	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	101
Acenaphthene-d10	102
Phenanthrene-d10	100
Chrysene-d12	107
Perylene-d12	119

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	83

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall Gl

Job Number: S17_9861 QC Batch Number: 171157

Directory: 102617PCB.GC22

Method: Ultrasonic

* This sample data is not UKAS or Mcerts accredited.

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

		Concentration, (μg/kg)						
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
CL1780480	BH08 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1780481	BH08 1.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1780482	BH08 2.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1780483	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1780484	Reference Material (% Recovery)	88.5	99.7	80.1	101.2	101.0	95.3	84.0

Soil

19-Oct-17

26-Oct-17

27-Oct-17

Client	Course Course Ltd		Leaching Data				
Client Causeway Geotech Ltd			Weight of sample (kg)	0.100			
Centest Neil Hoggen			Moisture content @ 105°C (% of Wet Weight)	13.3			
Contact	Contact Neil Haggan				Equivalent Weight based on drying at 105°C (kg) 0.09		
Site	Arklau Cawaraga Caham	o Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)		
Site	Arklow Sewerage Schem	ie ivianne Ou	liali Gi		Fraction of sample above 4 mm %	43.500	
Samp	Sample Description Report No Sample No Issue Date			Fraction of non-crushable material %	0.000		
	BH08 0.50	s17_9861	CL/1780480	02-Nov-17			

Note: The >4mm fraction is crushed using a disc mill

				Landfill Was	te Acceptance Cr	iteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.17	3	5	6
Ν	LOI450	Loss on Ignition (%)	1.1			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	18	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.57	100		
Ν	PHSOIL	pH (pH units)	8.6		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.97		To be evaluated	To be evaluated

Accreditation	d Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Value BSEN 12457/2 @ L/S 10 litre kg-1		
Accre	Method	,	mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weight)	
J	WSLM3	pH (pH units) ⁰⁰	7.9	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	889	Calculated data not offao Accredited			
J	ICPMSW	Arsenic	0.005	0.05	0.5	2	25
J	ICPWATVAR	Barium	0.08	0.8	20	100	300
כ	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	0.001	0.01	2	50	100
J		Mercury	<0.0001	<0.001	0.01	0.2	2
J	ICPMSW	Molybdenum	0.005	0.05	0.5	10	30
J	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
J	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
ט	ICPMSW	Antimony	0.002	0.02	0.06	0.7	5
J	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
J	ICPMSW	Zinc	0.021	0.21	4	50	200
J	KONENS	Chloride	212	2120	800	15000	25000
U	ISEF	Fluoride	0.3	3	10	150	500
U	ICPWATVAR	Sulphate as SO4	58	580	1000	20000	50000
N	WSLM27	Total Dissolved Solids	693	6930	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	1.8	18	500	800	1000

mplate Ver. 1

andfill Waste Acceptance Criteria limit values correct as of 11th March 2009

Client Causeway Geotech Ltd			Leaching Data				
Cilent	Causeway Geotech Ltd			Weight of sample (kg)	0.102		
Contact Neil Haggan			Moisture content @ 105°C (% of Wet Weight)	11.5			
Comaci	Neil Haggan			Equivalent Weight based on drying at 105°C (kg)			
Site Arklow Sewerage Scheme Marine Outfall GI				Volume of water required to carry out 10:1 stage (litres)	0.888		
Site	Arklow Sewerage Scheme Marine Outfall GI				Fraction of sample above 4 mm %		
Sample Description Report No Sample No Issue Date				Fraction of non-crushable material %			
	3H08 1.50	s17 9861 CL/1780481 02-Nov-17		02-Nov-17			
517_9001 CL/1/00401 U2-NUV-1/				UZ-INUV-17			

Note: The >4mm fraction is crushed using a disc mill

				Landfill Waste Acceptance Criteria Limit Values			
Accreditation	Solid Waste Analysis (Dry Basis)		Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill	
N	WSLM59	Total Organic Carbon (% M/M)	0.09	3	5	6	
Ν	LOI450	Loss on Ignition (%)	0.9			10	
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.06	6			
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1			
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<11	500			
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.54	100			
Ν	PHSOIL	pH (pH units)	8.5		>6		
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.88		To be evaluated	To be evaluated	

Accreditation	d Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
Accre	Method	, , ,	mg/l except [∞]	mg/kg (dry weight)	mg/kg (dry weight)		ght)
J	WSLM3	pH (pH units) 00	7.8	Calculated data not UKAS Accredited			
J	WSLM2	Conductivity (µs/cm) 00	1020	Calculated data not OKAS Accredited			
U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25
U	ICPWATVAR	Barium	0.07	0.7	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	<0.001	<0.01	2	50	100
U		Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.004	0.04	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.023	0.23	4	50	200
U	KONENS	Chloride	250	2500	800	15000	25000
U	ISEF	Fluoride	0.2	2	10	150	500
U	ICPWATVAR	Sulphate as SO4	48	480	1000	20000	50000
N	WSLM27	Total Dissolved Solids	795	7950	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	1	10	500	800	1000

Template Ver. 1

andfill Waste Acceptance Criteria limit values correct as of 11th March 2009

Client Causeway Geotech Ltd				Leaching Data			
Cilent	Causeway Geotech Ltd				Weight of sample (kg)	0.107	
Contact Noil Lorgon			Moisture content @ 105°C (% of Wet Weight)	16.7			
Contact	Neil Haggan				Equivalent Weight based on drying at 105°C (kg)		
Site	Arklaw Cawaraga Caban	o Marina Ou	tfall CI	Volume of water required to carry out 10:1 stage (litres)			
Site	Arklow Sewerage Scheme Marine Outfall GI				Fraction of sample above 4 mm %		
Sample Description Report No Sample No Issue Date					e Fraction of non-crushable material %		
	BH08 2.50	s17_9861 CL/1780482 02-Nov-17		02-Nov-17			

Note: The >4mm fraction is crushed using a disc mill

				Landfill Was	te Acceptance Cr	iteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis) Solid Waste Analysis (Dry Basis)		Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.06	3	5	6
N	LOI450	Loss on Ignition (%)	0.8			10
N	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	13	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.63	100		
Ν	PHSOIL	pH (pH units)	8.5		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.61		To be evaluated	To be evaluated

Accreditation	d Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
Accre	Method	,	mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)		ght)
U	WSLM3	pH (pH units) ^{oo}	7.4	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	1400	Calculated data not offao Accredited			
J	ICPMSW	Arsenic	0.003	0.03	0.5	2	25
J	ICPWATVAR	Barium	0.07	0.7	20	100	300
כ	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	<0.001	<0.01	2	50	100
J		Mercury	<0.0001	<0.001	0.01 0.2 2		2
J	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30
J	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
J	ICPMSW	Lead	0.002	0.02	0.5	10	50
J	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5
J	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
J	ICPMSW	Zinc	0.026	0.26	4	50	200
J	KONENS	Chloride	365	3650	800	15000	25000
U	ISEF	Fluoride	0.2	2	10	150	500
U	ICPWATVAR	Sulphate as SO4	59	590	1000	20000	50000
N	WSLM27	Total Dissolved Solids	1090	10900	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	1.1	11	500	800	1000

plate Ver. 1

andfill Waste Acceptance Criteria limit values correct as of 11th March 200

Report No

S179861

Socotec Environmental Chemistry Analytical and Deviating Sample Overview

Customer Causeway Geotech Ltd
Site Arklow Sewerage Scheme Marine Outfall GI

S179861

Consignment No S69780
Date Logged 19-Oct-2017

In-House Report Due 07-Nov-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
	,														
CL/1780480	BH08 0.50	10/10/17		Е	Е						Е				
CL/1780481	BH08 1.50	10/10/17		Е	Е						Е				
CL/1780482	BH08 2.50	10/10/17		Е	Е						Е				
CL/1780483	QC Blank														
CL/1780484	Reference Material (% Recovery	/)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number : EFS/179861

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
BTEXHSA	CL1780481	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation from the affected analytes (MTBE) . These circumstances should be taken into consideration when utilising the data"
TPHFIDUS	CL1780480 TO CL1780484	The Secondary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily (including the Primary Process Control) and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation , where applicable, from the affected analytes (Banding C8-C10) . These circumstances should be taken into consideration when utilising the data.

Report Number: EFS/179861

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EFS/179861 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S17_9861

Note: major constituent in upper case

Liab ID Number CU17704510 DISGO MARRIE SCHIRKITS CU17704511 DESGO 1.50 MARRIE SCHIRKITS MARRIE SCHIRKITS CU17804512 DESGO 1.50 MARRIE SCHIRKITS CU17804544 Reference Material (% Recovery) CU17804544 Reference Material (% Recovery) CU17804545 Reference Material (% Recovery)			Twote: major constituent in upper case
CL/1780481 BH08 1.50 MARINE SEDIMENTS CL/1780482 BH08 2.50 MARINE SEDIMENTS CL/1780483 QC Blank QUALITY CONTROL SAMPLE	Lab ID Number	Client ID	Description
CL/1780481 BH08 1.50 MARINE SEDIMENTS CL/1780482 BH08 2.50 MARINE SEDIMENTS CL/1780483 QC Blank QUALITY CONTROL SAMPLE	CI /1780480	RH08 0 50	MARINE SEDIMENTS
CL/1780482 BH08 2.50 MARINE SEDIMENTS CL/1780483 QC Blank QUALITY CONTROL SAMPLE	CL/1700400	DI 100 0.50	MADINE SEDIMENTS
CL/1780483 QC Blank QUALITY CONTROL SAMPLE	CL/1780481	BH08 1.50	MARINE SEDIMENTS
CU1780H59 Reference Material (% Recovery) Reference Material (% Recovery) QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE	CL/1780482	BH08 2.50	MARINE SEDIMENTS
CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804894 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI17804994 Reference Material (% Recovery) CLI1780494 Reference Material (% Recover	CL/1780483	QC Blank	QUALITY CONTROL SAMPLE
	CL/1780484	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
		1	
		-	
		1	
		-	
		+	
		-	

Appendix A Page 1 of 1

Our Ref: EFS/180511 (Ver. 1)

Your Ref: 17-0167 November 29, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Environmental Chemistry SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

JACOLDOVINE

J Colbourne

Project Co-ordinator

01283 554547

TEST REPORT

Report No. EFS/180511 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall Gl

The 5 samples described in this report were registered for analysis by SOCOTEC UK Limited on 09-Nov-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 29-Nov-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 7)
Table of PCB Congener Results (Page 8)
Table of WAC Analysis Results (Pages 9 to 11)
Analytical and Deviating Sample Overview (Page 12)
Table of Method Descriptions (Page 13)
Table of Report Notes (Page 14)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim

Tim Barnes Operations Director Energy & Waste Services

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 29-Nov-2017

	Meth	Units : od Codes :		pH Units PHSOIL	% TMSS	mg/kg TPHFIDUS	mg/kg TPHFIDUS	% M/M WSLM59	Mol/kg ANC	% LOI(%MM)	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	mg/kg PAHMSUS
	Method Reporti			TTIOOIL	0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	1711111000
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1783094	BH09 0.50	27-Oct-17	Req	8.4	14.1	42	42	0.06	1.68	1.1	<10	<10	<10	<20	<30	<20	<10	Req
1783095	BH09 1.50	27-Oct-17	Req	8.5	16.5	84	84	0.06	1.04	0.9	<10	<10	<10	<20	<30	<20	<10	Req
1783096	BH09 2.50	27-Oct-17	Req	8.5	18.2	27	27	0.16	2.48	1.3	<10	<10	<10	<20	<30	<20	<10	Req
1783097	QC Blank		Req			<10	<10	<0.02			<10	<10	<10	<20	<30	<20	<10	Req
1783098	Reference Material (% Recovery)		Req	101.2		89	89	108	101	101.7	93	93	96	103	94	97	91	Req
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Client N Contact	:	Neil Hag	way Geot		ne Ma	rine (Dutfal	I GI	Date Printed 27-Nov-2017 Report Number EFS/180511 Table Number 1						

Where individual results are flagged see report notes for status.

Page 2 of 14

EFS/180511 Ver. 1

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: Job Number: BH09 0.50 S18_0511 **LIMS ID Number:** CL1783094 Date Booked in: 09-Nov-17 **QC Batch Number:** 171249 **Date Extracted:** 22-Nov-17 **Quantitation File:** Initial Calibration 22-Nov-17 **Date Analysed:**

Directory: 112217.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	102
Acenaphthene-d10	105
Phenanthrene-d10	102
Chrysene-d12	93
Perylene-d12	94

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	92
Terphenyl-d14	73

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: Job Number: BH09 1.50 s18_0511 **LIMS ID Number:** CL1783095 Date Booked in: 09-Nov-17 **QC Batch Number:** 171249 **Date Extracted:** 22-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 22-Nov-17

Directory: 112217.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	102
Acenaphthene-d10	107
Phenanthrene-d10	108
Chrysene-d12	128
Perylene-d12	153

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	91
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: Job Number: BH09 2.50 S18_0511 **LIMS ID Number:** CL1783096 Date Booked in: 09-Nov-17 **QC Batch Number:** 171249 **Date Extracted:** 22-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 22-Nov-17

Directory: 112217.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	1	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	* D (< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	102
Acenaphthene-d10	105
Phenanthrene-d10	103
Chrysene-d12	99
Perylene-d12	98

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	92
Terphenyl-d14	74

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: QC Blank Job Number: s18_0511 **LIMS ID Number:** CL1783097 Date Booked in: 09-Nov-17 **QC Batch Number:** 171249 **Date Extracted:** 22-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 22-Nov-17

Directory: 112217.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	94
Phenanthrene-d10	95
Chrysene-d12	89
Perylene-d12	85

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	105
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details:Reference Material (% Rec Job Number:\$18_0511LIMS ID Number:CL1783098Date Booked in:09-Nov-17QC Batch Number:171249Date Extracted:22-Nov-17Quantitation File:Initial CalibrationDate Analysed:22-Nov-17

Directory: 112217.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit
-		(min)	%	
Naphthalene	91-20-3	3.31	87	100
Acenaphthylene	208-96-8	4.36	95	99
Acenaphthene	83-32-9	4.48	93	92
Fluorene	86-73-7	4.87	91	91
Phenanthrene	85-01-8	5.72	88	100
Anthracene	120-12-7	5.78	95	99
Fluoranthene	206-44-0	7.08	87	90
Pyrene	129-00-0	7.37	87	89
Benzo[a]anthracene	56-55-3	9.06	100	99
Chrysene	218-01-9	9.11	93	98
Benzo[b]fluoranthene	205-99-2	10.59	81	97
Benzo[k]fluoranthene	207-08-9	10.63	82	97
Benzo[a]pyrene	50-32-8	11.02	93	96
Indeno[1,2,3-cd]pyrene	193-39-5	12.39	90	92
Dibenzo[a,h]anthracene	53-70-3	12.43	88	97
Benzo[g,h,i]perylene	191-24-2	12.70	72	95
Coronene	191-07-1	14.89	68	68
Total (USEPA16) PAHs	-	-	87	_

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	98
Phenanthrene-d10	97
Chrysene-d12	120
Perylene-d12	152

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	87
Terphenyl-d14	72

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix:

 Job Number:
 S18_0511
 Date Booked in:
 09-Nov-17

 QC Batch Number:
 171249
 Date Extracted:
 22-Nov-17

 Directory:
 112117PCB.GC22
 Date Analysed:
 22-Nov-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

				Cor	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
CL1783094	BH09 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1783095	BH09 1.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
CL1783096	BH09 2.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1783097	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1783098	Reference Material (% Recovery)	78.3	86.4	91.2	88.9	89.3	84.6	75.7
				1				

Soil

Client	Causaway Caataah	Caucaway Castach Ltd			Leaching Data		
Cilent	t Causeway Geotech Ltd			Weight of sample (kg)	0.103		
Contact Noil Hoggen			Moisture content @ 105°C (% of Wet Weight)	14.1			
Contact	Neil Haggan			Equivalent Weight based on drying at 105°C (kg)	0.090		
Site	ite Arklow Sewerage Scheme Marine Outfall GI			Volume of water required to carry out 10:1 stage (litres)			
Site	Arkiow Sewerage Sc		liali Gi		Fraction of sample above 4 mm %	7.300	
Sam	Sample Description Report No Sample No Issue Date			Fraction of non-crushable material %	0.000		
BH09 0.50		BH09 0.50 s18_0511 CL/1783094 27-Nov-17					

Note: The >4mm fraction is crushed using a disc mill

	4			Landfill Wa	aste Acceptance Ci	riteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.06	3	5	6
N	LOI450	Loss on Ignition (%)	1.1			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	49	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.58	100		
N	PHSOIL	pH (pH units)	8.4		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.7		To be evaluated	To be evaluated

ion	ode		10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for E 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)		a Limit Values for BSEN
Accreditation	Method Code	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)			litre kg-1
U	WSLM3	pH (pH units) 00	7.6	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	1270	- Calculated data not OKAS Accredited			
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	0.001	0.01	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5
U	ICPMSW	Selenium	0.001	0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.004	0.04	4	50	200
U	KONENS	Chloride	331	3310	800	15000	25000
U	ISEF	Fluoride	0.2	2	10	150	500
U	ICPWATVAR	Sulphate as SO4	44	440	1000	20000	50000
Ν	WSLM27	Total Dissolved Solids	989	9890	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	2.3	23	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causaway Caataah	l +d		Leaching Data			
Cilent	Causeway Geotech	Liu		Weight of sample (kg)	0.108		
Contact	Neil Haggan				Moisture content @ 105°C (% of Wet Weight)	16.5	
Contact	пен паудан				Equivalent Weight based on drying at 105°C (kg)	0.090	
Site	Arklow Sewerage So	shama Marina Out	Hall Cl		Volume of water required to carry out 10:1 stage (litres)	0.882	
Site	Arklow Sewerage Sc	neme Manne Ou	liali Gi		Fraction of sample above 4 mm %	11.600	
Sam	ple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
	BH09 1.50	s18_0511	CL/1783095	27-Nov-17			

Note: The >4mm fraction is crushed using a disc mill

				Landfill Waste Acceptance Criteria Limit Values					
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill			
Ν	WSLM59	Total Organic Carbon (% M/M)	0.06	3	5	6			
N	LOI450	Loss on Ignition (%)	0.9			10			
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.07	6					
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1					
Ν	TPHFIDUS	Mineral Oil (mg/kg)	101	500					
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.63	100					
Ν	PHSOIL	pH (pH units)	8.5		>6				
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.04		To be evaluated	To be evaluated			

ion	ode		10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSI				
Accreditation	Method Code	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)	12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)				
U	WSLM3	pH (pH units) ⁰⁰	7.6	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	1590	Calculated data flot ONAS Accredited					
U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25		
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300		
U	ICPMSW	Cadmium	0.0003	0.003	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	0.002	0.02	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	0.002	0.02	0.5	10	50		
U	ICPMSW	Antimony	0.002	0.02	0.06	0.7	5		
U	ICPMSW	Selenium	0.001	0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.008	0.08	4	50	200		
U	KONENS	Chloride	437	4370	800	15000	25000		
U	ISEF	Fluoride	0.2	2	10	150	500		
U	ICPWATVAR	Sulphate as SO4	44	440	1000	20000	50000		
N	WSLM27	Total Dissolved Solids	1240	12400	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	9.3	93	500	800	1000		

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causaway Caataah I			Leaching Data			
Cilent	Causeway Geotech I	Lla		Weight of sample (kg)	0.102		
Contact	Neil Haggan			Moisture content @ 105°C (% of Wet Weight)	18.2		
Contact	neli Haggari				Equivalent Weight based on drying at 105°C (kg)	0.090	
Site	Arklow Sewerage Sc	homo Marino Out	Hall CI		Volume of water required to carry out 10:1 stage (litres)	0.888	
Site	Arkiow Sewerage Sc		liali Gi		Fraction of sample above 4 mm %	52.200	
Sam	ple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
	BH09 2.50	s18_0511	CL/1783096	27-Nov-17			

Note: The >4mm fraction is crushed using a disc mill

				Landfill Waste Acceptance Criteria Limit Values					
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill			
Ν	WSLM59	Total Organic Carbon (% M/M)	0.17	3	5	6			
N	LOI450	Loss on Ignition (%)	1.4			10			
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6					
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1					
Ν	TPHFIDUS	Mineral Oil (mg/kg)	33	500					
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.66	100					
Ν	PHSOIL	pH (pH units)	8.5		>6				
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.68		To be evaluated	To be evaluated			

ion	Code		10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEI				
Accreditation	Method Co	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)	12457/2 @ L/S 10 litre kg- ² mg/kg (dry weight)		J		
U	WSLM3	pH (pH units) 00	8	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	1150	Calculated data flot ONAS Accredited					
U	ICPMSW	Arsenic	0.005	0.05	0.5	2	25		
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	<0.001	<0.01	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.009	0.09	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	0.003	0.03	0.06	0.7	5		
U	ICPMSW	Selenium	0.001	0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.002	0.02	4	50	200		
U	KONENS	Chloride	293	2930	800	15000	25000		
U	ISEF	Fluoride	0.2	2	10	150	500		
U	ICPWATVAR	Sulphate as SO4	44	440	1000	20000	50000		
N	WSLM27	Total Dissolved Solids	898	8980	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
N	WSLM13	Dissolved Organic Carbon	3.7	37	500	800	1000		

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

S180511

Socotec Environmental Chemistry Analytical and Deviating Sample Overview

Customer Causeway Geotech Ltd
Site Arklow Sewerage Scheme Marine Outfall GI
Report No S180511

Consignment No S70198
Date Logged 09-Nov-2017

In-House Report Due 29-Nov-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working

		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
CL/1783094	BH09 0.50	27/10/17		Е	E				Е		Е		Е	Е	Е
CL/1783095	BH09 1.50	27/10/17		E	E				Ē		E		E	E	E
CL/1783096	BH09 2.50	27/10/17		E	E				E		E		E	E	E
CL/1783097	QC Blank														
CL/1783098	Reference Material (% Recovery	y)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/180511

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- P Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 14 of 14 EFS/180511 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: \$18_0511

Note: major constituent in upper case

Lab ID Number	Client ID	Note: major constituent in upper case Description
		<u> </u>
CL/1783094	BH09 0.50	Grey Stone MARINE SEDIMENTS
CL/1783095	BH09 1.50	Grey Gravel MARINE SEDIMENTS
CL/1783096	BH09 2.50	Grey Stone MARINE SEDIMENTS
CL/1783097	QC Blank	Grey Stone MARINE SEDIMENTS Grey Gravel MARINE SEDIMENTS Grey Stone MARINE SEDIMENTS QUALITY CONTROL SAMPLE
CL/1783098	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Appendix A Page 1 of 1 29/11/2017EFS/180511 Ver. 1

Our Ref: EFS/180513 (Ver. 1)

Your Ref: 17-0167 November 29, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Environmental Chemistry SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

JACOLDOVINE

J Colbourne

Project Co-ordinator 01283 554547

Registered No: 2880501

TEST REPORT

Report No. EFS/180513 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall Gl

The 5 samples described in this report were registered for analysis by SOCOTEC UK Limited on 09-Nov-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 29-Nov-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 7)
Table of PCB Congener Results (Page 8)
Table of WAC Analysis Results (Pages 9 to 11)
Analytical and Deviating Sample Overview (Page 12)
Table of Method Descriptions (Page 13)
Table of Report Notes (Page 14)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim

Tim Barnes Operations Director Energy & Waste Services

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 29-Nov-2017

		Units :	μg/kg	pH Units	%	mg/kg	mg/kg	% M/M	Mol/kg	%	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
	Method Reporti	od Codes:	PCBECD 5	PHSOIL	TMSS 0.1	TPHFIDUS 10	TPHFIDUS 10	WSLM59 0.02	0.04	LOI(%MM) 0.2	BTEXHSA 10	BTEXHSA 10	BTEXHSA 10	BTEXHSA 20	BTEXHSA 30	BTEXHSA 20	BTEXHSA 10	PAHMSUS
	Method Neporti	ilg Lillilis .	<u> </u>		0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1783105	BH10 0.50	26-Oct-17	Req	8.8	7.2	25	26	0.08	1.28	1.2	<10	<10	<10	<20	<30	<20	<10	Req
1783106	BH10 1.50	26-Oct-17	Req	8.1	40.5	49	50	6.0	0.64	13.6	<10	<10	<10	<20	<30	<20	<10	Req
1783107	BH10 2.50	26-Oct-17	Req	7.8	9.2	19	20	0.18	0.08	1.4	<10	<10	<10	<20	<30	<20	<10	Req
1783108	QC Blank		Req			<10	<10	<0.02			<10	<10	<10	<20	<30	<20	<10	Req
1783109	Reference Material (% Recovery)		Req	101.2		89	89	108	101	103.8	93	93	96	103	94	97	91	Req
			Client N		Cauca								Com					
	SOCOTEC 3		Contact		Neil Hago	way Geot gan	ech Liu						Saiii	ple Ana	aiysis			
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Ark	clow S	Sewer	age S	Schem	ne Ma	rine (Outfal	I GI	Date Prin Report N Table Nu	lumber			Nov-2017 FS/180513 1		

Where individual results are flagged see report notes for status.

Page 2 of 14

EFS/180513 Ver. 1

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: Job Number: BH10 0.50 s18_0513 **LIMS ID Number:** CL1783105 Date Booked in: 09-Nov-17 **QC Batch Number:** 171249 **Date Extracted:** 22-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 22-Nov-17

Directory: 112217.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	1
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	- * D (.	< 1.28	- Pr. 1

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	102
Acenaphthene-d10	103
Phenanthrene-d10	103
Chrysene-d12	94
Perylene-d12	82

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	92
Terphenyl-d14	73

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: Job Number: BH10 1.50 S18_0513 **LIMS ID Number:** CL1783106 Date Booked in: 09-Nov-17 **QC Batch Number:** 171249 **Date Extracted:** 22-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 22-Nov-17

Directory: 112217.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	101
Acenaphthene-d10	102
Phenanthrene-d10	100
Chrysene-d12	95
Perylene-d12	88

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	85
Terphenyl-d14	66

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: Job Number: BH10 2.50 s18_0513 **LIMS ID Number:** CL1783107 Date Booked in: 09-Nov-17 **QC Batch Number:** 171249 **Date Extracted:** 22-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 23-Nov-17

Directory: 112217.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	•
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	1
Total (USEPA16) PAHs	-	* Danata	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	100
Phenanthrene-d10	99
Chrysene-d12	90
Perylene-d12	81

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	95
Terphenyl-d14	74

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: QC Blank Job Number: S18_0513 **LIMS ID Number:** CL1783108 Date Booked in: 09-Nov-17 **QC Batch Number:** 171249 **Date Extracted:** 22-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 22-Nov-17

Directory: 112217.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	1	< 0.08	-
Acenaphthylene	208-96-8	1	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	1	< 0.08	-
Phenanthrene	85-01-8	1	< 0.08	-
Anthracene	120-12-7	1	< 0.08	-
Fluoranthene	206-44-0	1	< 0.08	-
Pyrene	129-00-0	1	< 0.08	-
Benzo[a]anthracene	56-55-3	1	< 0.08	-
Chrysene	218-01-9	1	< 0.08	-
Benzo[b]fluoranthene	205-99-2	1	< 0.08	-
Benzo[k]fluoranthene	207-08-9	1	< 0.08	-
Benzo[a]pyrene	50-32-8	1	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	1	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	94
Phenanthrene-d10	95
Chrysene-d12	89
Perylene-d12	85

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	105
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details:Reference Material (% Rec Job Number:\$18_0513LIMS ID Number:CL1783109Date Booked in:09-Nov-17QC Batch Number:171249Date Extracted:22-Nov-17Quantitation File:Initial CalibrationDate Analysed:22-Nov-17

Directory: 112217.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.31	87	100
Acenaphthylene	208-96-8	4.36	95	99
Acenaphthene	83-32-9	4.48	93	92
Fluorene	86-73-7	4.87	91	91
Phenanthrene	85-01-8	5.72	88	100
Anthracene	120-12-7	5.78	95	99
Fluoranthene	206-44-0	7.08	87	90
Pyrene	129-00-0	7.37	87	89
Benzo[a]anthracene	56-55-3	9.06	100	99
Chrysene	218-01-9	9.11	93	98
Benzo[b]fluoranthene	205-99-2	10.59	81	97
Benzo[k]fluoranthene	207-08-9	10.63	82	97
Benzo[a]pyrene	50-32-8	11.02	93	96
Indeno[1,2,3-cd]pyrene	193-39-5	12.39	90	92
Dibenzo[a,h]anthracene	53-70-3	12.43	88	97
Benzo[g,h,i]perylene	191-24-2	12.70	72	95
Coronene	191-07-1	14.89	68	68
Total (USEPA16) PAHs	-	- + D	87	- Pr. 1

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	98
Phenanthrene-d10	97
Chrysene-d12	120
Perylene-d12	152

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	87
Terphenyl-d14	72

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix:

 Job Number:
 S18_0513
 Date Booked in:
 09-Nov-17

 QC Batch Number:
 171249
 Date Extracted:
 22-Nov-17

 Directory:
 112117PCB.GC22
 Date Analysed:
 22-Nov-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

		Concentration, (µg/kg)										
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180				
CL1783105	BH10 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0				
CL1783106	BH10 1.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0				
CL1783107	BH10 2.50	<5.0	< 5.0	< 5.0	<5.0	<5.0	<5.0	<5.0				
CL1783108	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0				
CL1783109	Reference Material (% Recovery)	78.3	86.4	91.2	88.9	89.3	84.6	75.7				

Soil

Client	Caucaway Caataah	l +d			Leaching Data						
Ciletti	Causeway Geotech	Liu			Weight of sample (kg)	0.096					
Contact INEIL Haddan					Moisture content @ 105°C (% of Wet Weight) 7						
Contact	пен паууан			Equivalent Weight based on drying at 105°C (kg) 0.0							
Site	Arklow Sewerage So	shama Marina Out	Hall CI		Volume of water required to carry out 10:1 stage (litres) 0.						
Site	Arkiow Sewerage St	nieme Manne Out	liali Gi	Fraction of sample above 4 mm %	85.200						
Sam	ple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000					
BH10 0.50		s18_0513	CL/1783105	27-Nov-17							

Note: The >4mm fraction is crushed using a disc mill

	4			Landfill W	aste Acceptance (Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	0.08	3	5	6
N	LOI450	Loss on Ignition (%)	1.2			10
N	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	27	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.47	100		
N	PHSOIL	pH (pH units)	8.8		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.24		To be evaluated	To be evaluated

tation	Code		10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste	Acceptance Criteri 12457/2 @ L/S 10	a Limit Values for BSEN
Accreditation	Method	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry w	
U	WSLM3	pH (pH units) ⁰⁰	7.9	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	645	Calculated data flot OKAS Accredited			
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25
U	ICPWATVAR	Barium	0.06	0.6	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	<0.001	<0.01	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.003	0.03	4	50	200
U	KONENS	Chloride	148	1480	800	15000	25000
U	ISEF	Fluoride	0.3	3	10	150	500
U	ICPWATVAR	Sulphate as SO4	40	400	1000	20000	50000
N	WSLM27	Total Dissolved Solids	503	5030	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
N	WSLM13	Dissolved Organic Carbon	2	20	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causaway Caataah	l +d			Leaching Data						
Chefit	Causeway Geotech	Liu		Weight of sample (kg)	0.141						
IContact INELL Haddan					Moisture content @ 105°C (% of Wet Weight) 4						
Comaci	ineli i laggari			Equivalent Weight based on drying at 105°C (kg) 0.							
Site	Arklow Sewerage So	shama Marina Out	Hall CI		Volume of water required to carry out 10:1 stage (litres)						
Site	Arkiow Sewerage St	neme Manne Out	liali Gi	Fraction of sample above 4 mm %	17.000						
Sam	ple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000					
BH10 1.50		s18_0513	CL/1783106	27-Nov-17							

Note: The >4mm fraction is crushed using a disc mill

	4			Landfill W	/aste Acceptance (Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	5.4	3	5	6
N	LOI450	Loss on Ignition (%)	12.2			10
N	BTEXHSA	Sum of BTEX (mg/kg)	<0.11	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.028	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	82	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.29	100		
N	PHSOIL	pH (pH units)	8.1		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.58		To be evaluated	To be evaluated

tation	Code		10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste	Acceptance Criteri 12457/2 @ L/S 10	a Limit Values for BSEN			
Accreditation	Method	Leachate Analysis	mg/l except ^{oo}	mg/kg (dry weight)	mg/kg (dry weight)					
U	WSLM3	pH (pH units) 00	7.6	Calculated data not UKAS Accredited						
U	WSLM2	Conductivity (µs/cm) 00	4340	Calculated data flot OKAS Accredited						
U	ICPMSW	Arsenic	0.006	0.06	0.5	2	25			
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300			
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04 1		5			
U	ICPMSW	Chromium	<0.001	<0.01	0.5 10		70			
U	ICPMSW	Copper	<0.001	<0.01	2 50		100			
U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2		2			
U	ICPMSW	Molybdenum	0.061	0.61	0.5	10	30			
U	ICPMSW	Nickel	0.001	0.01	0.4	10	40			
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50			
U	ICPMSW	Antimony	0.004	0.04	0.06	0.7	5			
U	ICPMSW	Selenium	0.005	0.05	0.1	0.5	7			
U	ICPMSW	Zinc	0.002	0.02	4	50	200			
U	KONENS	Chloride	1250	12500	800	15000	25000			
U	ISEF	Fluoride	0.5	5	10	150	500			
U	ICPWATVAR	Sulphate as SO4	254	2540	1000	20000	50000			
N	WSLM27	Total Dissolved Solids	3380	33800	4000	60000	100000			
U	SFAPI	Phenol Index	<0.05	<0.5	1					
N	WSLM13	Dissolved Organic Carbon	11	110	500	800	1000			

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causaway Caataah	1 +4			Leaching Data					
Client	Causeway Geotech	Liu			Weight of sample (kg)	0.107				
Contact	Noil Haggan				Moisture content @ 105°C (% of Wet Weight)	9.2				
Contact	Neil Haggan		Equivalent Weight based on drying at 105°C (kg)							
Site	Arklow Sewerage S	chama Marina Out	fall CI		Volume of water required to carry out 10:1 stage (litres)					
Site	Arkiow Sewerage S		liali Gi	Fraction of sample above 4 mm %	0.000					
S	ample Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000				
BH10 2.50		s18_0513	CL/1783107 27-Nov-17							

Note: The >4mm fraction is crushed using a disc mill

	4			Landfill W	/aste Acceptance (Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	0.18	3	5	6
N	LOI450	Loss on Ignition (%)	1.4			10
N	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	21	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.50	100		
N	PHSOIL	pH (pH units)	7.8		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.08		To be evaluated	To be evaluated

tation	Code		10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste	Acceptance Criteri 12457/2 @ L/S 10	a Limit Values for BSEN
Accreditation	Method	Leachate Analysis	mg/l except ^{oo}	mg/kg (dry weight)		mg/kg (dry we	
U	WSLM3	pH (pH units) 00	7.7	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	909	Calculated data flot OKAS Accredited			
U	ICPMSW	Arsenic	0.012	0.12	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5 10		70
U	ICPMSW	Copper	<0.001	<0.01	2 50		100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2		2
U	ICPMSW	Molybdenum	0.02	0.2	0.5	10	30
U	ICPMSW	Nickel	0.002	0.02	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.013	0.13	0.06	0.7	5
U	ICPMSW	Selenium	0.002	0.02	0.1	0.5	7
U	ICPMSW	Zinc	<0.002	<0.02	4	50	200
U	KONENS	Chloride	229	2290	800	15000	25000
U	ISEF	Fluoride	0.3	3	10	150	500
U	ICPWATVAR	Sulphate as SO4	41	410	1000	20000	50000
N	WSLM27	Total Dissolved Solids	709	7090	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
N	WSLM13	Dissolved Organic Carbon	1.4	14	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

S180513

Socotec Environmental Chemistry Analytical and Deviating Sample Overview

Customer Causeway Geotech Ltd
Site Arklow Sewerage Scheme Marine Outfall GI
Report No S180513

Consignment No S70198
Date Logged 09-Nov-2017

In-House Report Due 29-Nov-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working

		MethodID	ANC	втехнѕа		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
CL/1783105	BH10 0.50	26/10/17		Е	E				Е		Е		Е	Е	Е
CL/1783106	BH10 1.50	26/10/17		E	Ē				Ē		E		E	E	E
CL/1783107	BH10 2.50	26/10/17		E	E				E		E		E	E	E
CL/1783108	QC Blank														
CL/1783109	Reference Material (% Recovery	y)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/180513

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- P Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 14 of 14 EFS/180513 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number : \$18_0513

Note: major constituent in upper case

Note: major constituent in upper case							
Lab ID Number	Client ID	Description					
CL/1783105	BH10 0.50	MARINE SEDIMENTS					
CL/1783106	BH10 1.50	MARINE SEDIMENTS					
CL/1783107	BH10 2.50	MARINE SEDIMENTS					
CL/1783108	QC Blank	QUALITY CONTROL SAMPLE					
CL/1783109	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE					
02/1/00/100	received waterial (70 recovery)	QOALIT I CONTINCE OAMI EL					

Appendix A Page 1 of 1 29/11/2017EFS/180513 Ver. 1

Our Ref: EFS/180835 (Ver. 1)

Your Ref: 17-0167 December 6, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Environmental Chemistry

SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 02/01/18 when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

J Colbourne
Project Co-ordinator
01283 554547

TEST REPORT

Report No. EFS/180835 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 5 samples described in this report were registered for analysis by SOCOTEC UK Limited on 21-Nov-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 06-Dec-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 7)
Table of PCB Congener Results (Page 8)
Table of WAC Analysis Results (Pages 9 to 11)
Analytical and Deviating Sample Overview (Page 12)
Table of Method Descriptions (Page 13)
Table of Report Notes (Page 14)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes

Operations Director Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 06-Dec-2017

		Units :	μg/kg	pH Units	%	mg/kg	mg/kg	% M/M	Mol/kg	%	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
	Method Reporti	od Codes :	PCBECD 5	PHSOIL	TMSS 0.1	TPHFIDUS 10	TPHFIDUS 10	WSLM59 0.02	ANC 0.04	0.2	BTEXHSA 10	BTEXHSA 10	BTEXHSA 10	BTEXHSA 20	30	BTEXHSA 20	BTEXHSA 10	PAHMSUS
	memed Reports				0.1	10	10	0.02	0.01	0.2	10	10	10	20		20	10	
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	МТВЕ	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1784483	BH11 0.50	02-Nov-17	Req	7.9	3.1	21	21	0.17	0.96	0.7	<10	<10	<10	<20	<30	<20	<10	Req
1784484	BH11 2.50	02-Nov-17	Req	8	6.8	234	235	0.33	1.04	1.2	<10	<10	<10	<20	<30	<20	<10	Req
1784485	BH11 4.50	02-Nov-17	Req	8	4.8	11	12	0.08	0.48	0.6	<10	<10	<10	<20	<30	<20	<10	Req
1784486	QC Blank		Req			<10	<10	<0.02			<10	<10	<10	<20	<30	<20	<10	Req
1784487	Reference Material (% Recovery)		Req	99		103	103	100	99	104	102	101	98	106	195	99	96	Req
	SOCOTEC Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ		Client N Contact		Causeway Geotech Ltd Neil Haggan Date Printed 06-Dec-2017													
	Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554422 Arklow Sewerage Scheme Marine Outfall GI Fax +44 (0) 1283 554422 Report Number Table Number 1																	

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH11 0.50 **Job Number:** S18_0835 LIMS ID Number: CL1784483 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	96
Acenaphthene-d10	97
Phenanthrene-d10	96
Chrysene-d12	95
Perylene-d12	83

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	95
Terphenyl-d14	78

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH11 2.50 **Job Number:** S18_0835 LIMS ID Number: CL1784484 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	1	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	95
Phenanthrene-d10	91
Chrysene-d12	82
Perylene-d12	62

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	97
Terphenyl-d14	78

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: **Sample Details:** BH11 4.50 S18_0835 LIMS ID Number: CL1784485 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	92
Acenaphthene-d10	92
Phenanthrene-d10	90
Chrysene-d12	82
Perylene-d12	63

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	102
Terphenyl-d14	81

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

QC Blank Job Number: **Sample Details:** S18_0835 LIMS ID Number: CL1784486 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	96
Acenaphthene-d10	97
Phenanthrene-d10	95
Chrysene-d12	81
Perylene-d12	62

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: **Sample Details:** S18_0835 LIMS ID Number: CL1784487 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.31	103	100
Acenaphthylene	208-96-8	4.36	103	99
Acenaphthene	83-32-9	4.48	104	92
Fluorene	86-73-7	4.87	101	92
Phenanthrene	85-01-8	5.72	97	100
Anthracene	120-12-7	5.77	100	99
Fluoranthene	206-44-0	7.08	98	90
Pyrene	129-00-0	7.37	98	88
Benzo[a]anthracene	56-55-3	9.06	102	99
Chrysene	218-01-9	9.11	98	99
Benzo[b]fluoranthene	205-99-2	10.59	96	96
Benzo[k]fluoranthene	207-08-9	10.62	96	96
Benzo[a]pyrene	50-32-8	11.02	98	96
Indeno[1,2,3-cd]pyrene	193-39-5	12.39	80	90
Dibenzo[a,h]anthracene	53-70-3	12.43	71	94
Benzo[g,h,i]perylene	191-24-2	12.69	82	93
Coronene	191-07-1	14.89	63	73
Total (USEPA16) PAHs	-	-	99	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	-
Acenaphthene-d10	-
Phenanthrene-d10	-
Chrysene-d12	-
Perylene-d12	-

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	-
Terphenyl-d14	-

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall Gl

 Job Number:
 \$18_0835

 QC Batch Number:
 171265

Directory: 112317PCB.GC70

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

		Concentration, (μg/kg)						
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
CL1784483	BH11 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784484	BH11 2.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784485	BH11 4.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784486	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784487	Reference Material (% Recovery)	87	90	81	98	96	95	80

Soil

21-Nov-17

23-Nov-17

23-Nov-17

Client Causeway Geotech Ltd			Leaching Data			
			Weight of sample (kg)	0.095		
Contact Neil Haggan			Moisture content @ 105°C (% of Wet Weight)	3.1		
Comaci	Neil Haggan				Equivalent Weight based on drying at 105°C (kg)	0.090
Site	Arklow Coweres Cohem	o Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)	0.895
Site	Arklow Sewerage Schem	ie ivianne Ou	liali Gi	Fraction of sample above 4 mm %	21.900	
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
BH11 0.50		s18_0835	CL/1784483	06-Dec-17		

Note: The >4mm fraction is crushed using a disc mill

				Landfill Was	ste Acceptance Cri	iteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)		Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	0.17	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.7			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.06	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	22	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.40	100		
Ν	PHSOIL	pH (pH units)	7.9		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.96		To be evaluated	To be evaluated

itation	l Code	10:1 Single Stage Leachate Leachate Analysis		Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
Accreditation	Method	,	mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)		yht)
U	WSLM3	pH (pH units) 00	7.8	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	136	Calculated data flot OKAS Accredited			
U	ICPMSW	Arsenic	0.006	0.06	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	0.008	0.08	2 50 10		100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	0.009	0.09	0.5	10	50
U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.015	0.15	4	50	200
U	KONENS	Chloride	15	150	800	15000	25000
U	ISEF	Fluoride	0.4	4	10 150 500		500
U	ICPWATVAR	Sulphate as SO4	11	110	1000 20000 50000		50000
Ν	WSLM27	Total Dissolved Solids	106	1060	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	2.4	24	500	800	1000

Template Ver.

andfill Waste Acceptance Criteria limit values correct as of 11th March 200

Client	Client Coursey Costock Ltd		Leaching Data			
Client Causeway Geotech Ltd			Weight of sample (kg)	0.092		
Contact Neil Haggan			Moisture content @ 105°C (% of Wet Weight)			
Contact	Contact Neil Haggan			Equivalent Weight based on drying at 105°C (kg)		
Site	Arklaw Cawaraga Ca	homo Marina Ou	Marina Outfall Cl		Volume of water required to carry out 10:1 stage (litres)	0.898
Site	Arklow Sewerage So	neme Manne Ou	iliali Gi		Fraction of sample above 4 mm %	93.500
S	ample Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
BH11 2.50		s18 0835	CL/1784484	06-Dec-17		
BH 1 2.30 \$10_0033 Cl			CL/1704404	00-060-17		

Note: The >4mm fraction is crushed using a disc mill

	_			Landfill Was	ste Acceptance Cri	teria Limit Values
Accreditation	Method Code	Metho		Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.33	3	5	6
Ν	LOI450	Loss on Ignition (%)	1.2			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	251	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.46	100		
Ν	PHSOIL	pH (pH units)	8		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.05		To be evaluated	To be evaluated

itation	Leachate Analysis		10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1		e Acceptance Crite N 12457/2 @ L/S 1	eria Limit Values for 0 litre kg-1
Accreditation	Method	•	mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)		jht)
U	WSLM3	pH (pH units) 00	7.6	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	142	Calculated data flot OKAS Accredited			
U	ICPMSW	Arsenic	0.006	0.06	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	0.001	0.01	0.5	10	70
U	ICPMSW	Copper	0.01	0.1	2	50	100
U		Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.001	0.01	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	0.008	0.08	0.5	10	50
U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.014	0.14	4	50	200
U	KONENS	Chloride	21	210	800	15000	25000
U	ISEF	Fluoride	0.3	3	10	150	500
U	ICPWATVAR	Sulphate as SO4	10	100	1000 20000 50000		50000
N	WSLM27	Total Dissolved Solids	111	1110	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	2	20	500	800	1000

Template Ver.

andfill Waste Acceptance Criteria limit values correct as of 11th March 200

Client	Causaway Caataah	+4		Leaching Data			
Ciletit	Causeway Geotech	_lu		Weight of sample (kg)	0.100		
Contact	Noil Haggan			Moisture content @ 105°C (% of Wet Weight)	4.8		
Contact	Neil Haggan		Equivalent Weight based on drying at 105°C (kg)	0.090			
Site	Arklow Cowered Co	homo Marina Ou	utfall CI		Volume of water required to carry out 10:1 stage (litres) 0.8		
Site	Arklow Sewerage So	neme Manne Ou	iliali Gi		Fraction of sample above 4 mm %	90.800	
Sa	Sample Description Report No Sample No Issue Date		Issue Date	Fraction of non-crushable material %	0.000		
BH11 4.50		s18 0835	CL/1784485	06-Dec-17			
	DITT 4.50	310_0000	CL/1704403	00-Dec-17			

Note: The >4mm fraction is crushed using a disc mill

				Landfill Was	ste Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.08	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.6			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	12	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.43	100		
Ν	PHSOIL	pH (pH units)	8		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.48		To be evaluated	To be evaluated

itation	Code	10:1 Single Stage L Leachate Analysis		Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1				
Accreditation	Method	,	mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)				
U	WSLM3	pH (pH units) 00	7.5	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	<100	Calculated data flot OKAS Accredited					
U	ICPMSW	Arsenic	0.014	0.14	0.5	2	25		
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300		
כ	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	0.001	0.01	0.5	10	70		
U	ICPMSW	Copper	0.005	0.05	2	50	100		
U	ICPMSW	Mercury	0.0011	0.011	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30		
U	ICPMSW	Nickel	0.001	0.01	0.4	10	40		
כ	ICPMSW	Lead	0.005	0.05	0.5	10	50		
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.01	0.1	4	50	200		
U	KONENS	Chloride	12	120	800	15000	25000		
J	ISEF	Fluoride	0.2	2	10	150	500		
U	ICPWATVAR	Sulphate as SO4	9	90	1000	20000	50000		
Ν	WSLM27	Total Dissolved Solids	64.6	646	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	1.3	13	500	800	1000		

Template Ver.

andfill Waste Acceptance Criteria limit values correct as of 11th March 200

Report No

Socotec Environmental Chemistry

Analytical and Deviating Sample Overview

Customer **Causeway Geotech Ltd** Site **Arklow Sewerage Scheme Marine Outfall GI**

S180835

Consignment No S70496 Date Logged 21-Nov-2017

In-House Report Due 11-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

S180835

											101	<u> </u>		itiact	
		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
CL/1784483	BH11 0.50	02/11/17		Е	Е				Е		Е		Е	Е	Е
CL/1784484	BH11 2.50	02/11/17		Ē	Ē				E		E		E	E	E
CL/1784484 CL/1784485		02/11/17		E	E				E		E		E	E	E
CL/1784485 CL/1784486	BH11 4.50 QC Blank	02/11/17													
	L L	1													
CL/1784487	Reference Material (% Recovery	/)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/180835

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	·
Soil	ANC	Oven Dried @ < 35°C	Quantitative digestion with Hydrochloric Acid back titration with 1M Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 14 of 14 EFS/180835 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S18_0835

Note: major constituent in upper case

		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1784483	BH11 0.50	MARINE SEDIMENTS
CL/1784484	BH11 2.50	MARINE SEDIMENTS
CL/1784485	BH11 4.50	MARINE SEDIMENTS
CL/1784486	QC Blank	QUALITY CONTROL SAMPLE
CL/1784487	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
CL/1704407	Reference Material (// Recovery)	QUALITY CONTROL SAWFLE

Appendix A Page 1 of 1 12/12/2017EFS/180835 Ver. 1

Our Ref: EFS/178704 (Ver. 1)

Your Ref: 17-0167 September 29, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom

Environmental Chemistry

ESG

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

BT53 7QL

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554458 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

J Chislett
Project Co-ordinator
01283 554458

TEST REPORT

Report No. EFS/178704 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 4 samples described in this report were registered for analysis by ESG on 14-Sep-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 29-Sep-2017

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 6)
Table of PCB Congener Results (Page 7)
Table of WAC Analysis Results (Pages 8 to 9)
Analytical and Deviating Sample Overview (Page 10)
Table of Additional Report Notes (Page 11)
Table of Method Descriptions (Page 12)
Table of Report Notes (Page 13)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:

Tim Barnes

Operations Director Energy & Waste Services

JI Namilaaa

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 29-Sep-2017

	Method Reporti	od Codes : ng Limits :	PCBECD 5	PHSOIL	TMSS	TPHFIDUS	TPHFIDUS	WSLM59	ANC	LOI(%MM)	BTEXHSA	DTEVALOR	DTEVILO	DTEVLICA	μg/kg BTEXHSA	BTEXHSA	BTEXHSA	PAHMSUS
	метпоа керогті	ng Limits :	5									BTEXHSA	BTEXHSA	BTEXHSA				1 /11 IIVIOUS
					0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1775349	BH12 0.50	24-Aug-17	Req	8.4	9.3	<10	18	0.27	0.56	0.9	<10	<10	<10	<20	<30	<20	<10	Req
1775350	BH12 4.50	24-Aug-17	Req	8.4	19.8	<10	19	0.49	2.56	3.2	<10	<10	<10	<20	<30	<20	<10	Req
1775351	QC Blank		Req §			<10 §	<10 §	<0.02 §			<10 §	<10 §	<10 §	<20 §	<30 §	<20 §	<10 §	Req §
1775352	Reference Material (% Recovery)		Req §	102.9 §		92 §	92 §	91 §	102	98.3	103 §	105 §	103 §	101 §	103 §	104 §	101 §	Req §
В	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400		Client No.		Neil Hagg			ne Ma	rine (Dutfal	l Gl	Date Prin Report N Table Nu	nted lumber	ple Ana	29-	Sep-2017 FS/178704	-	

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

S17_8704 **Sample Details:** BH12 0.50 **Job Number:** LIMS ID Number: CL1775349 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 Directory: 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.26	0.12	96
Acenaphthylene	208-96-8	ı	< 0.08	-
Acenaphthene	83-32-9	ı	< 0.08	-
Fluorene	86-73-7	ı	< 0.08	-
Phenanthrene	85-01-8	ı	< 0.08	-
Anthracene	120-12-7	ı	< 0.08	-
Fluoranthene	206-44-0	ı	< 0.08	-
Pyrene	129-00-0	ı	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	ı	< 0.08	-
Benzo[b]fluoranthene	205-99-2	ı	< 0.08	-
Benzo[k]fluoranthene	207-08-9	ı	< 0.08	-
Benzo[a]pyrene	50-32-8	ı	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	ı	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	ı	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.32	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	92
Phenanthrene-d10	86
Chrysene-d12	76
Perylene-d12	64

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	77

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

s17_8704 **Sample Details:** BH12 4.50 **Job Number:** LIMS ID Number: CL1775350 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	ı	< 0.08	-
Fluorene	86-73-7	ı	< 0.08	-
Phenanthrene	85-01-8	ı	< 0.08	-
Anthracene	120-12-7	ı	< 0.08	-
Fluoranthene	206-44-0	ı	< 0.08	-
Pyrene	129-00-0	ı	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	ı	< 0.08	-
Benzo[b]fluoranthene	205-99-2	ı	< 0.08	-
Benzo[k]fluoranthene	207-08-9	ı	< 0.08	-
Benzo[a]pyrene	50-32-8	ı	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	ı	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	ı	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	92
Acenaphthene-d10	88
Phenanthrene-d10	82
Chrysene-d12	73
Perylene-d12	61

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	78

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

QC Blank s17_8704 **Sample Details: Job Number:** LIMS ID Number: CL1775351 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	86
Acenaphthene-d10	82
Phenanthrene-d10	74
Chrysene-d12	57
Perylene-d12	43

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	108
Terphenyl-d14	76

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: S17_8704 **Sample Details:** LIMS ID Number: CL1775352 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.26	101	100
Acenaphthylene	208-96-8	4.30	99	99
Acenaphthene	83-32-9	4.42	107	97
Fluorene	86-73-7	4.81	103	98
Phenanthrene	85-01-8	5.65	106	99
Anthracene	120-12-7	5.70	103	100
Fluoranthene	206-44-0	7.00	111	91
Pyrene	129-00-0	7.29	109	90
Benzo[a]anthracene	56-55-3	8.97	108	99
Chrysene	218-01-9	9.02	112	99
Benzo[b]fluoranthene	205-99-2	10.50	101	96
Benzo[k]fluoranthene	207-08-9	10.54	103	97
Benzo[a]pyrene	50-32-8	10.93	109	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.30	109	91
Dibenzo[a,h]anthracene	53-70-3	12.34	107	97
Benzo[g,h,i]perylene	191-24-2	12.60	103	95
Coronene	191-07-1	14.74	112	67
Total (USEPA16) PAHs	-	-	106	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	90
Acenaphthene-d10	92
Phenanthrene-d10	87
Chrysene-d12	96
Perylene-d12	100

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	85

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall Gl

 Job Number:
 \$17_8704

 QC Batch Number:
 171030

Directory: 092517PCB.GC70

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

		Concentration, (µg/kg)						
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1775349	BH12 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775350	BH12 4.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775351	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775352	Reference Material (% Recovery)	87.6	93.2	80.4	91.5	87.9	92.5	83.4

Soil

14-Sep-17

22-Sep-17

25-Sep-17

Client	Caucaway	auseway Geotech Ltd			Leaching Data	
Client	Causeway G				Weight of sample (kg)	0.103
Contact	Noil Hoggon	Hoggen			Moisture content @ 105°C (% of Wet Weight)	9.3
Contact	Contact Neil Haggan			Equivalent Weight based on drying at 105°C (kg)	0.090	
Site	Arklow Cowo	and Colombia Coutfall Cl		1.01	Volume of water required to carry out 10:1 stage (litres)	0.887
Site	Arklow Sewerage Scheme Marine Outfall GI		i Gi	Fraction of sample above 4 mm %	50.100	
Sample Descript	ion	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
BH12 0.50	BH12 0.50 s17_8704 CL/1775349 29-Sep-17					

note:	I ne >41	mm fracti	on is crus	snea usin	ig a disc mili

_				Land	fill Waste Acceptar	nce Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	0.27	3	5	6
N	LOI450	Loss on Ignition (%)	0.9			10
N	BTEXHSA	Sum of BTEX (mg/kg)	< 0.06	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	<11	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.5	100		
N	PHSOIL	pH (pH units)	8.4		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.55		To be evaluated	To be evaluated

Accreditation	d Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Lim 10 litre k		kg-1	
Accre	Method		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)			
U	WSLM3	pH (pH units) ^{o(}	6.9	Calculated data not UKAS Accredited				
U	WSLM2	Conductivity (µ	984	Calculated data flot OKAS Accredited				
U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25	
U	ICPWATVAR	Barium	0.05	0.5	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U	ICPMSW	Copper	0.004	0.04	2	50	100	
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.014	0.14	0.5	10	30	
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U	ICPMSW	Lead	0.001	0.01	0.5	10	50	
U	ICPMSW	Antimony	0.004	0.04	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.039	0.39	4	50	200	
U	KONENS	Chloride	218	2180	800	15000	25000	
U	ISEF	Fluoride	0.7	7	10	150	500	
U	ICPWATVAR	Sulphate as SC	65	650	1000	20000	50000	
N	WSLM27	Total Dissolved	768	7680	4000	60000	100000	
U	SFAPI	Phenol Index	<0.05	<0.5	1			
N	WSLM13	Dissolved Orga	3.2	32	500	800	1000	

Template Ver. 1

Client	Caucaway	useway Geotech Ltd			Leaching Data			
Client	Causeway G				Weight of sample (kg)	0.114		
Contact	Noil Hoggon				Moisture content @ 105°C (% of Wet Weight)	19.8		
Contact	Neil Haggan				Equivalent Weight based on drying at 105°C (kg)			
Site	Arklow Sowo	rago Sohomo	rage Scheme Marine Outfall GI		Volume of water required to carry out 10:1 stage (litres)	0.876		
Site	AIRIOW Sewel	rage Scrienie	Marine Ouliai	i Gi	Fraction of sample above 4 mm %	0.000		
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
BH12 4.50		s17_8704	CL/1775350	29-Sep-17				

note:	ı ne	>4mm	rraction	ıs	crusnea	using	ja i	aisc ii	1111

_	-			Land	Ifill Waste Acceptar	nce Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	0.51	3	5	6
N	LOI450	Loss on Ignition (%)	3.3			10
N	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	<12	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.70	100		
N	PHSOIL	pH (pH units)	8.4		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.67		To be evaluated	To be evaluated

Accreditation	Accreditation Method Code		Calculated cumulative amount leached @ 10:1		Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1				
Accred	Metho		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)				
U	WSLM3	pH (pH units) of	7.4	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µ	984	Calculated data not ONAS Accredited					
U	ICPMSW	Arsenic	0.006	0.06	0.5	2	25		
U	ICPWATVAR	Barium	0.06	0.6	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	0.002	0.02	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30		
U	ICPMSW	Nickel	0.002	0.02	0.4	10	40		
U	ICPMSW	Lead	0.001	0.01	0.5	10	50		
U	ICPMSW	Antimony	0.004	0.04	0.06	0.7	5		
U	ICPMSW	Selenium	0.002	0.02	0.1	0.5	7		
U	ICPMSW	Zinc	0.011	0.11	4	50	200		
U	KONENS	Chloride	228	2280	800	15000	25000		
U	ISEF	Fluoride	0.4	4	10	150	500		
U	ICPWATVAR	Sulphate as SC	45	450	1000	20000	50000		
N	WSLM27	Total Dissolved	768	7680	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
N	WSLM13	Dissolved Orga	2.5	25	500	800	1000		
Template Ver. 1	•			-	Landfill Wast	e Acceptance Criteria	imit values correct as of 11th March 2009.		

Sample Analysis

Causeway Geotech Ltd

Customer

Report No

Site

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S NonCon

Arklow Sewerage Scheme Marine Outfall GI Date Logged 14-Sep-2017 S178704

In-House Report Due 02-Oct-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

S178704

		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
CL /1775240	DH12.0.50	24/09/17		Е	Е				Е		Е		Е	Е	
CL/1775349 CL/1775350	BH12 0.50 BH12 4.50	24/08/17 24/08/17		E	E				E		E		E	E	
CL/1775351	QC Blank	2-7/00/17									_		_	_	
CL/1775352	Reference Material (% Recovery	y)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
 - Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
 - Sample processing did not commence within the appropriate holding time

Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Report Number : EFS/178704

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report

Report Number: EFS/178704

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	·
Soil	ANC	Oven Dried @ < 35°C	Quantitative digestion with Hydrochloric Acid back titration with 1M Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 13 of 13 EFS/178704 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S17_8704

Note: major constituent in upper case

Lai D Number Client D Description (CH777536) BH12 450 MARINE SEDMENT (CH777535) BH12 450 MARINE SEDMENT (CH777535) CB Description (CH775455) CB Description (CH775455) CB Description (CH775455) CB			Note: major constituent in upper case
CL/1775349 BH12 0.50 MARINE SEDIMENT CL/1775350 BH12 4.50 MARINE SEDIMENT	Lab ID Number	Client ID	Description
CL/1775350 BH12 4.50 MARINE SEDIMENT			
LU17/1350 GC Bins GULTY CONTROL SAMPLE CL1777352 Reference interest (is Recovery) GULTY CONTROL SAMPLE GULTY CONTROL SAMPLE	CL/17/5349	BH12 0.50	MARINE SEDIMENT
CL1773552 Gelleric Material (% Recovery QUALITY CONTROL SAMPLE CL1773552 Reference Material (% Recovery QUALITY CONTROL SAMPLE)	CL/1775350	BH12 4.50	MARINE SEDIMENT
CU1773362 Reference Material (W. Recovery) QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE	CL/1775351	QC Blank	QUALITY CONTROL SAMPLE
	CL/1775352	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
		I	

Appendix A Page 1 of 1 04/10/2017EFS/178704 Ver. 1

Our Ref: EFS/178716 (Ver. 1)

Your Ref: 17-0167 September 29, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom

Environmental Chemistry

ESC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

BT537QL

Sample Analysis - Arklow Sewerage Scheme Marine Outfall Gl

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 26/10/17 when they will be discarded. Please call 01283 554458 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

J Chislett
Project Co-ordinator
01283 554458

TEST REPORT

Report No. EFS/178716 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 4 samples described in this report were registered for analysis by ESG on 14-Sep-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 29-Sep-2017

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 6)
Table of PCB Congener Results (Page 7)
Table of WAC Analysis Results (Pages 8 to 9)
Analytical and Deviating Sample Overview (Page 10)
Table of Additional Report Notes (Page 11)
Table of Method Descriptions (Page 12)
Table of Report Notes (Page 13)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:

Tim Barnes

Operations Director Energy & Waste Services

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 29-Sep-2017

		Units :	μg/kg	pH Units	%	mg/kg	mg/kg	% M/M	Mol/kg	%	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
	Meth Method Reporti	od Codes :	PCBECD 5	PHSOIL	TMSS 0.1	TPHFIDUS 10	TPHFIDUS 10	0.02	ANC 0.04	LOI(%MM) 0.2	BTEXHSA 10	BTEXHSA 10	BTEXHSA 10	BTEXHSA 20	BTEXHSA 30	BTEXHSA 20	BTEXHSA 10	PAHMSUS
	method Reporti	ing Lilling .	J		0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	МТВЕ	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1775421	BH13 0.50	23-Aug-17	Req	8.7	6.5	<10	18	0.13	<0.04	0.9	<10	<10	<10	<20	<30	<20	<10	Req
1775422	BH13 4.50	23-Aug-17	Req	8.8	20.4	<10	18	0.49	2.56	3.7	<10	<10	<10	<20	<30	<20	<10	Req
1775423	QC Blank		Req §			<10 §	<10 §	<0.02 §			<10 §	<10 §	<10 §	<20 §	<30 §	<20 §	<10 §	Req §
1775424	Reference Material (% Recovery)		Req §	103 §		92 §	92 §	101 §	101.8	101.1	99 §	99 §	98 §	100 §	98 §	98 §	97 §	Req §
	ESG &		Client N		Causev Neil Hagg	way Geot	ech Ltd					Date Prii		ple Ana		Sep-2017		
	Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Ark	low S	Sewer	age S	Schem	ne Ma	rine (Dutfal	I GI	Report N	lumber			FS/178716 1		

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

s17_8716 **Sample Details:** BH13 0.50 **Job Number:** LIMS ID Number: CL1775421 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 Directory: 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	ı	< 0.08	-
Acenaphthene	83-32-9	ı	< 0.08	-
Fluorene	86-73-7	ı	< 0.08	-
Phenanthrene	85-01-8	ı	< 0.08	-
Anthracene	120-12-7	ı	< 0.08	-
Fluoranthene	206-44-0	ı	< 0.08	-
Pyrene	129-00-0	ı	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	ı	< 0.08	-
Benzo[b]fluoranthene	205-99-2	ı	< 0.08	-
Benzo[k]fluoranthene	207-08-9	ı	< 0.08	-
Benzo[a]pyrene	50-32-8	ı	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	ı	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	ı	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	91
Phenanthrene-d10	83
Chrysene-d12	75
Perylene-d12	69

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	102
Terphenyl-d14	74

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

S17_8716 **Sample Details:** BH13 4.50 **Job Number:** LIMS ID Number: CL1775422 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.26	2.04	100
Acenaphthylene	208-96-8	ı	< 0.08	-
Acenaphthene	83-32-9	ı	< 0.08	-
Fluorene	86-73-7	ı	< 0.08	-
Phenanthrene	85-01-8	ı	< 0.08	-
Anthracene	120-12-7	ı	< 0.08	-
Fluoranthene	206-44-0	ı	< 0.08	-
Pyrene	129-00-0	ı	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	ı	< 0.08	-
Benzo[b]fluoranthene	205-99-2	ı	< 0.08	-
Benzo[k]fluoranthene	207-08-9	ı	< 0.08	-
Benzo[a]pyrene	50-32-8	ı	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	ı	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 3.24	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	113
Acenaphthene-d10	114
Phenanthrene-d10	113
Chrysene-d12	135
Perylene-d12	149

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	95
Terphenyl-d14	79

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

s17_8716 **Sample Details:** QC Blank **Job Number:** LIMS ID Number: CL1775423 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	86
Acenaphthene-d10	82
Phenanthrene-d10	74
Chrysene-d12	57
Perylene-d12	43

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	108
Terphenyl-d14	76

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: S17_8716 **Sample Details:** LIMS ID Number: Date Booked in: 14-Sep-17 CL1775424 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Sep-17 Directory: 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Recovery	% Fit	
		(min)	%		
Naphthalene	91-20-3	3.26	101	100	
Acenaphthylene	208-96-8	4.30	99	99	
Acenaphthene	83-32-9	4.42	107	97	
Fluorene	86-73-7	4.81	103	98	
Phenanthrene	85-01-8	5.65	106	99	
Anthracene	120-12-7	5.70	103	100	
Fluoranthene	206-44-0	7.00	111	91	
Pyrene	129-00-0	7.29	109	90	
Benzo[a]anthracene	56-55-3	8.97	108	99	
Chrysene	218-01-9	9.02	112	99	
Benzo[b]fluoranthene	205-99-2	10.50	101	96	
Benzo[k]fluoranthene	207-08-9	10.54	103	97	
Benzo[a]pyrene	50-32-8	10.93	109	97	
Indeno[1,2,3-cd]pyrene	193-39-5	12.30	109	91	
Dibenzo[a,h]anthracene	53-70-3	12.34	107	97	
Benzo[g,h,i]perylene	191-24-2	12.60	103	95	
Coronene	191-07-1	14.74	112	67	
Total (USEPA16) PAHs	-	-	106	-	

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	90
Acenaphthene-d10	92
Phenanthrene-d10	87
Chrysene-d12	96
Perylene-d12	100

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	85

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

 Job Number:
 \$17_8716

 QC Batch Number:
 171030

Directory: 092517PCB.GC70

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

			Con	centration,	(µg/kg)		
Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
BH13 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
BH13 4.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Reference Material (% Recovery)	87.6	93.2	80.4	91.5	87.9	92.5	83.4
	BH13 0.50 BH13 4.50 QC Blank	BH13 0.50 <5.0 BH13 4.50 <5.0 QC Blank <5.0	BH13 0.50 <5.0 <5.0 BH13 4.50 <5.0 <5.0 QC Blank <5.0 <5.0	Customer ID PCB28* PCB52* PCB101* BH13 0.50 <5.0	Customer ID PCB28* PCB52* PCB101* PCB118* BH13 0.50 <5.0	Customer ID PCB28* PCB52* PCB101* PCB118* PCB153* BH13 0.50 <5.0	Customer ID PCB28* PCB52* PCB101* PCB118* PCB153* PCB138* BH13 0.50 <5.0

Soil

14-Sep-17

22-Sep-17

25-Sep-17

WASTE ACCEPTANCE CRITERIA TESTING BSEN 12457/2

Client	Causaway Caataah Ltd	٦			Leaching Data		
Cilent	Causeway Geotech Ltd			Weight of sample (kg)	0.100		
Contact	Noil Lorgen		Moisture content @ 105°C (% of Wet Weight)	6.5			
Contact	Contact Neil Haggan			Equivalent Weight based on drying at 105°C (kg)	0.090		
Cito	Sita		Volume of water required to carry out 10:1 stage (litres)	0.890			
Site			Fraction of sample above 4 mm %	6.100			
Sample Description Report No Sample No Issue Da		Issue Date	Fraction of non-crushable material %	0.000			
BH13 0.50		s17_8716 CL/1775421 2		29-Sep-17			
				29-3ep-17			

				Landfill Was	te Acceptance Crit	eria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.13	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.9			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.06	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<11	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.45	100		
Ν	PHSOIL	pH (pH units)	8.7		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @nH 7	<0.04	_	To be evaluated	To be evaluated

ccreditation	Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1		Acceptance Criter	ria Limit Values for litre kg-1		
Accredi	Method Code		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)				
U	WSLM3	pH (pH units) 00	7	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	616	Calculated data not onas accredited					
U	ICPMSW	Arsenic	0.001	0.01	0.5	2	25		
U	ICPWATVAR	Barium	0.05	0.5	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	0.001	0.01	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.01	0.1	4	50	200		
U	KONENS	Chloride	136	1360	800	15000	25000		
U	ISEF	Fluoride	0.4	4	10	150	500		
U	ICPWATVAR	Sulphate as SO4	28	280	1000	20000	50000		
N	WSLM27	Total Dissolved Solids	480	4800	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	1.1	11	500	800	1000		

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

WASTE ACCEPTANCE CRITERIA TESTING BSEN 12457/2

Client	Causaway Castash Ltd			Leaching Data				
Cilent	Causeway Geotech Ltd				Weight of sample (kg) (
Contact	Noil Hoggon			Moisture content @ 105°C (% of Wet Weight)	20.4			
Contact	Neil Haggan			Equivalent Weight based on drying at 105°C (kg) 0				
Cito	Articles Compress Cohem	a Marina Ou	#all CI	Volume of water required to carry out 10:1 stage (litres)				
Site	Arklow Sewerage Schem	ie Marine Ou	liali Gi	Fraction of sample above 4 mm %				
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
	3H13 4.50	s17 8716	CL/1775422	29-Sep-17				
<u> </u>	DH 13 4.30	517_0/10	CL/17/5422	29-3ep-17				

Note: The >4mm fraction is crushed using a disc mill

_				Landfill Waste Acceptance Criteria Limit Values					
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill			
Ν	WSLM59	Total Organic Carbon (% M/M)	0.52	3	5	6			
Ν	LOI450	Loss on Ignition (%)	3.9			10			
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6					
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1					
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<13	500					
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<4.17	100					
Ν	PHSOIL	pH (pH units)	8.8		>6				
N	ANC	Acid Neutralisation Canacity (mol/kg) @nH 7	2 72		To be evaluated	To be evaluated			

tation	Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)				
Accreditation	Method	2000/idio / iliayolo	mg/l except ⁰⁰	mg/kg (dry weight)					
U	WSLM3	pH (pH units) ⁰⁰	7.6	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	1190	Calculated data not onas accredited					
U	ICPMSW	Arsenic	0.007	0.07	0.5	2	25		
U	ICPWATVAR	Barium	0.07	0.7	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	0.001	0.01	0.5	10	70		
U	ICPMSW	Copper	0.006	0.06	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30		
U	ICPMSW	Nickel	0.003	0.03	0.4	10	40		
U	ICPMSW	Lead	0.003	0.03	0.5	10	50		
U	ICPMSW	Antimony	0.004	0.04	0.06	0.7	5		
U	ICPMSW	Selenium	0.002	0.02	0.1	0.5	7		
U	ICPMSW	Zinc	0.063	0.63	4	50	200		
U	KONENS	Chloride	271	2710	800	15000	25000		
U	ISEF	Fluoride	0.4	4	10	150	500		
U	ICPWATVAR	Sulphate as SO4	56	560	1000	20000	50000		
Ν	WSLM27	Total Dissolved Solids	927	9270	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
N	WSLM13	Dissolved Organic Carbon	3.1	31	500	800	1000		

nplate Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

ESG Environmental Chemistry

Analytical and Deviating Sample Overview

Customer **Causeway Geotech Ltd**

Site **Arklow Sewerage Scheme Marine Outfall GI** Report No

S178716

Consignment No S68871 Date Logged 14-Sep-2017

In-House Report Due 02-Oct-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
CL/1775421	BH13 0.50	23/08/17		Е	Е				Е		Е		Е	Е	
CL/1775421	BH13 4.50	23/08/17		E	Ē				Ē		Ē		Ē	Ē	
CL/1775423	QC Blank	20,00,11							_		_				
CL/1775424	Reference Material (% Recovery	<u>/</u>)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number : EFS/178716

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report

Report Number: EFS/178716

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 13 of 13 EFS/178716 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S17_8716

Note: major constituent in upper case

		Note: major constituent in upper case							
Lab ID Number	Client ID	Description							
CL/1775421	BH13 0.50	MARINE SEDIMENT							
CL/1775421 CL/1775422	BH13 4.50	MARINE SEDIMENT							
CL/1775422	OC Blank	OLIALITY CONTROL SAMPLE							
CL/1775423 CL/1775424	QC Blank Reference Material (% Recovery)	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE							
GL/1775424	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE							
	ı								

Appendix A Page 1 of 1 04/10/2017EFS/178716 Ver. 1

Our Ref: EFS/178710 (Ver. 1)

Your Ref: 17-0167 September 29, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom

Environmental Chemistry

ESC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

BT537QL

Sample Analysis - Arklow Sewerage Scheme Marine Outfall Gl

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554458 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

J Chislett
Project Co-ordinator
01283 554458

TEST REPORT

Report No. EFS/178710 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 4 samples described in this report were registered for analysis by ESG on 14-Sep-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 29-Sep-2017

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 6)
Table of PCB Congener Results (Page 7)
Table of WAC Analysis Results (Pages 8 to 9)
Analytical and Deviating Sample Overview (Page 10)
Table of Additional Report Notes (Page 11)
Table of Method Descriptions (Page 12)
Table of Report Notes (Page 13)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:

Tim Barnes

Operations Director Energy & Waste Services

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Tests marked 'A' have been subcontracted to another laboratory.

Date of Issue: 29-Sep-2017

		Units :	μg/kg	pH Units	%	mg/kg	mg/kg	% M/M	Mol/kg	%	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
	Meth Method Reporti	od Codes :	PCBECD 5	PHSOIL	TMSS 0.1	TPHFIDUS 10	TPHFIDUS 10	WSLM59 0.02	ANC 0.04	LOI(%MM) 0.2	BTEXHSA 10	BTEXHSA 10	BTEXHSA 10	BTEXHSA 20	BTEXHSA 30	BTEXHSA 20	BTEXHSA 10	PAHMSUS
	Method Reporti	ilg Lillins .	- 5		0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	МТВЕ	Xylenes	m/p Xylenes	o Xylene	РАН (17) by GCMS
1775387	BH14 0.25	22-Aug-17	Req	8.6	17.7	66	79	0.27	0.72	1.2	<10	<10	<10	<20	<30	<20	<10	Req
1775388	BH14 2.75	22-Aug-17	Req	9	18.1	<10	20	0.42	3.04	2.6	<10	<10	<10	<20	<30	<20	<10	Req
1775389	QC Blank		Req §		N/A §	<10 §	<10 §	<0.02 §			<10 §	<10 §	<10 §	<20 §	<30 §	<20 §	<10 §	Req §
1775390	Reference Material (% Recovery)		Req §	103 §	N/A §	92 §	92 §	91 §	102	98.3	103 §	105 §	103 §	101 §	103 §	104 §	101 §	Req §
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400		Client N Contact		Neil Hagg	way Geot		ne Ma	rine (Outfal	l Gl	Date Prin Report N Table Nu	nted lumber	ple Ana	29-	Sep-2017 FS/178710 1		

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

s17_8710 **Sample Details:** BH14 0.25 **Job Number:** LIMS ID Number: CL1775387 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 Directory: 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	ı	< 0.08	-
Fluorene	86-73-7	ı	< 0.08	-
Phenanthrene	85-01-8	ı	< 0.08	-
Anthracene	120-12-7	ı	< 0.08	-
Fluoranthene	206-44-0	ı	< 0.08	-
Pyrene	129-00-0	ı	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	ı	< 0.08	-
Benzo[b]fluoranthene	205-99-2	ı	< 0.08	-
Benzo[k]fluoranthene	207-08-9	ı	< 0.08	-
Benzo[a]pyrene	50-32-8	ı	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	ı	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	ı	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	89
Phenanthrene-d10	83
Chrysene-d12	79
Perylene-d12	82

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	74

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

S17_8710 **Sample Details:** BH14 2.75 **Job Number:** LIMS ID Number: CL1775388 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.26	0.09	95
Acenaphthylene	208-96-8	ı	< 0.08	-
Acenaphthene	83-32-9	ı	< 0.08	-
Fluorene	86-73-7	ı	< 0.08	-
Phenanthrene	85-01-8	ı	< 0.08	-
Anthracene	120-12-7	ı	< 0.08	-
Fluoranthene	206-44-0	ı	< 0.08	-
Pyrene	129-00-0	ı	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	ı	< 0.08	-
Benzo[b]fluoranthene	205-99-2	ı	< 0.08	-
Benzo[k]fluoranthene	207-08-9	ı	< 0.08	-
Benzo[a]pyrene	50-32-8	ı	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	ı	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	ı	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.29	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	100
Acenaphthene-d10	97
Phenanthrene-d10	90
Chrysene-d12	86
Perylene-d12	82

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	98
Terphenyl-d14	72

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

QC Blank s17_8710 **Sample Details: Job Number:** LIMS ID Number: CL1775389 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 Directory: 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	86
Acenaphthene-d10	82
Phenanthrene-d10	74
Chrysene-d12	57
Perylene-d12	43

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	108
Terphenyl-d14	76

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: S17_8710 **Sample Details:** Date Booked in: LIMS ID Number: CL1775390 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.26	101	100
Acenaphthylene	208-96-8	4.30	99	99
Acenaphthene	83-32-9	4.42	107	97
Fluorene	86-73-7	4.81	103	98
Phenanthrene	85-01-8	5.65	106	99
Anthracene	120-12-7	5.70	103	100
Fluoranthene	206-44-0	7.00	111	91
Pyrene	129-00-0	7.29	109	90
Benzo[a]anthracene	56-55-3	8.97	108	99
Chrysene	218-01-9	9.02	112	99
Benzo[b]fluoranthene	205-99-2	10.50	101	96
Benzo[k]fluoranthene	207-08-9	10.54	103	97
Benzo[a]pyrene	50-32-8	10.93	109	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.30	109	91
Dibenzo[a,h]anthracene	53-70-3	12.34	107	97
Benzo[g,h,i]perylene	191-24-2	12.60	103	95
Coronene	191-07-1	14.74	112	67
Total (USEPA16) PAHs	-	-	106	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	90
Acenaphthene-d10	92
Phenanthrene-d10	87
Chrysene-d12	96
Perylene-d12	100

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	85

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

 Job Number:
 \$17_8710

 QC Batch Number:
 171030

Directory: 092517PCB.GC70

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

		Concentration, (µg/kg)						
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1775387	BH14 0.25	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775388	BH14 2.75	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775389	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775390	Reference Material (% Recovery)	87.6	93.2	80.4	91.5	87.9	92.5	83.4

Soil

14-Sep-17

22-Sep-17

25-Sep-17

WASTE ACCEPTANCE CRITERIA TESTING BSEN 12457/2

Client	Causaway Caataah Ltd	seway Geotech Ltd		Leaching Data		
Cilent	Causeway Geolech Liu			Weight of sample (kg)	0.103	
Contact	Mail Harran		Moisture content @ 105°C (% of Wet Weight)	17.7		
Contact	Neil Haggan				Equivalent Weight based on drying at 105°C (kg)	0.090
Cito	Site LARKIOW Sewerage Scheme Marine Outfall (3)		Volume of water required to carry out 10:1 stage (litres)	0.887		
Site			Fraction of sample above 4 mm %	0.000		
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
E	BH14 0.25	s17_8710	CL/1775387	29-Sep-17		

Note: The >4mm fraction is crushed using a disc mill

				Landfill V	Landfill Waste Acceptance Criteria Limit Values					
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
Ν	WSLM59	Total Organic Carbon (% M/M)	0.28	3	5	6				
Ν	LOI450	Loss on Ignition (%)	1.2			10				
N	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6						
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1						
N	TPHFIDUS	Mineral Oil (mg/kg)	80	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.65	100						
Ν	PHSOIL	pH (pH units)	8.6		>6					
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.74		To be evaluated	To be evaluated				

Accreditation	Method Code	Leachate Analysis	10:1 Single Stage Leachate mg/l except ⁰⁰	Calculated cumulative amount leached @ 10:1 mg/kg (dry weight)	Landfill Waste	ia Limit Values for BSEN litre kg-1 eight)	
U	WSLM3	pH (pH units) 00	7.2	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	1010	Calculated data not offact Accredited			
U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25
U	ICPWATVAR	Barium	0.05	0.5	20	100	300
U	ICPMSW	Cadmium	0.0001	0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	0.005	0.05	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.012	0.12	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	0.007	0.07	0.5	10	50
U	ICPMSW	Antimony	0.003	0.03	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.037	0.37	4	50	200
U	KONENS	Chloride	244	2440	800	15000	25000
U	ISEF	Fluoride	0.5	5	10	150	500
U	ICPWATVAR	Sulphate as SO4	42	420	1000	20000	50000
N	WSLM27	Total Dissolved Solids	791	7910	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	2.9	29	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

WASTE ACCEPTANCE CRITERIA TESTING BSEN 12457/2

Client	Causeway Geotech Ltd	ı		Leaching Data				
Cilent	Causeway Geolech Lic	l		Weight of sample (kg)	0.110			
Contact	Neil Haggan			Moisture content @ 105°C (% of Wet Weight)				
Contact				Equivalent Weight based on drying at 105°C (kg)	0.090			
Site	Arklow Sowerede Sebe	ma Marina Out	Hall CI	Volume of water required to carry out 10:1 stage (litres)	0.880			
Site	Arklow Sewerage Sche	ine Manne Ou	liali Gi	Fraction of sample above 4 mm %	0.000			
Sam	ole Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
	BH14 2.75	s17_8710	CL/1775388	29-Sep-17				

Note: The >4mm fraction is crushed using a disc mill

	4			Landfill V	laste Acceptance	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.43	3	5	6
N	LOI450	Loss on Ignition (%)	2.7			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	<12	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.67	100		
N	PHSOIL	pH (pH units)	9		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	3.14		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis	10:1 Single Stage Leachate mg/l except ⁰⁰	Calculated cumulative amount leached @ 10:1 mg/kg (dry weight)	Landfill Waste Acceptance Criteria Limit Value 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)) litre kg-1
Ū		pH (pH units) 00	8.1	0.1.1.4.1.1.4			
U	WSLM2	Conductivity (µs/cm) 00	1180	Calculated data not UKAS Accredited			
U	ICPMSW	Arsenic	0.018	0.18	0.5	2	25
U	ICPWATVAR	Barium	0.07	0.7	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	0.003	0.03	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.006	0.06	0.06	0.7	5
U	ICPMSW	Selenium	0.002	0.02	0.1	0.5	7
U	ICPMSW	Zinc	< 0.002	<0.02	4	50	200
U	KONENS	Chloride	257	2570	800	15000	25000
U	ISEF	Fluoride	0.4	4	10	150	500
U	ICPWATVAR	Sulphate as SO4	62	620	1000	20000	50000
N	WSLM27	Total Dissolved Solids	923	9230	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
N	WSLM13	Dissolved Organic Carbon	5.5	55	500	800	1000

Template Ver. 1

andfill Waste Acceptance Criteria limit values correct as of 11th March 200

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Sample Analysis

Customer

Site

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S68872
Date Logged 14-Sep-2017

Arklow Sewerage Scheme Marine Outfall GI

Causeway Geotech Ltd

In-House Report Due 02-Oct-2017

Report No S178710

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

S178710

												4			icu u
		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
CL/1775387	BH14 0.25	22/08/17		Е	Е				Е		Е		Е	Е	
CL/1775388	BH14 2.75	22/08/17		Ē	Ē				Ē		E		Ē	Ē	
CL/1775389	QC Blank														
CL/1775390	Reference Material (% Recovery	y)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- B The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
 - Sample processing did not commence within the appropriate holding time Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Report Number : EFS/178710

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report

Report Number: EFS/178710

Method Descriptions

Matrix	MethodID Analysi Basis		Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 13 of 13 EFS/178710 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S17_8710

Note: major constituent in upper case

		Note: major constituent in upper case							
Lab ID Number	Client ID	Description							
CL/1775387	BH14 0.25	MARINE SEDIMENT							
CL/1775388	BH14 2.75	MARINE SEDIMENT							
CL/1775389	QC Blank	QUALITY CONTROL SAMPLE							
CL/1775389 CL/1775390	QC Blank Reference Material (% Recovery)	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE							

Appendix A Page 1 of 1 04/10/2017EFS/178710 Ver. 1

Our Ref: EFS/178706 (Ver. 1)

Your Ref: 17-0167 September 29, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom

Environmental Chemistry

ESC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

BT537QL

Sample Analysis - Arklow Sewerage Scheme Marine Outfall Gl

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554458 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

J Chislett
Project Co-ordinator
01283 554458

TEST REPORT

Report No. EFS/178706 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 5 samples described in this report were registered for analysis by ESG on 14-Sep-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 29-Sep-2017

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 7)
Table of PCB Congener Results (Page 8)
Table of WAC Analysis Results (Pages 9 to 11)
Analytical and Deviating Sample Overview (Page 12)
Table of Additional Report Notes (Page 13)
Table of Method Descriptions (Page 14)
Table of Report Notes (Page 15)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:

Tim Barnes

Operations Director
Energy & Waste Services

Date of Issue: 29-Sep-2017

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	μg/kg	pH Units	%	mg/kg	mg/kg	% M/M	Mol/kg	%	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
		od Codes :	PCBECD	PHSOIL	TMSS		TPHFIDUS		ANC		BTEXHSA		BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	PAHMSUS
	Method Reporti	ng Limits :	5		0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	мтве	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1775359	BH15 1.50	25-Aug-17	Req	8.4	12.2	<10	16	0.14	1.52	0.8	<10	<10	<10	<20	<30	<20	<10	Req
1775360	BH15 3.50	25-Aug-17	Req	8.7	18.0	<10	16	0.09	1.12	0.8	<10	<10	<10	<20	<30	<20	<10	Req
1775361	BH15 5.50	25-Aug-17	Req	8.6	47.3	13	27	0.53	3.12	3.2	<10	<10	<10	<20	<30	<20	<10	Req
1775362	QC Blank		Req §			<10 §	<10 §	<0.02 §			<10 §	<10 §	<10 §	<20 §	<30 §	<20 §	<10 §	Req §
1775363	Reference Material (% Recovery)		Req §	103 §		92 §	92 §	101 §	102	101.1	103 §	105 §	103 §	101 §	103 §	104 §	101 §	Req §
	ESG 🥏		Client N Contact		Cause Neil Hag	way Geot	ech Ltd						Sam	ple Ana	alysis			
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Ark	dow S	Sewe	rage S	Schen	ne Ma	rine (Outfal	I GI	Date Prin Report N Table No	lumber			-Sep-2017 FS/178706 1		

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

S17_8706 **Sample Details:** BH15 1.50 **Job Number:** LIMS ID Number: CL1775359 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.26	0.14	99
Acenaphthylene	208-96-8	1	< 0.08	-
Acenaphthene	83-32-9	1	< 0.08	-
Fluorene	86-73-7	1	< 0.08	-
Phenanthrene	85-01-8	1	< 0.08	-
Anthracene	120-12-7	1	< 0.08	-
Fluoranthene	206-44-0	1	< 0.08	-
Pyrene	129-00-0	1	< 0.08	-
Benzo[a]anthracene	56-55-3	1	< 0.08	-
Chrysene	218-01-9	1	< 0.08	-
Benzo[b]fluoranthene	205-99-2	1	< 0.08	-
Benzo[k]fluoranthene	207-08-9	1	< 0.08	-
Benzo[a]pyrene	50-32-8	1	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	1	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.34	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	97
Phenanthrene-d10	92
Chrysene-d12	89
Perylene-d12	90

Surrogates	% Rec	
Nitrobenzene-d5	NA	
2-Fluorobiphenyl	102	
Terphenyl-d14	77	

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

s17_8706 **Sample Details:** BH15 3.50 **Job Number:** LIMS ID Number: CL1775360 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.26	0.50	98
Acenaphthylene	208-96-8	ı	< 0.08	-
Acenaphthene	83-32-9	ı	< 0.08	-
Fluorene	86-73-7	ı	< 0.08	-
Phenanthrene	85-01-8	ı	< 0.08	-
Anthracene	120-12-7	ı	< 0.08	-
Fluoranthene	206-44-0	ı	< 0.08	-
Pyrene	129-00-0	ı	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	ı	< 0.08	-
Benzo[b]fluoranthene	205-99-2	ı	< 0.08	-
Benzo[k]fluoranthene	207-08-9	ı	< 0.08	-
Benzo[a]pyrene	50-32-8	ı	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	ı	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	ı	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.70	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	97
Phenanthrene-d10	91
Chrysene-d12	89
Perylene-d12	88

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	76

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

S17_8706 **Sample Details:** BH15 5.50 **Job Number:** LIMS ID Number: CL1775361 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3 *	-	< 0.08	-
Acenaphthylene	208-96-8	ı	< 0.08	-
Acenaphthene	83-32-9	ı	< 0.08	-
Fluorene	86-73-7	ı	< 0.08	-
Phenanthrene	85-01-8	ı	< 0.08	-
Anthracene	120-12-7	ı	< 0.08	-
Fluoranthene	206-44-0	ı	< 0.08	-
Pyrene	129-00-0	ı	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	1	< 0.08	-
Benzo[b]fluoranthene	205-99-2	ı	< 0.08	-
Benzo[k]fluoranthene	207-08-9	ı	< 0.08	-
Benzo[a]pyrene	50-32-8	ı	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	94
Acenaphthene-d10	91
Phenanthrene-d10	83
Chrysene-d12	76
Perylene-d12	74

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	105
Terphenyl-d14	76

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

QC Blank s17_8706 **Sample Details: Job Number:** LIMS ID Number: CL1775362 Date Booked in: 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File: Initial Calibration Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	1	< 0.08	-
Acenaphthene	83-32-9	1	< 0.08	-
Fluorene	86-73-7	1	< 0.08	-
Phenanthrene	85-01-8	1	< 0.08	-
Anthracene	120-12-7	1	< 0.08	-
Fluoranthene	206-44-0	1	< 0.08	-
Pyrene	129-00-0	1	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	1	< 0.08	-
Benzo[k]fluoranthene	207-08-9	1	< 0.08	-
Benzo[a]pyrene	50-32-8	1	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	1	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	86
Acenaphthene-d10	82
Phenanthrene-d10	74
Chrysene-d12	57
Perylene-d12	43

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	108
Terphenyl-d14	76

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: S17_8706 **Sample Details:** Date Booked in: LIMS ID Number: CL1775363 14-Sep-17 **QC Batch Number:** 171030 **Date Extracted:** 22-Sep-17 **Quantitation File:** Initial Calibration **Date Analysed:** 26-Sep-17 **Directory:** 092517.MS17\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.26	101	100
Acenaphthylene	208-96-8	4.30	99	99
Acenaphthene	83-32-9	4.42	107	97
Fluorene	86-73-7	4.81	103	98
Phenanthrene	85-01-8	5.65	106	99
Anthracene	120-12-7	5.70	103	100
Fluoranthene	206-44-0	7.00	111	91
Pyrene	129-00-0	7.29	109	90
Benzo[a]anthracene	56-55-3	8.97	108	99
Chrysene	218-01-9	9.02	112	99
Benzo[b]fluoranthene	205-99-2	10.50	101	96
Benzo[k]fluoranthene	207-08-9	10.54	103	97
Benzo[a]pyrene	50-32-8	10.93	109	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.30	109	91
Dibenzo[a,h]anthracene	53-70-3	12.34	107	97
Benzo[g,h,i]perylene	191-24-2	12.60	103	95
Coronene	191-07-1	14.74	112	67
Total (USEPA16) PAHs	-	-	106	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	90
Acenaphthene-d10	92
Phenanthrene-d10	87
Chrysene-d12	96
Perylene-d12	100

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	85

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall Gl

Job Number: \$17_8706 QC Batch Number: 171030

Directory: 092517PCB.GC70

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

		Concentration, (μg/kg)						
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1775359	BH15 1.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775360	BH15 3.50	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775361	BH15 5.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775362	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1775363	Reference Material (% Recovery)	87.6	93.2	80.4	91.5	87.9	92.5	83.4

Soil

14-Sep-17

22-Sep-17

25-Sep-17

WASTE ACCEPTANCE CRITERIA TESTING BSEN 12457/2

Client	Courseway Controls Ltd			Leaching Data			
Cilent	Causeway Geotech Ltd				Weight of sample (kg) 0.		
Contact	Neilleage				Moisture content @ 105°C (% of Wet Weight)		
Contact	Neil Haggan			Equivalent Weight based on drying at 105°C (kg)			
Site	Arklow Sewerage Scheme Marine Outfall GI			Volume of water required to carry out 10:1 stage (litres)			
Site	Arklow Sewerage Schen	ie ivianne Ou	liali Gi	Fraction of sample above 4 mm %			
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH15 1.50		s17 8706	CL/1775359	29-Sep-17	_		
DITIO 1.30		\$17_6700 CL/1773339		29-3ep-17			

Note: The >4mm fraction is crushed using a disc mill

- a				Landfill Waste Acceptance Criteria Limit Values			
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill	
Ν	WSLM59	Total Organic Carbon (% M/M)	0.14	3	5	6	
Ν	LOI450	Loss on Ignition (%)	0.8			10	
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6			
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1			
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<11	500			
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.62	100			
Ν	PHSOIL	pH (pH units)	8.4		>6		
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.49		To be evaluated	To be evaluated	

litation	a Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1			
Accreditation	Method		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)		nt)	
U		pH (pH units) ⁰⁰	7.3	Calculated data not UKAS Accredited				
U	WSLM2	Conductivity (µs/cm) 00	964	Calculated data not OKAS Accredited				
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25	
U	ICPWATVAR	Barium	0.05	0.5	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U	ICPMSW	Copper	<0.001	<0.01	2	50	100	
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.004	0.04	0.5	10	30	
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50	
U	ICPMSW	Antimony	0.003	0.03	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.013	0.13	4	50	200	
U	KONENS	Chloride	225	2250	800	15000	25000	
U	ISEF	Fluoride	0.3	3	10	150	500	
U	ICPWATVAR	Sulphate as SO4	50	500	1000	20000	50000	
N	WSLM27	Total Dissolved Solids	752	7520	4000	60000	100000	
U	SFAPI	Phenol Index	<0.05	<0.5	1			
N	WSLM13	Dissolved Organic Carbon	1.1	11	500	800	1000	

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Client	Causaway Gootoob Ltd				Leaching Data				
Cilent	Causeway Geotech Ltd		Weight of sample (kg)						
Contact	Noil Hoggon			Moisture content @ 105°C (% of Wet Weight)	18.0				
Contact	Neil Haggan			Equivalent Weight based on drying at 105°C (kg)					
Site	Arklow Sewerage Schem	o Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)				
Site	Arklow Sewerage Schen	ie Marine Ou	iliali Gi		Fraction of sample above 4 mm %	0.000			
Sam	ple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000			
	BH15 3.50	s17 8706	CL/1775360	29-Sep-17					
	DI 113 3.30	317_0700	CL/17/5500	29-3ep-17					

Note: The >4mm fraction is crushed using a disc mill

				Landfill Wast	e Acceptance Crit	eria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.09	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.8			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	<12	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.17	100		
Ν	PHSOIL	pH (pH units)	8.7		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.16		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1 - mg/kg (dry weight)				
Accrec	Method		mg/l except ⁰⁰	mg/kg (dry weight)					
U		pH (pH units) 00	7.2	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	1360	Calculated data not OKAS Accredited					
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25		
U	ICPWATVAR	Barium	0.04	0.4	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	0.001	0.01	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	<0.001	<0.01	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.013	0.13	4	50	200		
U	KONENS	Chloride	351	3510	800	15000	25000		
U	ISEF	Fluoride	0.1	1	10	150	500		
Ū	ICPWATVAR	Sulphate as SO4	52	520 1000 20000		50000			
Ν	WSLM27	Total Dissolved Solids	1060	10600	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
N	WSLM13	Dissolved Organic Carbon	1.5	15	500	800	1000		

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causaway Gootoob Ltd				Leaching Data				
Ciletti	Causeway Geotech Ltd		Weight of sample (kg)						
Contact	Noil Hoggon			Moisture content @ 105°C (% of Wet Weight)	47.3				
Contact	Neil Haggan			Equivalent Weight based on drying at 105°C (kg)					
Site	Arklow Sewerage Schem	o Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)				
Site	Arklow Sewerage Schen	ie Marine Ou	iliali Gi		Fraction of sample above 4 mm %	0.000			
Sam	ple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000			
	BH15 5.50	s17 8706	CL/1775361	29-Sep-17					
	DI 113 3.30	317_0700	CL/17/3301	29-3ep-17					

Note: The >4mm fraction is crushed using a disc mill

_		-		Landfill Wast	Landfill Waste Acceptance Criteria Limit Value			
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill		
Ν	WSLM59	Total Organic Carbon (% M/M)	0.85	3	5	6		
Ν	LOI450	Loss on Ignition (%)	5.1			10		
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.12	6				
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.056	1				
N	TPHFIDUS	Mineral Oil (mg/kg)	25	500				
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.58	100				
Ν	PHSOIL	pH (pH units)	8.6		>6			
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	5.01		To be evaluated	To be evaluated		

itation	Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1		Acceptance Criter 12457/2 @ L/S 10	ia Limit Values for litre kg-1		
Accreditation	Method		mg/l except ⁰⁰	mg/kg (dry weight)	g/kg (dry weight)		weight)		
U	WSLM3	pH (pH units) ⁰⁰	7.5	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	1490	Calculated data flot OKAS Accredited					
U	ICPMSW	Arsenic	0.01	0.1	0.5	2	25		
U	ICPWATVAR	Barium	0.06	0.6	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	0.004	0.04	2	50	100		
U		Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30		
U	ICPMSW	Nickel	0.002	0.02	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	0.005	0.05	0.06	0.7	5		
U	ICPMSW	Selenium	0.003	0.03	0.1	0.5	7		
U	ICPMSW	Zinc	0.009	0.09	4	50	200		
U	KONENS	Chloride	358	3580	800	15000	25000		
U	ISEF	Fluoride	0.5	5	10	150	500		
U	ICPWATVAR	Sulphate as SO4	73	730	730 1000 20000		50000		
N	WSLM27	Total Dissolved Solids	1160	11600	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
N	WSLM13	Dissolved Organic Carbon	2.4	24	500	800	1000		

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

S178706

ESG Environmental Chemistry

Analytical and Deviating Sample Overview

Customer Causeway Geotech Ltd

Site Arklow Sewerage Scheme Marine Outfall GI

Report No S178706

Consignment No S68873

Date Logged 14-Sep-2017

In-House Report Due 02-Oct-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

								,				u, o	u		cu an
		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS	·	WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
01 /4775050	DU45 4 50	05/00/47		_	_				_		_		_	_	
CL/1775359	BH15 1.50	25/08/17		E	E				E		E		E	E	
CL/1775360	BH15 3.50	25/08/17		Е	Е				Е		Е		Е	Е	
CL/1775361	BH15 5.50	25/08/17		Е	Е				Е		Е		Е	Е	
CL/1775362	QC Blank														
CL/1775363	Reference Material (% Recovery	y)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number : EFS/178706

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report

Report Number: EFS/178706

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EFS/178706 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S17_8706

Note: major constituent in upper case

		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1775359	BH15 1.50	MARINE SEDIMENT
CL/1775360	BH15 3.50	MARINE SEDIMENT
CL/1775361	BH15 5.50	MARINE SEDIMENT
CL/1775361 CL/1775362	QC Blank	QUALITY CONTROL SAMPLE
CL/1775362 CL/1775363	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1773363	Reference Material (% Recovery)	QUALITY CONTINGE SAIVIF EE

Appendix A Page 1 of 1 04/10/2017EFS/178706 Ver. 1

Our Ref: EFS/180840 (Ver. 1)

Your Ref: 17-0167 December 6, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Environmental Chemistry

SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 02/01/18 when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

THOUSOURE

J Colbourne
Project Co-ordinator
01283 554547

TEST REPORT

Report No. EFS/180840 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 5 samples described in this report were registered for analysis by SOCOTEC UK Limited on 21-Nov-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 06-Dec-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 7)
Table of PCB Congener Results (Page 8)
Table of WAC Analysis Results (Pages 9 to 11)
Analytical and Deviating Sample Overview (Page 12)
Table of Method Descriptions (Page 13)
Table of Report Notes (Page 14)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes

Operations Director Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 06-Dec-2017

		Units : od Codes :	μg/kg PCBECD	pH Units PHSOIL	% TMSS		mg/kg TPHFIDUS	% M/M WSLM59	Mol/kg ANC		μg/kg BTEXHSA		μg/kg BTEXHSA		μg/kg BTEXHSA			mg/kg PAHMSUS
	Method Reporti	ng Limits :	5		0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	
LABID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1784507	BH16 1.50	05-Nov-17	Req	8.6	36.5	25	26	1.75	2.72	5.5	<10	<10	<10	<20	<30	<20	<10	Req
1784508	BH16 3.50	05-Nov-17	Req	7.7	60.9	46	46	7.8	0.88	15.9	<10	<10	<10	<20	<30	<20	<10	Req
1784509	BH16 5.50	05-Nov-17	Req	7.5	62.2	74	74	10.2	1.68	19.6	<10	<10	<10	<20	<30	<20	<10	Req
1784510	QC Blank		Req			<10	<10	<0.02			<10	<10	<10	<20	<30	<20	<10	Req
1784511	Reference Material (% Recovery)		Req	102		103	103	100	99	104	102	101	98	106	195	99	96	Req
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Client N Contact		Neil Hagg	vay Geot		ne Ma	rine (Outfal	l Gl	Date Prin Report N	nted lumber	ple Ana	06-	Dec-2017 FS/180840		

Where individual results are flagged see report notes for status.

Page 2 of 14

EFS/180840 Ver. 1

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH16 1.50 **Job Number:** s18_0840 LIMS ID Number: CL1784507 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration** 25-Nov-17 Date Analysed: **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	1	< 0.08	-
Chrysene	218-01-9	1	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	96
Phenanthrene-d10	94
Chrysene-d12	86
Perylene-d12	70

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	102
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: **Sample Details:** BH16 3.50 S18_0840 LIMS ID Number: CL1784508 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	97
Phenanthrene-d10	95
Chrysene-d12	92
Perylene-d12	73

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	101
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH16 5.50 **Job Number:** s18_0840 LIMS ID Number: CL1784509 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	94
Phenanthrene-d10	93
Chrysene-d12	87
Perylene-d12	70

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: **Sample Details:** QC Blank S18_0840 LIMS ID Number: CL1784510 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	96
Acenaphthene-d10	97
Phenanthrene-d10	95
Chrysene-d12	81
Perylene-d12	62

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: **Sample Details:** S18_0840 CL1784511 LIMS ID Number: Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil Dilution: **Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.31	103	100
Acenaphthylene	208-96-8	4.36	103	99
Acenaphthene	83-32-9	4.48	104	92
Fluorene	86-73-7	4.87	101	92
Phenanthrene	85-01-8	5.72	97	100
Anthracene	120-12-7	5.77	100	99
Fluoranthene	206-44-0	7.08	98	90
Pyrene	129-00-0	7.37	98	88
Benzo[a]anthracene	56-55-3	9.06	102	99
Chrysene	218-01-9	9.11	98	99
Benzo[b]fluoranthene	205-99-2	10.59	96	96
Benzo[k]fluoranthene	207-08-9	10.62	96	96
Benzo[a]pyrene	50-32-8	11.02	98	96
Indeno[1,2,3-cd]pyrene	193-39-5	12.39	80	90
Dibenzo[a,h]anthracene	53-70-3	12.43	71	94
Benzo[g,h,i]perylene	191-24-2	12.69	82	93
Coronene	191-07-1	14.89	63	73
Total (USEPA16) PAHs	-	-	99.24	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	-
Acenaphthene-d10	-
Phenanthrene-d10	-
Chrysene-d12	-
Perylene-d12	-

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	-
Terphenyl-d14	-

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

 Job Number:
 \$18_0840

 QC Batch Number:
 171265

Directory: 112317PCB.GC70

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
CL1784507	BH16 1.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784508	BH16 3.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784509	BH16 5.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784510	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784511	Reference Material (% Recovery)	87	90	81	98	96	95	80
			<u> </u>		<u> </u>			

Soil

21-Nov-17

23-Nov-17

23-Nov-17

Client	Causeway Geotech Ltd				Leaching Data		
Cilent	Causeway Geolech Llu				Weight of sample (kg)	0.148	
Contact	tact INeil Haddan				Moisture content @ 105°C (% of Wet Weight)	36.5	
Contact					Equivalent Weight based on drying at 105°C (kg)	0.090	
Site	Arklow Sewerage Schem	a Marina Ou	ffall CI		Volume of water required to carry out 10:1 stage (litres)		
Site	Arkiow Sewerage Scrien	ie ivianne Ou	liali Gi		Fraction of sample above 4 mm %	6.300	
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH16 1.50		-40 0040 OL/4704507 00 D		06-Dec-17			
	טפ.ו סוחכ	s18_0840 CL/1784507 0		06-Dec-17			

Note: The >4mm	fraction is	crushed	using a	disc mill
----------------	-------------	---------	---------	-----------

				Landfill Was	te Acceptance Crit	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	1.84	3	5	6
N	LOI450	Loss on Ignition (%)	5.8			10
N	BTEXHSA	Sum of BTEX (mg/kg)	<0.11	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	39	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.14	100		
N	PHSOIL	pH (pH units)	8.6		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.86		To be evaluated	To be evaluated

Accreditation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit \ BSEN 12457/2 @ L/S 10 litre kg-1		
Accre	Method		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weight)	
U		pH (pH units) 00	7.7	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	3580				
U	ICPMSW	Arsenic	0.008	0.08	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	<0.001	<0.01	2 50		100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.025	0.25	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.002	0.02	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.003	0.03	4	50	200
U	KONENS	Chloride	963	9630	800	15000	25000
U	ISEF	Fluoride	0.5	5	10 150 500		500
U	ICPWATVAR	Sulphate as SO4	191	1910	1000 20000 50000		50000
Ν	WSLM27	Total Dissolved Solids	2790	27900	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
N	WSLM13	Dissolved Organic Carbon	12	120	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causeway Geotech Ltd				Leaching Data		
Cilent	Causeway Geolecii Llu				Weight of sample (kg)		
Contact	ontact INeil Haggan				Moisture content @ 105°C (% of Wet Weight)	60.9	
Contact					Equivalent Weight based on drying at 105°C (kg)	0.090	
Site	Arklow Coweres Cohem	a Marina Ou	ffall CI		Volume of water required to carry out 10:1 stage (litres)		
Site	Arklow Sewerage Schem	ie Marine Ou	liali Gi		Fraction of sample above 4 mm %	0.000	
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH16 3.50		-10 0040 OL 4704500 00 D-14		06-Dec-17			
	00.0 010	s18_0840 CL/1784508 0		06-Dec-17			

Note: The >4mm fraction is crushed using a disc mill

_				Landfill Was	te Acceptance Crit	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	8.5	3	5	6
N	LOI450	Loss on Ignition (%)	17.2			10
N	BTEXHSA	Sum of BTEX (mg/kg)	<0.17	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	118	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<3.48	100		
N	PHSOIL	pH (pH units)	7.7		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.95		To be evaluated	To be evaluated

Accreditation	od Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Va BSEN 12457/2 @ L/S 10 litre kg-1		
Accre	Method		mg/l except ⁰⁰	mg/kg (dry weight)		mg/kg (dry weig	ht)
U		pH (pH units) ⁰⁰	7.6	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	3630				
U	ICPMSW	Arsenic	0.016	0.16	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70
U	ICPMSW	Copper	<0.001	<0.01	2	2 50	
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.254	2.54	0.5	10	30
U	ICPMSW	Nickel	0.001	0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.003	0.03	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.007	0.07	4	50	200
U	KONENS	Chloride	930	9300	800	15000	25000
U	ISEF	Fluoride	0.4	4	10 150 500		500
U	ICPWATVAR	Sulphate as SO4	227	2270	1000 20000 50000		50000
Ν	WSLM27	Total Dissolved Solids	2830	28300	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
N	WSLM13	Dissolved Organic Carbon	22	220	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causeway Geotech Ltd			Leaching Data			
Cilent	Causeway Geolech Lid				Weight of sample (kg)	0.243	
Contact	Noil Haggan	Moisture content @ 105°C (% of Wet Weight)					
Contact	Neil Haggan	Equivalent Weight based on drying at 105°C (kg)	0.090				
Site	Arklow Sewerage Schem	o Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)		
Site	Arkiow Sewerage Schen	le Maririe Ou	liali Gi		Fraction of sample above 4 mm %	0.000	
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH16 5.50		019 0940	-10 0010 01 (1704500				
· · · · · ·	0.30 OF 10	s18_0840 CL/178450		06-Dec-17			

Note: The >4mm fraction is crushed using a disc mill

_				Landfill Was	te Acceptance Crit	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	10.2	3	5	6
N	LOI450	Loss on Ignition (%)	19.6			10
N	BTEXHSA	Sum of BTEX (mg/kg)	<0.17	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	196	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<3.60	100		
N	PHSOIL	pH (pH units)	7.5		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.68		To be evaluated	To be evaluated

Accreditation	od Code	10:1 Single Stage Leachate		Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1			
Accre	Method		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)			
U		pH (pH units) 00	7.7	Calculated data not UKAS Accredited				
U	WSLM2	Conductivity (µs/cm) 00	3760					
U	ICPMSW	Arsenic	0.015	0.15	0.5	2	25	
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U	ICPMSW	Copper	<0.001	<0.01	2	50	100	
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.228	2.28	0.5	10	30	
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50	
U	ICPMSW	Antimony	0.003	0.03	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.004	0.04	4	50	200	
U	KONENS	Chloride	936	9360	800	15000	25000	
U	ISEF	Fluoride	0.4	4	10	150	500	
U	ICPWATVAR	Sulphate as SO4	268	2680	1000	20000	50000	
Ν	WSLM27	Total Dissolved Solids	2930	29300	4000	60000	100000	
U	SFAPI	Phenol Index	<0.05	<0.5	1	1		
N	WSLM13	Dissolved Organic Carbon	19	190	500	800	1000	

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Site

Socotec Environmental Chemistry Analytical and Deviating Sample Overview

S180840

Customer **Causeway Geotech Ltd**

Arklow Sewerage Scheme Marine Outfall GI Report No

S180840

Consignment No S70512 Date Logged 21-Nov-2017

In-House Report Due 11-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

									c the						
		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		65WTSM
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
CL/1784507	BH16 1.50	05/11/17		Е	Е						Е				Е
CL/1784508	BH16 3.50	05/11/17		Ē	Ē						Ē				Ē
CL/1784509	BH16 5.50	05/11/17		E	Ē						Ē				Ē
CL/1784510	QC Blank														
CL/1784511	Reference Material (% Recovery	/)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/180840

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 14 of 14 EFS/180840 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: \$18_0840

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1784507	BH16 1.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1784508 CL/1784509	BH16 3.50 BH16 5.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1784510	OC Plank	MIARINE SEDIMENTS
CL/1784510 CL/1784511	QC Blank Reference Material (% Recovery)	QUALITY CONTROL SAMPLE QUALITY CONTROL SAMPLE
CL/1784511	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE

Appendix A Page 1 of 1 12/12/2017EFS/180840 Ver. 1

Our Ref: EFS/180842 (Ver. 1)

Your Ref: 17-0167 December 6, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Environmental Chemistry SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 02/01/18 when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

JACOLDOVINE

J Colbourne

Project Co-ordinator

01283 554547

Registered No: 2880501

TEST REPORT

Report No. EFS/180842 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall Gl

The 4 samples described in this report were registered for analysis by SOCOTEC UK Limited on 21-Nov-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 06-Dec-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 6)
Table of PCB Congener Results (Page 7)
Table of WAC Analysis Results (Pages 8 to 9)
Analytical and Deviating Sample Overview (Page 10)
Table of Method Descriptions (Page 11)
Table of Report Notes (Page 12)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim

Tim Barnes Operations Director Energy & Waste Services

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 06-Dec-2017

	Meth	Units : od Codes :		pH Units PHSOIL	% TMSS	mg/kg TPHFIDUS	mg/kg TPHFIDUS	% M/M WSLM59	Mol/kg ANC	% LOI(%MM)	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	μg/kg BTEXHSA	mg/kg PAHMSUS
	Method Reporti			TTIOOIL	0.1	10	10	0.02	0.04	0.2	10	10	10	20	30	20	10	17111111000
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1784518	BH17 2.50	03-Nov-17	Req	8	8.4	11	12	0.26	0.80	1.1	<10	<10	<10	<20	<30	<20	<10*	Req
1784519	BH17 4.50	03-Nov-17	Req	8.6	8.2	14	14	0.13	0.96	0.8	<10	<10	<10	<20	<30	<20	<10*	Req
1784520	QC Blank		Req			<10	<10	<0.02			<10	<10	<10	<20	<30	<20	<10*	Req
1784521	Reference Material (% Recovery)		Req	101.6		103%	103%	100	99.3	103.6	102	101	98	106	195	99	96*	Req
į.	SOCOTEC Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Client N Contact		Neil Hag	eway Geot		ne Ma	rine (Dutfal	I GI	Date Prin Report N Table Nu	nted lumber	ple Ana	06-	-Dec-2017 FS/180842 1		

Where individual results are flagged see report notes for status.

Page 2 of 12

EFS/180842 Ver. 1

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: Job Number: BH17 2.50 S18_0842 **LIMS ID Number:** CL1784518 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 25-Nov-17

Directory: 112417.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	•	< 0.08	-
Acenaphthylene	208-96-8	1	< 0.08	-
Acenaphthene	83-32-9	1	< 0.08	-
Fluorene	86-73-7	1	< 0.08	-
Phenanthrene	85-01-8	1	< 0.08	-
Anthracene	120-12-7	1	< 0.08	-
Fluoranthene	206-44-0	1	< 0.08	1
Pyrene	129-00-0	1	< 0.08	-
Benzo[a]anthracene	56-55-3	1	< 0.08	-
Chrysene	218-01-9	1	< 0.08	-
Benzo[b]fluoranthene	205-99-2	1	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	1	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	•	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-		< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	92
Acenaphthene-d10	93
Phenanthrene-d10	90
Chrysene-d12	79
Perylene-d12	60

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	94
Terphenyl-d14	75

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH17 4.50 Job Number: s18_0842 **LIMS ID Number:** CL1784519 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 25-Nov-17

Directory: 112417.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	- + D (-	< 1.28	- Pr. 1

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	87
Acenaphthene-d10	87
Phenanthrene-d10	84
Chrysene-d12	76
Perylene-d12	58

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	101
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: QC Blank Job Number: S18_0842 **LIMS ID Number:** CL1784520 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration 25-Nov-17 **Date Analysed:**

Directory: 112417.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	- * D	< 1.28	- Pt - 1

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	96
Acenaphthene-d10	97
Phenanthrene-d10	95
Chrysene-d12	81
Perylene-d12	62

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details:Reference Material (% Rec Job Number:\$18_0842LIMS ID Number:CL1784521Date Booked in:21-Nov-17QC Batch Number:171265Date Extracted:24-Nov-17Quantitation File:Initial CalibrationDate Analysed:25-Nov-17

Directory: 112417.MS17\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.31	103	100
Acenaphthylene	208-96-8	4.36	103	99
Acenaphthene	83-32-9	4.48	104	92
Fluorene	86-73-7	4.87	101	92
Phenanthrene	85-01-8	5.72	97	100
Anthracene	120-12-7	5.77	100	99
Fluoranthene	206-44-0	7.08	98	90
Pyrene	129-00-0	7.37	98	88
Benzo[a]anthracene	56-55-3	9.06	102	99
Chrysene	218-01-9	9.11	98	99
Benzo[b]fluoranthene	205-99-2	10.59	96	96
Benzo[k]fluoranthene	207-08-9	10.62	96	96
Benzo[a]pyrene	50-32-8	11.02	98	96
Indeno[1,2,3-cd]pyrene	193-39-5	12.39	80	90
Dibenzo[a,h]anthracene	53-70-3	12.43	71	94
Benzo[g,h,i]perylene	191-24-2	12.69	82	93
Coronene	191-07-1	14.89	63	73
Total (USEPA16) PAHs	-	+ D	99	- Pr. 1

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	-
Acenaphthene-d10	-
Phenanthrene-d10	-
Chrysene-d12	-
Perylene-d12	-

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	-
Terphenyl-d14	-

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI Matrix:

Job Number:S18_0842Date Booked in:21-Nov-17QC Batch Number:171265Date Extracted:23-Nov-17Directory:112317PCB.GC70Date Analysed:23-Nov-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

		Concentration, (µg/kg)						
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
CL1784518	BH17 2.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784519	BH17 4.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784520	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784521	Reference Material (% Recovery)	86.6	90.5	80.9	98.0	95.9	95.3	79.5

Soil

Client Causeway Geotech Ltd		Leaching Data				
Client Causeway Geotech Ltd			Weight of sample (kg)	0.095		
Contact			Moisture content @ 105°C (% of Wet Weight)	8.4		
Contact	Neil Haggan				Equivalent Weight based on drying at 105°C (kg)	
Site	Arklow Sowerage Scham	o Marina Ou	tfall CI		Volume of water required to carry out 10:1 stage (litres)	
Site	Arklow Sewerage Scheme Marine Outfall GI				Fraction of sample above 4 mm %	11.200
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
BH17 2.50		s18_0842	CL/1784518	06-Dec-17		

Note: The >4mm fraction is crushed using a disc mill

				Landfill Waste Acceptance Criteria Limit Values			
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)		Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill	
Ν	WSLM59	Total Organic Carbon (% M/M)	0.26	3	5	6	
Ν	LOI450	Loss on Ignition (%)	1.1			10	
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6			
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.035	1			
Ν	TPHFIDUS	Mineral Oil (mg/kg)	12	500			
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.48	100			
Ν	PHSOIL	pH (pH units)	8		>6		
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.81		To be evaluated	To be evaluated	

itation	Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for E 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)			
Accreditation	Method		mg/l except ^{oo}	mg/kg (dry weight)			ight)	
U	WSLM3	pH (pH units) 00	7.5	Calculated data not UKAS Accredited				
U	WSLM2	Conductivity (µs/cm) 00	314	Calculated data not ONAS Accredited				
U	ICPMSW	Arsenic	<0.001	<0.01	0.5	2	25	
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U	ICPMSW	Copper	<0.001	<0.01	2	50	100	
U	ICPMSW	Mercury	0.0003	0.003	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30	
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50	
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	<0.002	<0.02	4	50	200	
U	KONENS	Chloride	69	690	800	15000	25000	
U	ISEF	Fluoride	0.4	4	10	150	500	
U	ICPWATVAR	Sulphate as SO4	31	310	1000	20000	50000	
N	WSLM27	Total Dissolved Solids	245	2450	4000	60000	100000	
U	SFAPI	Phenol Index	<0.05	<0.5	1			
N	WSLM13	Dissolved Organic Carbon	0.81	8.1	500	800	1000	

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	Causaway Caataah I	-d		Leaching Data		
Cilent	Causeway Geotech L	lu		Weight of sample (kg)	0.100	
Contact	Noil Haggan			Moisture content @ 105°C (% of Wet Weight)	8.2	
Contact	Neil Haggan			Equivalent Weight based on drying at 105°C (kg)	0.090	
Site	Arklow Soweress Sek	omo Marino Ou	tfall Cl	Volume of water required to carry out 10:1 stage (litres)	0.890	
Site	Arklow Sewerage Sch	leme Manne Ou	liali Gi	Fraction of sample above 4 mm %	37.300	
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
BH17 4.50		s18_0842	CL/1784519	06-Dec-17		

Note: The >4mm fraction is crushed using a disc mill

	4			Landfill Waste Acceptance Criteria Limit Values			
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)		Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill	
Ν	WSLM59	Total Organic Carbon (% M/M)	0.13	3	5	6	
N	LOI450	Loss on Ignition (%)	0.8			10	
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6			
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1			
Ν	TPHFIDUS	Mineral Oil (mg/kg)	15	500			
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.48	100			
Ν	PHSOIL	pH (pH units)	8.6		>6		
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.97		To be evaluated	To be evaluated	

itation	Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1		Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1		
Accreditation	Method Code		mg/l except ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)		ght)	
U	WSLM3	pH (pH units) 00	7.6	Calculated data not UKAS Accredited				
U	WSLM2	Conductivity (µs/cm) 00	436	Calculated data not OKAS Accredited				
U	ICPMSW	Arsenic	0.001	0.01	0.5	2	25	
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70	
U	ICPMSW	Copper	<0.001	<0.01	2	50	100	
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.012	0.12	0.5	10	30	
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40	
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50	
U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.002	0.02	4	50	200	
U	KONENS	Chloride	94	940	800	15000	25000	
U	ISEF	Fluoride	0.4	4	10	150	500	
U	ICPWATVAR	Sulphate as SO4	90	900	1000	20000	50000	
N	WSLM27	Total Dissolved Solids	340	3400	4000	60000	100000	
U	SFAPI	Phenol Index	<0.05	<0.5	1			
Ν	WSLM13	Dissolved Organic Carbon	1.7	17	500	800	1000	

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Sample Analysis

Socotec Environmental Chemistry Analytical and Deviating Sample Overview

S180842

Customer Causeway Geotech Ltd
Site Arklow Sewerage Scheme Marine Outfall GI
Report No S180842

Consignment No S70498 Date Logged 21-Nov-2017

In-House Report Due 11-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

									C tric				0.000.		<u> </u>
		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
CL/1784518	BH17 2.50	03/11/17		Е	E				E		Е		Е	Е	Е
					_										
CL/1784519	BH17 4.50	03/11/17		Е	E				E		Е		Е	Е	Е
CL/1784520	QC Blank														
CL/1784521	L/1784521 Reference Material (% Recovery)					l									

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
 - Sample processing did not commence within the appropriate handling time

Requested Analysis Key

- Analysis Required
- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Report Number: EFS/180842

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description	
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M	
		@ < 35°C	Sodium Hydroxide to pH 7	
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID	
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry	
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection	
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection	
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.	
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)	
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.	
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection	
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS	
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES	
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)	
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis	
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection	
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection	
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.	
Water	WSLM27	As Received	Gravimetric Determination	
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe	

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- P Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 12 of 12 EFS/180842 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: \$18_0842

Note: major constituent in upper case

Las ID Number Client ID Description (1774-518) FIRT 25.0 MANNE SEDMENTS (1774-519) BHT7-4.50 MANNE SEDMENTS (1774-519) CUT7-84-51 CUT7-84-52 CUT7-84-52 CUT7-84-52 PREFERENT FIGURIAL IN THE CONTROL SAMPLE (1774-62) PREFERENT FIGURIAL IN THE CONTROL SAMPLE (1774-			Note: major constituent in upper case
CL/1784518 BH17 2.50 MARINE SEDIMENTS CL/1784519 BH17 4.50 MARINE SEDIMENTS CL/1784520 QC Blank QUALITY CONTROL SAMPLE	Lab ID Number	Client ID	Description
CL/1784519 BH17 4.50 MARINE SEDIMENTS CL/1784520 QC Blank QUALITY CONTROL SAMPLE		RH17 2 50	
CL/1784520 QC Blank QUALITY CONTROL SAMPLE	CI /1784510	RH17 4 50	MARINE SEDIMENTS
CL/1764521 Reference Material (% Recovery) CL/1764521 Recovery) CL/1764521 Recovery	CL/1704519	OC Blank	OLIALITY CONTROL SAMPLE
		Potorono Motorial (9/ Popovory)	OLIALITY CONTROL SAMPLE
	GL/1764521	Reference Material (% Recovery)	QUALITI CONTROL SAWIFLE
		I	

Appendix A Page 1 of 1 06/12/2017EFS/180842 Ver. 1

Our Ref: EFS/180830 (Ver. 1)

Your Ref: 17-0167 December 5, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Environmental Chemistry

SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 02/01/18 when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

J Colbourne
Project Co-ordinator
01283 554547

TEST REPORT

Report No. EFS/180830 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 5 samples described in this report were registered for analysis by SOCOTEC UK Limited on 21-Nov-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 05-Dec-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 7)
Table of PCB Congener Results (Pages 8 to 9)
Table of WAC Analysis Results (Pages 10 to 12)
Analytical and Deviating Sample Overview (Page 13)
Table of Additional Report Notes (Page 14)
Table of Method Descriptions (Page 15)
Table of Report Notes (Page 16)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes Operations Director
Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 05-Dec-2017

		Units :	μg/kg	pH Units	%	mg/kg	mg/kg	% M/M	Mol/kg	%	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
	Method Reporti	od Codes :	PCBECD 5	PHSOIL	TMSS 0.1	TPHFIDUS 10	TPHFIDUS 10	0.02	ANC 0.04	0.2	BTEXHSA 10	BTEXHSA 10	BTEXHSA 10	BTEXHSA 20	30	BTEXHSA 20	BTEXHSA 10	PAHMSUS
	memed Report		_ ŭ		0.1	10	10	0.02	0.01	0.2	10	10	10	20		20	10	
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1784463	BH18 1.50	06-Nov-17	Req	8.5	33.4	20	20	0.11	0.88	0.8	<10	<10	<10	<20	<30	<20	<10	Req
1784464	BH18 3.50	06-Nov-17	Req	8.7	10.9	16	17	0.13	1.36	0.7	<10	<10	<10	<20	<30	<20	<10	Req
1784465	BH18 5.50	06-Nov-17	Req	8	5.5	30	30	2.40	2.32	7.4	<10	<10	<10	<20	<30	<20	<10	Req
1784466	QC Blank		Req			<10	<10	<0.02			<10	<10	<10	<20	<30	<20	<10	Req
1784467	Reference Material (% Recovery)		Req	99		103	103	107	99	104	<10	<10	<10	<20	<30	<20	<10	Req
	SOCOTEC Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ		Client N Contact		Neil Hag	ewerage Scheme Marine Outfall Gl					05-	-Dec-2017 FS/180830						
Tel +44 (0) 1283 554422 Arklow Sewerage Scheme Marine Outfall GI Fax +44 (0) 1283 554422 Franchiorismine, Del 5 072 Table Number Table Number 1																		

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: **Sample Details:** BH18 1.50 S18_0830 LIMS ID Number: CL1784463 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration Date Analysed: 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	97
Acenaphthene-d10	100
Phenanthrene-d10	99
Chrysene-d12	90
Perylene-d12	75

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	98
Terphenyl-d14	78

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: **Sample Details:** BH18 3.50 S18_0830 LIMS ID Number: CL1784464 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration** Date Analysed: 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	96
Acenaphthene-d10	97
Phenanthrene-d10	95
Chrysene-d12	86
Perylene-d12	70

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	101
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH18 5.50 **Job Number:** S18_0830 LIMS ID Number: CL1784465 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration** Date Analysed: 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	1	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	94
Acenaphthene-d10	94
Phenanthrene-d10	93
Chrysene-d12	90
Perylene-d12	80

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	102
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

QC Blank Job Number: **Sample Details:** S18_0830 LIMS ID Number: CL1784466 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration** Date Analysed: 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	96
Acenaphthene-d10	97
Phenanthrene-d10	95
Chrysene-d12	81
Perylene-d12	62

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: **Sample Details:** s18_0830 LIMS ID Number: CL1784467 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration Date Analysed: 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit
		(min)	%	
Naphthalene	91-20-3	3.31	103	100
Acenaphthylene	208-96-8	4.36	103	99
Acenaphthene	83-32-9	4.48	104	92
Fluorene	86-73-7	4.87	101	92
Phenanthrene	85-01-8	5.72	97	100
Anthracene	120-12-7	5.77	100	99
Fluoranthene	206-44-0	7.08	98	90
Pyrene	129-00-0	7.37	98	88
Benzo[a]anthracene	56-55-3	9.06	102	99
Chrysene	218-01-9	9.11	98	99
Benzo[b]fluoranthene	205-99-2	10.59	96	96
Benzo[k]fluoranthene	207-08-9	10.62	96	96
Benzo[a]pyrene	50-32-8	11.02	98	96
Indeno[1,2,3-cd]pyrene	193-39-5	12.39	80	90
Dibenzo[a,h]anthracene	53-70-3	12.43	71	94
Benzo[g,h,i]perylene	191-24-2	12.69	82	93
Coronene	191-07-1	14.89	63	73
Total (USEPA16) PAHs	-	-	99	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	-
Acenaphthene-d10	-
Phenanthrene-d10	-
Chrysene-d12	-
Perylene-d12	-

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	-
Terphenyl-d14	-

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall Gl

 Job Number:
 \$18_0830

 QC Batch Number:
 171265

Directory: 112317PCB.GC70

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

				Cor	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
CL1784464	BH18 3.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784465	BH18 5.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784466	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784467	Reference Material (% Recovery)	87	90	81	98	96	95	80

Soil

21-Nov-17

23-Nov-17

23-Nov-17

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

 Job Number:
 \$18_0830

 QC Batch Number:
 171265

Directory: 112717PCB.GC22

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101*	PCB118	PCB153	PCB138	PCB180
CL1784463	BH18 1.50	48.8	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
						1		
						1		

Soil

21-Nov-17

24-Nov-17

28-Nov-17

Client Causeway Geotech Ltd				Leaching Data			
				Weight of sample (kg)	0.095		
Contact Noil Hoggen				Moisture content @ 105°C (% of Wet Weight)	5.5		
Contact	Contact Neil Haggan				Equivalent Weight based on drying at 105°C (kg)		
Site	Arklow Sewerage Schem	a Marina Out	fall CI		Volume of water required to carry out 10:1 stage (litres)		
Site	Arkiow Sewerage Schem	e Marine Out	iali Gi		Fraction of sample above 4 mm %	93.500	
Sample Description Report No Sample No Issue Date		Issue Date	Fraction of non-crushable material %	0.000			
BH18 1.50		s18_0830	CL/1784463	05-Dec-17			

Note: The >4mm fraction is crushed using a disc mill

_	4			Landfill W	aste Acceptance C	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	0.11	3	5	6
N	LOI450	Loss on Ignition (%)	0.8			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.06	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.0796	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	21	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.44	100		
Ν	PHSOIL	pH (pH units)	8.5		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.9		To be evaluated	To be evaluated

_	a		10:1 Single Stage Leachate	Calculated cumulative amount			
Accreditation	Method Code	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)	Landfill Waste Acceptance Criteria Limit Values for 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)		litre kg-1
U	WSLM3	pH (pH units) ⁰⁰	7.7	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	342	Calculated data not offactive accredited			
U	ICPMSW	Arsenic	<0.001	<0.01	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	<0.01	0.5 10		70
U	ICPMSW	Copper	<0.001	<0.01	2 50		100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01 0.2 2		2
U	ICPMSW	Molybdenum	0.003	0.03	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	<0.002	<0.02	4	50	200
U	KONENS	Chloride	67	670	800	15000	25000
U	ISEF	Fluoride	0.2	2	10	150	500
U	ICPWATVAR	Sulphate as SO4	76	760	1000	20000	50000
Ν	WSLM27	Total Dissolved Solids	267	2670	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	1.5	15	500	500 800 1000	

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Template Ver. 1

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Client Causeway Geotech Ltd				Leaching Data			
				Weight of sample (kg)	0.100		
Contact Neil Haggan				Moisture content @ 105°C (% of Wet Weight)			
Contact	Contact Neil Haggan				Equivalent Weight based on drying at 105°C (kg) 0.		
Site	Arklow Sewerage Schem	a Marina Out	fall CI		Volume of water required to carry out 10:1 stage (litres)		
Site	Arkiow Sewerage Schem	e Marine Out	iali Gi		Fraction of sample above 4 mm %	30.200	
Sample Description Report No Sample No Issue Date		Issue Date	Fraction of non-crushable material %	0.000			
BH18 3.50		s18 0830 CL/1784464 05-Dec-17		05-Dec-17			

Note: The >4mm fraction is crushed using a disc mill

_				Landfill Waste Acceptance Criteria Limit Values			
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill	
N	WSLM59	Total Organic Carbon (% M/M)	0.13	3	5	6	
Ν	LOI450	Loss on Ignition (%)	0.7			10	
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.06	6			
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1			
Ν	TPHFIDUS	Mineral Oil (mg/kg)	18	500			
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.53	100			
Ν	PHSOIL	pH (pH units)	8.7		>6		
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.37		To be evaluated	To be evaluated	

_	Φ		10:1 Single Stage Leachate	leached @ 10:1					
Accreditation	Method Code	Leachate Analysis	mg/l except [∞]	mg/kg (dry weight)	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)				
U	WSLM3	pH (pH units) 00	7.4	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	569	Calculated data flot ONAS Accredited					
U	ICPMSW	Arsenic	<0.001	<0.01	0.5	2	25		
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	<0.001	<0.01	2	50	100		
U		Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.005	0.05	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	<0.002	<0.02	4	50	200		
U	KONENS	Chloride	128	1280	800	15000	25000		
U	ISEF	Fluoride	0.2	2	10	150	500		
U	ICPWATVAR	Sulphate as SO4	135	1350	1000	20000	50000		
Ν	WSLM27	Total Dissolved Solids	443	4430	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	1.2	12	500	800	1000		

Template Ver. 1

andfill Waste Acceptance Criteria limit values correct as of 11th March 200

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Client	Causeway Geotech Ltd			Leaching Data			
Cilent	Causeway Geolech Liu	Weight of sample (kg)	0.134				
Contact	Neil Haggan				Moisture content @ 105°C (% of Wet Weight)	33.4	
Contact	пен паууап			Equivalent Weight based on drying at 105°C (kg) 0.0			
Site	Arklow Sowerage Schem	a Marina Out	fall CI		Volume of water required to carry out 10:1 stage (litres)	0.856	
Site	Arklow Sewerage Schem	e Marine Out	iaii Gi		Fraction of sample above 4 mm %	0.000	
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
	3H18 5.50	-40 0000 CL (470446		05-Dec-17			
	OH 10 0.00	s18_0830	CL/1784465	05-Dec-17			

Note: The >4mm fraction is crushed using a disc mill

_				Landfill W	aste Acceptance C	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	2.44	3	5	6
Ν	LOI450	Loss on Ignition (%)	7.5			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.11	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	45	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.04	100		
Ν	PHSOIL	pH (pH units)	8		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.36		To be evaluated	To be evaluated

_			10:1 Single Stage Leachate	Calculated cumulative amount					
Accreditation	Method Code	Leachate Analysis	mg/l except ⁰⁰	mg/kg (dry weight)	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)				
U	WSLM3	pH (pH units) ⁰⁰	7.6	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	2710	Calculated data not office Accredited					
U	ICPMSW	Arsenic	0.002	0.02	0.5	2	25		
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	<0.001	<0.01	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.055	0.55	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	0.002	0.02	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.003	0.03	4	50	200		
U	KONENS	Chloride	660	6600	800	15000	25000		
U	ISEF	Fluoride	0.3	3	10	150	500		
U	ICPWATVAR	Sulphate as SO4	199	1990	1000	20000	50000		
N	WSLM27	Total Dissolved Solids	2120	21200	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	8.3	83	500	800	1000		

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Template Ver. 1

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Sample Analysis

Socotec Environmental Chemistry

Analytical and Deviating Sample Overview

Customer Causeway Geotech Ltd Site Arklow Sewerage Scheme Marine Outfall GI Report No S180830

Consignment No S70514 Date Logged 21-Nov-2017 In-House Report Due 11-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

S180830

		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
0. /	I=														
CL/1784463	BH18 1.50	06/11/17		Е	Е						Е				
CL/1784464	BH18 3.50	06/11/17		Е	Е						Е				
CL/1784465	BH18 5.50	06/11/17		Е	Е						Е				
CL/1784466	QC Blank														
CL/1784467	Reference Material (% Recovery	y)													

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- B C The sample was received without the correct preservation for this analysis
 - Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

- Analysis Required
- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Report Number : EFS/180830

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report

Report Number: EFS/180830

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	·
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes
			(BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried	Determination of loss on ignition for soil samples at specified
		@ < 35°C	temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB)
			congeners/aroclors by hexane/acetone extraction followed by
			GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
			oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection.
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective
			Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non-
			dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 16 of 16 EFS/180830 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: S18_0830

Note: major constituent in upper case

CL1794404 BH4 5.50 MANNE SEDMENTS CL1794404 BH4 5.50 MANNE SEDMENTS CL1794405 DH16 5.50 MANNE SEDMENTS CL1794407 COUNTY COUNTRY SAMPLE CL1794407 Relevence Maseriar (is Recovery CHALTY CONTROL SAMPLE CL1794407 Relevence Maseriar (is Recovery CHALTY CONTROL SAMPLE)	Lab ID Number	Client ID	Description
CL/1784464 BH18 3.50 MARINE SEDIMENTS CL/1784465 BH18 5.50 MARINE SEDIMENTS			
CL/1784465 BH18 5.50 MARINE SEDIMENTS	CL/1784464	BH18 3 50	MARINE SEDIMENTS
CU1754465 GC Slank QUALITY CONTROL SAMPLE CU1754467 Reference Material (% Recovery QUALITY CONTROL SAMPLE)	CL/1784465	BH18 5 50	MARINE SEDIMENTS
CL/1754467 Reference Material (% Recovery, GUALITY CONTROL SAMPLE	CL/1704403	OC Blank	OLIALITY CONTROL SAMPLE
	CL/1704400	Potoronce Material (% Pocovery)	OLIALITY CONTROL SAMPLE
	CL/1704407	Reference Material (% Recovery)	QUALITY GONTROL DAMI EL
		1	

Appendix A Page 1 of 1 12/12/2017EFS/180830 Ver. 1

Our Ref: EFS/180838 (Ver. 1)

Your Ref: 17-0167 November 30, 2017

> Neil Haggan Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Environmental Chemistry

SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Neil Haggan

Dear Neil Haggan

Sample Analysis - Arklow Sewerage Scheme Marine Outfall GI

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 02/01/18 when they will be discarded. Please call 01283 554547 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

THOUSOURE

J Colbourne
Project Co-ordinator
01283 554547

TEST REPORT

Report No. EFS/180838 (Ver. 1)

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney United Kingdom BT53 7QL

Site: Arklow Sewerage Scheme Marine Outfall GI

The 4 samples described in this report were registered for analysis by SOCOTEC UK Limited on 21-Nov-2017. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 30-Nov-2017

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 6)
Table of PCB Congener Results (Page 7)
Table of WAC Analysis Results (Pages 8 to 9)
Analytical and Deviating Sample Overview (Page 10)
Table of Additional Report Notes (Page 11)
Table of Method Descriptions (Page 12)
Table of Report Notes (Page 13)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes Operations Director
Energy & Waste Services

Date of Issue: 30-Nov-2017

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

		Units :	μg/kg	pH Units	%	mg/kg	mg/kg	% M/M	Mol/kg	%	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
	Method Reporti	od Codes : na Limits :	PCBECD 5	PHSOIL	TMSS 0.1	TPHFIDUS 10	TPHFIDUS 10	WSLM59 0.02	ANC 0.04	0.2	BTEXHSA 10	BTEXHSA 10	BTEXHSA 10	BTEXHSA 20	30	BTEXHSA 20	BTEXHSA 10	PAHMSUS
																	.,	
LAB ID Number CL/	Client Sample Description	Sample Date	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon	Acid Neut. Capacity	L.O.I. % @ 450C	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (17) by GCMS
1784497	BH19 1.50	07-Nov-17	Req	7.6	4.4	15	15	0.12	0.80	0.8	<10	<10	<10	<20	<30	<20	<10	Req
1784498	BH19 3.50	07-Nov-17	Req	7.5	58.8	42	43	8.6	0.96	17.9	<10	<10	<10	<20	<30	<20	<10	Req
1784499	QC Blank		Req			<10	<10	<0.02			<10	<10	<10	<20	<30	<20	<10	Req
1784500	Reference Material (% Recovery)		Req	102		103	103	100	99.3	103.6	96	95	102	105	103	104	101	Req
	SOCOTEC (3)		Client N	ame	Cause	way Geot	ech Ltd						Sam	ple Ana	alysis			
			Contact		Neil Haggan													
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422	Arklow Sewerage Scheme Marine Outfall GI Arklow Sewerage Scheme Marine Outfall GI Date Printed 29-Nov-2017 Report Number EFS/180838 Table Number 1																

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: **Sample Details:** BH19 1.50 s18_0838 LIMS ID Number: CL1784497 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration** Date Analysed: 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	93
Phenanthrene-d10	92
Chrysene-d12	78
Perylene-d12	57

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	79

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Sample Details: BH19 3.50 **Job Number:** S18_0838 LIMS ID Number: CL1784498 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration Date Analysed: 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	94
Acenaphthene-d10	95
Phenanthrene-d10	93
Chrysene-d12	88
Perylene-d12	69

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	102
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Job Number: **Sample Details:** QC Blank s18_0838 LIMS ID Number: CL1784499 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File: Initial Calibration Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	
Coronene	191-07-1	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	96
Acenaphthene-d10	97
Phenanthrene-d10	95
Chrysene-d12	81
Perylene-d12	62

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

Reference Material (% Rec Job Number: **Sample Details:** s18_0838 LIMS ID Number: CL1784500 Date Booked in: 21-Nov-17 **QC Batch Number:** 171265 **Date Extracted:** 24-Nov-17 **Quantitation File:** Initial Calibration **Date Analysed:** 25-Nov-17 **Directory:** 112417.MS17\ Matrix: Soil **Dilution: Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Recovery	% Fit	
		(min)	%		
Naphthalene	91-20-3	3.31	103	100	
Acenaphthylene	208-96-8	4.36	103	99	
Acenaphthene	83-32-9	4.48	104	92	
Fluorene	86-73-7	4.87	101	92	
Phenanthrene	85-01-8	5.72	97	100	
Anthracene	120-12-7	5.77	100	99	
Fluoranthene	206-44-0	7.08	98	90	
Pyrene	129-00-0	7.37	98	88	
Benzo[a]anthracene	56-55-3	9.06	102	99	
Chrysene	218-01-9	9.11	98	99	
Benzo[b]fluoranthene	205-99-2	10.59	96	96	
Benzo[k]fluoranthene	207-08-9	10.62	96	96	
Benzo[a]pyrene	50-32-8	11.02	98	96	
Indeno[1,2,3-cd]pyrene	193-39-5	12.39	80	90	
Dibenzo[a,h]anthracene	53-70-3	12.43	71	94	
Benzo[g,h,i]perylene	191-24-2	12.69	82	93	
Coronene	191-07-1	14.89	63	73	
Total (USEPA16) PAHs	-	-	99	-	

^{*} Denotes compound is not UKAS accredited

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	-
Acenaphthene-d10	-
Phenanthrene-d10	-
Chrysene-d12	-
Perylene-d12	-

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	-
Terphenyl-d14	-

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Causeway Geotech Ltd: Arklow Sewerage Scheme Marine Outfall GI

 Job Number:
 \$18_0838

 QC Batch Number:
 171265

 QC Batch Number:
 171265
 Date Extracted:
 23-Nov-17

 Directory:
 112317PCB.GC70
 Date Analysed:
 23-Nov-17

Method: Ultrasonic

Compounds marked * are not UKAS or MCerts accredited

Matrix:

Date Booked in:

				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
CL1784497	BH19 1.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784498	BH19 3.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784499	QC Blank	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1784500	Reference Material (% Recovery)	86.6	90.5	80.9	98.0	95.9	95.3	79.5
_								

Soil

21-Nov-17

Client	ent Causeway Geotech Ltd		Leaching Data			
Causeway Geolech Llu				Weight of sample (kg)	0.101	
Contact Neil Haggan				Moisture content @ 105°C (% of Wet Weight)		
Contact	Neil Haggan			Equivalent Weight based on drying at 105°C (kg) 0.090		
Site	Arthur Courses as Cahama Marina Outfall Cl		Volume of water required to carry out 10:1 stage (litres)			
Site Arklow Sewerage Scheme Marine Out			e Outrair Gr		Fraction of sample above 4 mm %	11.200
Sample Description Report No Sam		Sample No	Issue Date	Fraction of non-crushable material %	0.000	
BH19 1.50		s18 0838	38 CL/1784497 30-Nov-1			
BH19 1.50		\$10_000 CL/1/84497 3		30-NOV-17		

Note: The >4mm fraction is crushed using a disc mill

	4			Landfill Was	te Acceptance Crit	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.12	3	5	6
Ν	LOI450	Loss on Ignition (%)	0.8			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	< 0.06	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	16	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.42	100		
Ν	PHSOIL	pH (pH units)	7.6		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	0.81		To be evaluated	To be evaluated

r.	Ф		10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	Landfill Waste	Acceptance Crite	ria Limit Values for		
Accreditation	Method Code	Leachate Analysis mg/l except ⁰⁰		mg/kg (dry weight)	BSEN 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)				
U		pH (pH units) 00	7.1	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	124	Calculated data not offao Accredited					
U	ICPMSW	Arsenic	0.005	0.05	0.5	2	25		
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300		
U	ICPMSW	Cadmium	0.0001	0.001	0.04	1	5		
U	ICPMSW	Chromium	0.002	0.02	0.5	10	70		
U	ICPMSW	Copper	0.007	0.07	2	50	100		
U	ICPMSW	Mercury	<0.0001 <0.001		0.01	0.2	2		
U	ICPMSW	Molybdenum	0.002	0.02	0.5	10	30		
U	ICPMSW	Nickel	0.001	0.01	0.4	10	40		
U	ICPMSW	Lead	0.018	0.18	0.5	10	50		
U	ICPMSW	Antimony	<0.001	<0.01	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.038	0.38	4	50	200		
U	KONENS	Chloride	24	240	800	15000	25000		
U	ISEF	Fluoride	0.3	3	10	150	500		
U	ICPWATVAR	Sulphate as SO4	11	110	1000	20000	50000		
N	WSLM27	Total Dissolved Solids	96.9	9 969		60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
Ν	WSLM13	Dissolved Organic Carbon	1.8	18	500	800	1000		

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Template Ver. 1

Client	Causaway Caataah Ltd				Leaching Data Weight of sample (kg) 0.2				
Cilent	Causeway Geotech Ltd								
Contact	Noil Hoggon				Moisture content @ 105°C (% of Wet Weight)				
Contact	Neil Haggan				Equivalent Weight based on drying at 105°C (kg) 0.				
Site	Arklow Sewerage Schem	o Marina Ou	#all CI		Volume of water required to carry out 10:1 stage (litres)				
Site	Arkiow Sewerage Scrien	le Marine Ou	liali Gi		Fraction of sample above 4 mm %	5.600			
Samp	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000				
BH19 3.50		s18 0838	CL/1784498	30-Nov-17					
-	3.50	\$10_0030	CL/1/04498 30-NO	30-NOV-17					

Note: The >4mm fraction is crushed using a disc mill

	4			Landfill Was	te Acceptance Crit	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	9.1	3	5	6
Ν	LOI450	Loss on Ignition (%)	18.9			10
Ν	BTEXHSA	Sum of BTEX (mg/kg)	<0.13	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	102	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<3.30	100		
Ν	PHSOIL	pH (pH units)	7.5		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.02		To be evaluated	To be evaluated

_ c	Φ	10:1 Single Stage Leachate		Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values fo				
Accreditation	Method Code	Leachate Analysis	mg/l except [∞]	mg/kg (dry weight)	BSEN 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)				
U	WSLM3	pH (pH units) 00	7.5	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	3580	Calculated data flot 617.16 / toricalica					
U	ICPMSW	Arsenic	0.009	0.09	0.5	2	25		
U	ICPWATVAR	Barium	<0.01	<0.1	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	<0.001	<0.01	0.5	10	70		
U	ICPMSW	Copper	<0.001	<0.01	2	50	100		
U		Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.086	0.86	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	0.001	0.01	0.06	0.7	5		
U	ICPMSW	Selenium	<0.001	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.004	0.04	4	50	200		
U	KONENS	Chloride	929	9290	800	15000	25000		
U	ISEF	Fluoride	0.6	6	10	150	500		
U	ICPWATVAR	Sulphate as SO4	148	1480	1000	20000	50000		
Ν	WSLM27	Total Dissolved Solids	2790	27900	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.5	1				
N	WSLM13	Dissolved Organic Carbon	15	150	500	800	1000		

Template Ver. 1 Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

S180838

Socotec Environmental Chemistry Analytical and Deviating Sample Overview

Customer Causeway Geotech Ltd
Site Arklow Sewerage Scheme Marine Outfall GI
Report No S180838

Consignment No S70515

Date Logged 21-Nov-2017

In-House Report Due 11-Dec-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working

		MethodID	ANC	BTEXHSA		CEN Leachate	CustServ	LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)C	Report C	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
	I=														
CL/1784497	BH19 1.50	07/11/17		Е	Е						Е				
CL/1784498	BH19 3.50	07/11/17		Е	Е						Е				
CL/1784499	QC Blank														
CL/1784500	Reference Material (% Recovery	()					,								

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- B The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number : EFS/180838

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report

Report Number: EFS/180838

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description			
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M			
		@ < 35°C	Sodium Hydroxide to pH 7			
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID			
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry			
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection			
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection			
Soil	PHSOIL	As Received				
Soil	TMSS	As Received				
Soil	TPHFIDUS	As Received				
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection			
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS			
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES			
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)			
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis			
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection			
Water	WSLM13	As Received	·			
Water	WSLM2	As Received				
Water	WSLM27	As Received	Gravimetric Determination			
Water	WSLM3		Determination of the pH of water samples by pH probe			

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 13 of 13 EFS/180838 Ver. 1

Sample Descriptions

Client : Causeway Geotech Ltd

Site: Arklow Sewerage Scheme Marine Outfall GI

Report Number: \$18_0838

Note: major constituent in upper case

		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1784497	BH19 1.50	MARINE SEDIMENTS
CL/1704437	BH19 3.50	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1704490	QC Blank	QUALITY CONTROL SAMPLE
CL/1784498 CL/1784499 CL/1784500	QC Blank	QUALITY CONTROL SAMPLE
CL/1784500	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE

Appendix A Page 1 of 1 12/12/2017EFS/180838 Ver. 1

APPENDIX F
SPT hammer energy measurement results

SPT Calibration Report www.equipegroup.com Hammer Energy Measurement Report SPT HAMMER Type of Hammer Key CAUSEWAY GEOTECH Client 1 Anvil 2 Part of instrumented rod 3 Drive Rod EQU1763 Test No 7.50 Test Depth (m) 4 Strain Gauge 18 February 2017 Date of Test 6 Ground 18 February 2018 Valid until F Force d, Diameter of rod EQU1763 Hammer ID ød. Mass of the hammer m = 63.5 kgh = 0.76m Falling height $m \times g \times h = 473$ $E_{\text{theor}} =$ Characteristics of the instrumented rod $d_r = 0.052 \,\mathrm{m}$ Diameter Length of the instrumented rod 0.558 m $A = 11.61 \text{ cm}^2$ Area Modulus $E_a = 206843 \, \text{MPa}$ Fig. B.1 and B.2 BS EN ISO 22476-3: 2005 + A1: 2011 **Particle Velocity** Force Force F (KN) Time t (µs) Time t (µs) **Energy Ratio per Blow** Acceleration 100.000 95 000 • Blow 1 B5 000 • 8low 2 80.000 Blow 3 Energy Ratio (%) 75.000 • Blow 4 70 000 Blow 5 Blow 6 60.000 Blow 7 Blow 8 55 000 Blow 9 50 000 • Blow 10 45 000 Maximum Force (Fmax) Time t (µs) Observations: 0.277 kN-m E meas = 58.61% Energy Ratio = 0.473 kN-m E theor = AF **Equipe SPT Analyzer Operators: Date** 02/03/2017 Checked by: Prepared by: DIRES

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Southern Testing Laboratories

Keeble House Stuart Way East Grinstead West Sussex RH19 4QA SPT Hammer Ref: DR1

Test Date:

01/06/2017

Report Date:

01/06/2017

File Name:

DR1.spt

Test Operator:

NPB

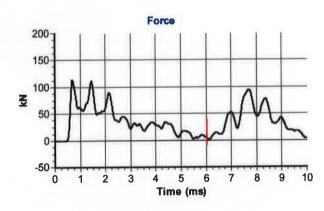
Instrumented Rod Data

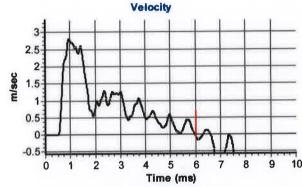
Diameter d_r (mm): 54

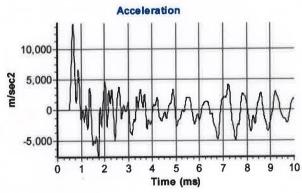
Wall Thickness t_r (mm): 6.0

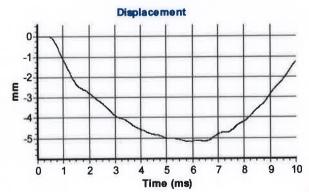
Assumed Modulus E_a (GPa): 200

Accelerometer No.1: 6458


Accelerometer No.2: 9607


SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 14.5


Comments / Location

CHARLWOODS

Calculations

Area of Rod A (mm2): 905 Theoretical Energy E_{theor} (J): 473 Measured Energy E_{meas} (J): 287

Signed: Neil Burrows

Title: Field Operations Manager

Energy Ratio E_r (%):

61

The recommended calibration interval is 12 months